首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为探索非一致地震波动输入对大型钢筋混凝土框架结构地震响应的影响,基于OpenSees软件平台建立二维钢筋混凝土框架结构\|地基动力相互作用有限元模型。将El-Centro地震波按P波波形分别以0°、15°、30°和35°角入射该有限元模型进行计算,对比分析框架柱内力和楼层层间位移的地震响应。研究发现非一致地震波输入方法对于大型钢筋混凝土框架结构建筑动力响应影响明显,随着地震波入射角的增大,钢筋混凝土框架结构底层柱的轴力幅值减小,剪力幅值增大,而弯矩幅值变化较小,楼层层间位移幅值也随之增大。研究结果对于大型钢筋混凝土框架结构抗震设计具有参考意义。  相似文献   

2.
A comprehensive parametric study on the inelastic seismic response of seismically isolated RC frame buildings, designed for gravity loads only, is presented. Four building prototypes, with 23 m × 10 m floor plan dimensions and number of storeys ranging from 2 to 8, are considered. All the buildings present internal resistant frames in one direction only, identified as the strong direction of the building. In the orthogonal weak direction, the buildings present outer resistant frames only, with infilled masonry panels. This structural configuration is typical of many existing RC buildings, realized in Italy and other European countries in the 60s and 70s. The parametric study is based on the results of extensive nonlinear response‐time history analyses of 2‐DOF systems, using a set of seven artificial and natural seismic ground motions. In the parametric study, buildings with strength ratio (Fy/W) ranging from 0.03 to 0.15 and post‐yield stiffness ratio ranging from 0% to 6% are examined. Three different types of isolation systems are considered, that is, high damping rubber bearings, lead rubber bearings and friction pendulum bearings. The isolation systems have been designed accepting the occurrence of plastic hinges in the superstructure during the design earthquake. The nonlinear response‐time history analyses results show that structures with seismic isolation experience fewer inelastic cycles compared with fixed‐base structures. As a consequence, although limited plastic deformations can be accepted, the collapse limit state of seismically isolated structures should be based on the lateral capacity of the superstructure without significant reliance on its inherent hysteretic damping or ductility capacity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Due to the randomness of earthquake wave magnitude and direction, and the uncertain direction of strong axis and weak axis in the construction of engineering structures, the effect of the direction of ground motion on a structure are studied herein. Ground motion records usually contain three vertical ground motion data, which are obtained by sensors arranged in accordance with the EW(East-West) direction, NS(South- North) direction and perpendicular to the surface(z) direction, referring to the construction standard of seismic stations. The seismic records in the EW and NS directions are converted to Cartesian coordinates in accordance with the rotation of θ = 0°-180°, and consequently, a countless group of new ground motion time histories are obtained. Then, the characteristics of the ground motion time history and response spectrum of each group were studied, resulting in the following observations:(1) the peak and phase of ground motion are changed with the rotation of direction θ, so that the direction θ of the maximum peak ground motion can be determined;(2) response spectrum values of each group of ground motions change along with the direction θ, and their peak, predominant period and declining curve are also different as the changes occur; then, the angle θ in the direction of the maximum peak value or the widest predominant period can be determined; and(3) the seismic response of structures with different directions of ground motion inputs has been analyzed under the same earthquake record, and the results show the difference. For some ground motion records, such as the Taft seismic wave, these differences are significant. Next, the Lushan middle school gymnasium structure was analyzed and the calculation was checked using the proposed method, where the internal force of the upper space truss varied from 25% to 28%. The research results presented herein can be used for reference in choosing the ground motion when checking the actual damage to structures following earthquakes and explaining the seismic damage. Meanwhile, it also provides a reference value for research into the most severe ground motion.  相似文献   

