首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The northern coasts of the Gulf of Mexico (GoM) are highly vulnerable to the direct threats of climate change, such as hurricane-induced storm surge, and such risks are exacerbated by land subsidence and global sea-level rise. This paper presents an application of a coastal storm surge model to study the coastal inundation process induced by tide and storm surge, and its response to the effects of land subsidence and sea-level rise in the northern Gulf coast. The unstructured-grid finite-volume coastal ocean model was used to simulate tides and hurricane-induced storm surges in the GoM. Simulated distributions of co-amplitude and co-phase lines for semi-diurnal and diurnal tides are in good agreement with previous modeling studies. The storm surges induced by four historical hurricanes (Rita, Katrina, Ivan, and Dolly) were simulated and compared to observed water levels at National Oceanic and Atmospheric Administration tide stations. Effects of coastal subsidence and future global sea-level rise on coastal inundation in the Louisiana coast were evaluated using a “change of inundation depth” parameter through sensitivity simulations that were based on a projected future subsidence scenario and 1-m global sea-level rise by the end of the century. Model results suggested that hurricane-induced storm surge height and coastal inundation could be exacerbated by future global sea-level rise and subsidence, and that responses of storm surge and coastal inundation to the effects of sea-level rise and subsidence are highly nonlinear and vary on temporal and spatial scales.  相似文献   

2.
The devastation due to storm surge flooding caused by extreme wind waves generated by the cyclones is a severe apprehension along the coastal regions of India. In order to coexist with nature’s destructive forces in any vulnerable coastal areas, numerical ocean models are considered today as an essential tool to predict the sea level rise and associated inland extent of flooding that could be generated by a cyclonic storm crossing any coastal stretch. For this purpose, the advanced 2D depth-integrated (ADCIRC-2DDI) circulation model based on finite-element formulation is configured for the simulation of surges and water levels along the east coast of India. The model is integrated using wind stress forcing, representative of 1989, 1996, and 2000 cyclones, which crossed different parts of the east coast of India. Using the long-term inventory of cyclone database, synthesized tracks are deduced for vulnerable coastal districts of Tamil Nadu. Return periods are also computed for the intensity and frequency of cyclones for each coastal district. Considering the importance of Kalpakkam region, extreme water levels are computed based on a 50-year return period data, for the generation of storm surges, induced water levels, and extent of inland inundation. Based on experimental evidence, it is advocated that this region could be inundated/affected by a storm with a threshold pressure drop of 66 hpa. Also it is noticed that the horizontal extent of inland inundation ranges between 1 and 1.5 km associated with the peak surge. Another severe cyclonic storm in Tamil Nadu (November 2000 cyclone), which made landfall approximately 20 km south of Cuddalore, has been chosen to simulate surges and water levels. Two severe cyclonic storms that hit Andhra coast during 1989 and 1996, which made landfall near Kavali and Kakinada, respectively, are also considered and computed run-up heights and associated water levels. The simulations exhibit a good agreement with available observations from the different sources on storm surges and associated inundation caused by these respective storms. It is believed that this study would help the coastal authorities to develop a short- and long-term disaster management, mitigation plan, and emergency response in the event of storm surge flooding.  相似文献   

3.
Bay of Bengal cyclone extreme water level estimate uncertainty   总被引:4,自引:3,他引:1  
  相似文献   

4.
Evaluation of coastal inundation hazard for present and future climates   总被引:1,自引:1,他引:1  
Coastal inundation from hurricane storm surges causes catastrophic damage to lives and property, as evidenced by recent hurricanes including Katrina and Wilma in 2005 and Ike in 2008. Changes in hurricane activity and sea level due to a warming climate, together with growing coastal population, are expected to increase the potential for loss of property and lives. Current inundation hazard maps: Base Flood Elevation maps and Maximum of Maximums are computationally expensive to create in order to fully represent the hurricane climatology, and do not account for climate change. This paper evaluates the coastal inundation hazard in Southwest Florida for present and future climates, using a high resolution storm surge modeling system, CH3D-SSMS, and an optimal storm ensemble with multivariate interpolation, while accounting for climate change. Storm surges associated with the optimal storms are simulated with CH3D-SSMS and the results are used to obtain the response to any storm via interpolation, allowing accurate representation of the hurricane climatology and efficient generation of hazard maps. Incorporating the impact of anticipated climate change on hurricane and sea level, the inundation maps for future climate scenarios are made and affected people and property estimated. The future climate scenarios produce little change to coastal inundation, due likely to the reduction in hurricane frequency, except when extreme sea level rise is included. Calculated coastal inundation due to sea level rise without using a coastal surge model is also determined and shown to significantly overestimate the inundation due to neglect of land dissipation.  相似文献   

5.
Coastal regions are vulnerable to storm surge and flooding due to tropical and extratropical storms. It is necessary to build robust resiliency of the coastal communities to these hazards. The main objectives of operational surge and inundation forecast and coastal warning systems are to protect life and to sustain economic prosperity. The National Oceanic and Atmospheric Administration of the United States has initiated an integrated effort through pilot demonstration projects, and model-based ocean and coastal forecasting systems, to build improved operational warnings and forecasts capability for storm surge and inundation. This note describes the overall strategy and progress to date, with an emphasis on forecasting extratropical storm surge.  相似文献   

6.
Shanghai is physically and socio-economically vulnerable to accelerated sea level rise because of its low elevation, flat topography, highly developed economy and highly-dense population. In this paper, two scenarios of sea level rise and storm surge flooding along the Shanghai coast are presented by forecasting 24 (year 2030) and 44 (year 2050) years into the future and are applied to a digital elevation model to illustrate the extent to which coastal areas are susceptible to levee breach and overtopping using previously developed inflow calculating and flood routing models. Further, the socio-economic impacts are examined by combining the inundation areas with land use and land cover change simulated using GeoCA-Urban software package. This analysis shows that levee breach inundation mainly occurs in the coastal zones and minimally intrudes inland with the conservative protection of dike systems designed. However, storm surge flooding at the possible maximum tide level could cause nearly total inundation of the landscape, and put approximately 24 million people in Shanghai under direct risk resulting from consequences of flooding (e.g. contamination of potable water supplies, failure of septic systems, etc.).  相似文献   

7.
8.
Catastrophe risk models are used to assess and manage the economic and societal impacts of natural perils such as tropical cyclones. Large ensembles of event simulations are required to generate useful model output. For example, to estimate the risk due to wind-driven storm surge and waves in tropical cyclone risk models, computationally efficient parametric representations of the wind forcing are required to enable the generation of large ensembles. This paper presents new results on the impact of including explicit representations of extra-tropical transitioning in parametric wind models used to force storm surge and wave simulations in a catastrophe risk modelling context. Extra-tropical transitioning is particularly important in modelling risk on the Japanese coastline, as roughly 40 % of typhoons hitting the Japanese mainland are transitioning before landfall. Using both a historical and idealized track set, we compare maximum storm surge and wave footprints along the Japanese coastline for models that include, and do not include, explicit representations of extra-tropical transitioning. We find that the inclusion of extra-tropical transitioning leads to lower storm surge (10–20 %) and waves (5–15 %) on the southern Japanese coast, with significantly higher storm surge and waves along the northern coast (25–50 %). The results of this paper demonstrate that useful risk assessment of coastal flood risk in Japan must consider the extra-tropical transitioning process.  相似文献   

9.
Liu  Kai-Wei  Jiang  Ning-Jun  Qin  Jun-De  Wang  Yi-Jie  Tang  Chao-Sheng  Han  Xiao-Le 《Acta Geotechnica》2021,16(2):467-480
Acta Geotechnica - Due to more extreme weather events and accelerating sea-level rise, coastal sand dunes are subjected to more frequent storm wave inundation and surge impacts, which contribute to...  相似文献   