4.
The effects of seismic pounding on the structural performance of a base-isolated reinforced concrete (RC) building are investigated, with a view to evaluate the influence of adjacent structures and separation between structures on the pounding response. In particular, seismic pounding of a typical four-story base-isolated RC building with retaining walls at the base and with a four-story fixed-base RC building is studied. Three-dimensional finite element analyses are carried out considering material and geometric nonlinearities. The structural performance of the base-isolated building is evaluated considering various earthquake excitations. It is found that the performance of the base-isolated building is substantially influenced by the pounding. The investigated base-isolated building shows good resistance against shear failure and the predominant mode of failure due to pounding is flexural. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Strong near-fault ground motion, usually caused by the fault-rupture and characterized by a pulse-like velocity- wave form, often causes dramatic instantaneous seismic energy (Jadhav and Jangid 2006). Some reinforced concrete (RC) bridge columns, even those built according to ductile design principles, were damaged in the 1999 Chi-Chi earthquake. Thus, it is very important to evaluate the seismic response of a RC bridge column to improve its seismic design and prevent future damage. Nonlinear time history analysis using step-by-step integration is capable of tracing the dynamic response of a structure during the entire vibration period and is able to accommodate the pulsing wave form. However, the accuracy of the numerical results is very sensitive to the modeling of the nonlinear load-deformation relationship of the structural member. FEMA 273 and ATC-40 provide the modeling parameters for structural nonlinear analyses of RC beams and RC columns. They use three parameters to define the plastic rotation angles and a residual strength ratio to describe the nonlinear load- deformation relationship of an RC member. Structural nonlinear analyses are performed based on these parameters. This method provides a convenient way to obtain the nonlinear seismic responses of RC structures. However, the accuracy of the numerical solutions might be further improved. For this purpose, results from a previous study on modeling of the static pushover analyses for RC bridge columns (Sung et al. 2005) is adopted for the nonlinear time history analysis presented herein to evaluate the structural responses excited by a near-fault ground motion. To ensure the reliability of this approach, the numerical results were compared to experimental results. The results confirm that the proposed approach is valid.  相似文献   

6.
我国西部部分连续刚构桥临近地震断层建设,在抗震分析时通常会忽略断层走向与桥梁纵桥向夹角对其地震反应的影响。利用Midas Civil软件建立4座墩高不同的大跨度连续刚构桥模型,选取10组近断层强震记录进行时程分析,研究断层走向对刚构桥地震反应(位移和弯矩反应)的影响。结果显示:在水平双向近断层地震动输入下,桥梁主墩及主梁纵桥向地震反应在断层走向与纵桥向夹角为75°~135°范围内最大,而横桥向最大地震反应则发生在夹角为0°~30°或120°~180°范围;在三向近断层地震动输入下,与仅考虑水平双向地震动输入下的桥梁地震反应相比,竖向地震动对主梁竖向弯矩响应的影响较大,特别是主墩和主梁的交界处,增大比例可达2倍及以上。就文章选取的4座桥梁算例,不考虑断层走向和桥梁纵桥向的夹角则存在低估桥梁地震反应的可能,低估误差在15%~40%左右。  相似文献   

7.
The seismic design of multi‐story buildings asymmetric in plan yet regular in elevation and stiffened with ductile RC structural walls is addressed. A realistic modeling of the non‐linear ductile behavior of the RC walls is considered in combination with the characteristics of the dynamic torsional response of asymmetric buildings. Design criteria such as the determination of the system ductility, taking into account the location and ductility demand of the RC walls, the story‐drift demand at the softer (most displaced) edge of the building under the design earthquake, the allowable ductility (ultimate limit state) and the allowable story‐drift (performance goals) are discussed. The definition of an eccentricity of the earthquake‐equivalent lateral force is proposed and used to determine the effective displacement profile of the building yet not the strength distribution under the design earthquake. Furthermore, an appropriate procedure is proposed to calculate the fundamental frequency and the earthquake‐equivalent lateral force. A new deformation‐based seismic design method taking into account the characteristics of the dynamic torsional response, the ductility of the RC walls, the system ductility and the story‐drift at the softer (most displaced) edge of the building is presented and illustrated with an example of seismic design of a multi‐story asymmetric RC wall building. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
为研究近断层地震动特性对火灾后多层RC框架抗震性能的影响,以火灾后某多层RC框架结构为研究对象,结合火灾后现场材料的检测与鉴定报告,开展了结构火灾前后在近场有脉冲和无脉冲地震作用下的结构动力弹塑性时程分析,对比分析了近场有脉冲和无脉冲地震动特性对火灾前后RC框架结构整体的抗震性能的影响.研究结果表明:火灾后,整体结构地...  相似文献   

9.
Steel rectangular section columns with stiffened plates are commonly used for elevated highway bridges in the urban areas of Japan. The seismic design of bridge piers is usually performed by dynamic analysis in the horizontal direction using various independent directional seismic acceleration data. However, this simple treatment does not reflect the effect of bilateral loading as a structural response to inelastic interaction. In this study, unidirectional and bidirectional loading hybrid tests were conducted to examine the seismic response and performance of square cross‐sections of steel bridge piers subjected to bidirectional seismic accelerations. Comparison of the results of unidirectional and bidirectional loading tests revealed that the maximum load is the same as the average of unidirectional loading in the NS and EW directions; however, the maximum response displacement and residual displacement increase in proportion with hard to soft ground types. Moreover, a modified seismic design is proposed considering these bidirectional loading effects. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
对建筑物灾变发生时经济损失和人员伤亡情况做出准确预估是未来建筑结构设计初期需要努力的方向。基于下一代性能化设计理论,通过精细化建模和动力时程分析对结构进行易损性分析,并以此得到抗震性能评估所需的各类地震响应参数,建立RC框架结构全概率抗震性能评估方法。以云南大学力行楼为例,通过地震损失预测得到了该栋建筑的经济损失、修复时间和人员伤亡情况。该方法直观清晰地展示了结果,便于业主及非本专业从业者理解。  相似文献   

11.
In this study the probable seismic behavior of skewed bridges with continuous decks under earthquake excitations from different directions is investigated.A 45° skewed bridge is studied.A suite of 20 records is used to perform an Incremental Dynamic Analysis(IDA) for fragility curves.Four different earthquake directions have been considered:-45°, 0°, 22.5°, 45°.A sensitivity analysis on different spectral intensity measures is presented; efficiency and practicality of different intensity measures have been studied.The fragility curves obtained indicate that the critical direction for skewed bridges is the skew direction as well as the longitudinal direction.The study shows the importance of finding the most critical earthquake in understanding and predicting the behavior of skewed bridges.  相似文献   

12.
钢筋混凝土结构是一种广泛使用的结构形式,其耐久性设计是一个十分迫切需要解决的问题。在一般大气环境下,混凝土碳化和钢筋锈蚀是钢筋混凝土结构耐久性的重要影响因素,在其作用下结构的抗震承载力发生变化,因此可将结构抗震承载力因素引入结构的耐久性设计中。采用改进能力谱法,以罕遇地震下薄弱层的弹塑性层间位移作为结构承载力指标,研究了一般大气环境下钢筋锈蚀因素对钢筋混凝土结构抗震耐久性的影响,提出了基于抗震承载力和改进的能力谱法的钢筋混凝土结构耐久性设计方法。通过一个五层钢筋混凝土结构的算例说明了验算结构抗震性能耐久行的必要性。  相似文献   

13.
The multifunctional vibration–absorption RC megaframe structures, which act as tuned mass dampers, base isolators and damping energy‐dissipaters, are presented. The proposed systems are essentially different from the normal megaframe structures in earthquake responses, failure mechanism, and theoretical model of seismic design. The elasto‐plastic dynamic analyses show that the earthquake responses of the multifunctional vibration–absorption RC megaframe structures decrease significantly in comparison with the normal megaframe structures, namely 60–80 per cent decrease of the earthquake responses of the major frames and 70–90 per cent decrease of the ones of the minor frames. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
考虑到地震作用下地下结构往往受到双向往复荷载作用,本文提出了循环往复加载的地下结构Pushover分析方法.介绍了该方法的实施步骤、基本功能与特点.该方法考虑了地震作用下地下结构双向受力的特点,利用多点位移控制的推覆分析算法进行地震作用下正向加载-卸载-反向再加载的全过程分析.该方法将一次循环加载过程近似看作一次地震作用过程,提出了基于循环往复加载Pushover分析的损伤模型,避免了对土-结构整体模型进行复杂的动力相互作用分析;通过一次循环往复加载的Pushover分析,根据结构构件刚度的改变对结构损伤进行有效评估.结合实际工程进行算例分析初步验证了循环往复加载Pushover分析及地震损伤模型的有效性.  相似文献   