10.
11.
Due to increasing flood severities and frequencies, studies on coastal vulnerability assessment are of increasing concern. Evaluation of flood inundation depth and extent is the first issue in flood vulnerability analysis. This study has proposed a practical framework for reliable coastal floodplain delineation considering both inland and coastal flooding. New York City (NYC) has been considered as the case study because of its vulnerability to storm surge-induced hazards. For floodplain delineation, a distributed hydrologic model is used. In the proposed method, the severities of combined inland and coastal floods for different recurrence intervals are determined. Through analyzing past storms in the study region, a referenced (base) configuration of rainfall and storm surge is selected to be used for defining flood scenarios with different return periods. The inundated areas are determined under different flooding scenarios. The inundation maps of 2012 superstorm Sandy in NYC is simulated and compared with the FEMA revised maps which shows a close agreement. This methodology could be of significant value to the planners and engineers working on the preparedness of coastal urban communities against storms by providing a platform for updating inundation maps as new events are observed and new information becomes available.  相似文献   

12.
Classifying inundation limits in SE coast of India: application of GIS   总被引:1,自引:0,他引:1  
A study on the possible inundation limit in SE coast of India was carried out using various physical, geological and satellite imageries. The coastal inundation hazard map was prepared for this particular region as it was affected by many cyclones, flooding, storm surge and tsunami waves during the last six decades. The results were generated using various satellite data (IRS-P6 LISS3; LANDSAT ETM; LANDSAT-5 ETM; LANDSAT MSS) and digital elevation models (ASTER GLOBAL DEM), and a coastal vulnerability index was generated for the entire coastal stretch of Nagapattinam region in SE coast of India. The coastal area which will be submerged totally due to a 1–5 m rise in water level due to any major natural disaster (tsunami or cyclone) indicates that 56–320 km2 will be submerged in this particular region. The results suggest that nearly 7 towns and 69 villages with 667,477 people will be affected and indicate that proper planning needs to be done for future development.  相似文献   

13.
A steady-state subsidence forecast model was developed as a proof of concept to estimate changes in surface elevations of the wetlands and evacuation routes across coastal Louisiana for the years 2015, 2025, 2050, and 2100. Subsidence estimates were derived from an empirical study published by the National Geodetic Survey. Forecasted vertical change was subtracted from current surface elevations. Land and evacuation routes estimated to have surfaces at or below 0 m in elevation, NAVD88, were quantified and classified as vulnerable to inundation hazards. The extent of the coastal zone susceptible to hurricane induced storm surge was also evaluated relative to surge models published by the National Weather Service. The results indicate spatially heterogeneous rates of subsidence that are forecasted to consume nearly 50 % of the existing coastal margin wetlands by 2100. The most significant rate increases are anticipated between 2015 and 2050. Relative to the impact on evacuation routes, subsidence occurring between the 2015 and 2025 forecast years expanded at slower rates when compared to the latter half of the century. Subsidence adjusted storm surge forecasts reveal similar patterns. The methods employed and findings produced demonstrate forecasting capabilities that provide emergency managers and transportation engineers with resources applicable to evacuation modeling, hazard mitigation, environmental sustainability research, costal restoration efforts, and more.  相似文献   

14.
Yin  Kai  Xu  Sudong  Huang  Wenrui  Li  Rui  Xiao  Hong 《Natural Hazards》2019,95(3):783-804

For the Xiamen coast where typhoon frequently occurs, beaches are subject to severe erosion during typhoons. To investigate storm-induced beach profile changes at Xiamen coast, four inner XBeach models were applied using typhoon Dan as a case study. These numerical simulations utilized hydrodynamic and wave conditions determined from larger-scale outer and middle coupled Delft3D-FLOW and SWAN models. The models were validated against historic measurements of tidal level, storm tide, storm surge and beach profiles, thus showing the accuracy of outer and middle models to provide boundary conditions and the reliability of inner models to reflect beach profile changes during a typhoon process. The applicability of this modeling approach to Xiamen coast was verified. The results also demonstrated that an enormous amount of dune face erosion occurred at the selected beaches during the typhoon Dan process and the slopes in the vicinity of zero elevation for the chosen four beach profiles all turned out to be gentler after typhoon Dan. Nevertheless, these beaches suffered different impact degrees and processes during the typhoon influence period. Compared to swash and collision regimes, overwash and inundation regimes have the ability to alter beach profile rapidly in short time. Post-storm beach profile with and without vegetation indicated that vegetation is capable of protecting coastal beaches to some extent. By running the nested models, the simulated results can be employed in the management of the beach system and the design of beach nourishment projects at Xiamen coast.

  相似文献   

15.
Coastal wetlands are receiving increased consideration as natural defenses for coastal communities from storm surge. However, there are gaps in storm surge measurements collected in marsh areas during extreme events as well as understanding of storm surge processes. The present study evaluates the importance and variation of different processes (i.e., wave, current, and water level dynamics with respect of the marsh topography and vegetation characteristics) involved in a storm surge over a marsh, assesses how these processes contribute to storm surge attenuation, and quantifies the storm surge attenuation in field conditions. During the Fall of 2015, morphology and vegetation surveys were conducted along a marsh transect in a coastal marsh located at the mouth of the Chesapeake Bay, mainly composed of Spartina alterniflora and Spartina patens. Hydrodynamic surveys were conducted during two storm events. Collected data included wave characteristics, current velocity and direction, and water levels. Data analysis focused on the understanding of the cross-shore evolution of waves, currents and water level, and their influence on the overall storm surge attenuation. Results indicate that the marsh area, despite its short length, attenuates waves and reduces current velocity and water level. Tides have a dominant influence on current direction and velocity, but the presence of vegetation and the marsh morphology contribute to a strong reduction of current velocity over the marsh platform relative to the currents at the marsh front. Wave attenuation varies across the tide cycle which implies a link between wave attenuation and water level and, consequently, storm surge height. Storm surge reduction, here assessed through high water level (HWL) attenuation, is linked to wave attenuation across the front edge of the marsh; this positive trend highlights the reduction of water level height induced by wave setup reduction during wave propagation across the marsh front edge. Water level attenuation rates observed here have a greater range than the rates observed or modeled by other authors, and our results suggest that this is linked to the strong influence of waves in storm surge attenuation over coastal areas.  相似文献   

16.
ABSTRACT

This study investigates the storm surge caused by Typhoon Hato, which severely affected Macau, Hong Kong, and other coastal cities in China on 23 August 2017. A typhoon and storm surge coupling model demonstrated that the maximum storm surge height reached nearly 2.5?m along the coast of Macau, while that in Hong Kong was slightly below 2?m. Furthermore, a field survey of urban flooding revealed evidence of a 2.25-m inundation in downtown Macau and a 0.55-m inundation on Lantau Island, Hong Kong, which were likely exacerbated by a combination of storm surge, heavy rainfall, and surface water runoff over a complex hilly terrain. Significant wave overtopping and runup also occurred in beach and port areas. A typhoon track analysis confirmed that several comparably strong typhoons have followed similar ESE to WNW trajectories and made landfall in the Pearl River Delta in the last few decades. Although Hato was not the strongest of these storms, its forward speed of about 32.5?km/h was remarkably faster than those of other comparable typhoons. Higher levels of storm signal warnings were issued earlier in Hong Kong than in Macau, raising questions about the appropriate timing of warnings in these two nearby areas. Our analysis of the storm’s pattern suggests that both regions’ decisions regarding signal issuance could be considered reasonable or at least cannot be simply blamed, given the rapid motion and intensification of Hato and the associated economic risks at stake.  相似文献   

17.
Deltaic landscapes, such as the Mississippi River Delta, are sites of extensive conversion of wetlands to open water, where increased fetch may contribute to erosion of marsh edges, increasing wetland loss. A field experiment conducted during a storm passage tested this process through the observations of wave orbital and current velocities in the fringe zone of a deteriorating saltmarsh in Terrebonne Bay, Louisiana. Incident waves seaward of the marsh edge and wave orbital and current velocities immediate landward of the marsh edge were measured. Through a dimensional analysis, it shows that the current and orbital velocities in the marsh fringe were controlled by the incident waves, inundation depth, submergence ratio, and vegetation density. Similarly, it is shown that the longshore currents in the inundated saltmarsh fringe depended on the local wave-induced momentum flux, vegetation submergence, and vegetation density in the fringe zone. The cross-shore current showed the presence of a return flow in the lower region of the velocity profile. A high correlation between the current direction and the local flow-wave energy ratio as well as the vegetation submergence and density is found, indicating the important role of surface waves in the fringe flow landward of an inundated wetland under storm conditions. The field observations shed light on the potential ecological consequences of increased wave activities in coastal saltmarsh wetlands owing to subsidence, sea level rise, limited sediment supply, increases in wind fetch, and storm intensity.  相似文献   