15.
This paper addresses the issue of structural system identification using earthquake‐induced structural response. The proposed methodology is based on the subspace identification algorithm to perform identification of structural dynamic characteristics using input–output seismic response data. Incorporated with subspace identification algorithm, a scheme to remove spurious modes is also used to identify real system poles. The efficiency of the proposed method is shown by the analysis of all measurement data from all measurement directly. The recorded seismic response data of three structures (one 7‐story RC building, one midisolation building, and one isolated bridge), under Taiwan Strong Motion Instrumentation Program, are analyzed during the past 15 years. The results present the variation of the identified fundamental modal frequencies and damping ratios from all the recorded seismic events that these three structures had encountered during their service life. Seismic assessment of the structures from the identified system dynamic characteristics during the period of their service is discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
基于一维单侧有限移动震源模式,根据地震波传播过程中的多普勒效应,分别利用P波和S波拐角频率的方位变化,反演2012年7月20日江苏高邮、宝应交界MS4.9地震的发震断层面参数。P波和S波拐角频率的反演结果一致显示:本次地震的断层面破裂方向为232°左右,破裂面呈NE-SW向;地震马赫数v/c为0.2左右,平均破裂速度小于S波速度,破裂长度较短,为0.2~0.3km左右。破裂面方位与震源机制解、宏观烈度调查和余震精定位的研究结果具有一致性,结合震区周边的地质构造背景,分析认为滁河断裂很可能是高邮、宝应交界MS4.9地震的发震构造。  相似文献   

17.
本文简要评述了现有钢筋混凝土剪力墙的非线性分析模型,着重介绍了多竖线单元模型,并对其竖向单元的轴向刚度和水平弹簧的剪切刚度分别建议了改进的滞变模型,最后将基于自平衡力的非线性动力反应分析方法应用于求解剪力墙结构的非线性地震反应,并用传统分析方法对其结果进行了检验,表明该分析方法计算简便,而且是有效和可靠的。  相似文献   

18.
大跨度空间网格结构多维多点随机地震反应分析   总被引:4,自引:0,他引:4  
本文建立了三维正交地震动多点激励下大跨度空间网格结构的随机地震反应分析方法,依据现行抗震设计规范的有关规定,确定了平稳随机地震动功率谱密度的模型参数。数值仿真分析了一柱距80m的正方形平板网架分别在一维地震动或三维地震动的一致激励、行波激励和考虑部分相干效应的随机激励下的地震反应。结果表明:考虑地震动的空间效应会很大程度地改变结构杆件的内力,其中控制杆件的内力增幅达到30%;地震动的行波效应对结构杆件内力的影响比随机地震动的部分相干效应的影响更大;三维地震作用比一维地震作用下结构杆件的内力大。由此得出结论,对于大跨度空间网格结构,必须进行多维多点地震激励下的随机地震反应分析。  相似文献   

19.
北京地区农村砖木结构振动台试验研究   总被引:2,自引:0,他引:2  
为了了解北京地区典型砖木结构(木柱支撑,木屋盖,外砖墙)农村住宅结构的抗震能力,根据北京地区这类农村住宅结构的调研结果,本文介绍了一座典型砖木结构单层三开间农村住宅2/3缩尺振动台试验结构模型的设计与动力试验结果。按照北京地区8度抗震设防的要求,分别完成了模型在设计小震(0.072g)、中震(0.2g)和大震(0.4g)条件下的振动台动力试验,量测了模型的动力响应,记录了不同激励水平下模型的开裂情况。基于试验结果,分析了这种结构的抗震能力以及该类型房屋的抗震薄弱点,为制定这类结构的抗震加固方案提供依据。  相似文献   

20.
The elastic torsional stiffness of a structure has important influence on the seismic response of an asymmetric structure, both in the elastic and inelastic range. For elastic structures it is immaterial whether the stiffness is provided solely by structural elements in planes parallel to the direction of earthquake or by a combination of such elements in parallel and orthogonal planes. The issue of how the relative contribution of structural elements in orthogonal planes affects the torsional response of inelastic structures has been the subject of continuing study. Several researchers have noted that structural elements in orthogonal planes reduce the ductility demands in both the flexible and stiff edge elements parallel to the earthquake. Some have noted that the beneficial effect of structural elements in orthogonal planes is more pronounced when such elements remain elastic. These issues are further examined in this paper through analytical studies on the torsional response of single-storey building models. It is shown that, contrary to the findings of some previous studies, the torsional response of inelastic structures is affected primarily by the total torsional stiffness in the elastic range, and not so much by whether such stiffness is contributed solely by structural elements in parallel planes or by such elements in both parallel and orthogonal planes. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号