18.
A combination of numeric hydrodynamic models, a large-clast inverse sediment-transport model, and extensive field measurements were used to discriminate between a tsunami and a storm striking Anegada, BVI a few centuries ago. In total, 161 cobbles and boulders were measured ranging from 1.5 to 830?kg at distances of up to 1?km from the shoreline and 2?km from the crest of a fringing coral reef. Transported clasts are composed of low porosity limestone and were derived from outcrops in the low lying interior of Anegada. Estimates of the near-bed flow velocities required to transport the observed boulders were calculated using a simple sediment-transport model, which accounts for fluid drag, inertia, buoyancy, and lift forces on boulders and includes both sliding and overturning transport mechanisms. Estimated near-bed flow velocities are converted to depth-averaged velocities using a linear eddy viscosity model and compared with water level and depth-averaged velocity time series from high-resolution coastal inundation models. Coastal inundation models simulate overwash by the storm surge and waves of a category 5 hurricane and tsunamis from a Lisbon earthquake of M 9.0 and two hypothetical earthquakes along the North America Caribbean Plate boundary. A modeled category 5 hurricane and three simulated tsunamis were all capable of inundating the boulder fields and transporting a portion of the observed clasts, but only an earthquake of M 8.0 on a normal fault of the outer rise along the Puerto Rico Trench was found to be capable of transporting the largest clasts at their current locations. Model results show that while both storm waves and tsunamis are capable of generating velocities and temporal acceleration necessary to transport large boulders near the reef crest, attenuation of wave energy due to wave breaking and bottom friction limits the capacity of storm waves to transport large clast at great inland distances. Through sensitivity analysis, we show that even when using coefficients in the sediment-transport model which yield the lowest estimated minimum velocities for boulder transport, storm waves from a category 5 hurricane are not capable of transporting the largest boulders in the interior of Anegada. Because of the uncertainties in the modeling approach, extensive sensitivity analyses are included and limitations are discussed.  相似文献   

19.
A high-resolution storm surge model of Apalachee Bay in the northeastern Gulf of Mexico is developed using an unstructured grid finite-volume coastal ocean model (FVCOM). The model is applied to the case of Hurricane Dennis (July 2005). This storm caused underpredicted severe flooding of the Apalachee Bay coastal area and upriver inland communities. Accurate resolution of complicated geometry of the coastal region and waterways in the model reveals processes responsible for the unanticipated high storm tide in the area. Model results are validated with available observations of the storm tide. Model experiments suggest that during Dennis, excessive flooding in the coastal zone and the town of St. Marks, located up the St. Marks River, was caused by additive effects of coincident high tides (~10–15% of the total sea-level rise) and a propagating shelf wave (~30%) that added to the locally wind-generated surge. Wave setup, the biggest uncertainty, is estimated on the basis of empirical and analytical relations. The Dennis case is then used to test the sensitivity of the model solution to vertical discretization. A suite of model experiments is performed with varying numbers of vertical sigma (σ) levels, with different distribution of σ-levels within the water column and a varying bottom drag coefficient. The major finding is that the storm surge solution is more sensitive to resolution within the velocity shear zone at mid-depths compared to resolution of the upper and bottom layer or values of the bottom drag coefficient.  相似文献   

20.
李勇  田立柱  裴艳东  王福  王宏 《地质通报》2016,35(10):1638-1645
基于ROMS海洋模式,结合近年的地质实测资料,建立了渤海湾西部地区风暴潮漫滩的数值模型。对模型进行验证后,对渤海湾西部区域重现期为50a、100a、200a及500a的风暴潮漫滩进行了数值模拟,分析了不同重现期风暴潮漫滩发展的动态过程及最大漫滩淹水范围。结果表明,数值模型基本能反映风暴潮的增水趋势,能够模拟风暴潮漫滩发生发展的动态过程。随着风暴潮强度的增加,渤海湾西部地区淹水范围具有从东海岸向西部内陆区域扩展的趋势。通过曲线拟合发现,风暴潮最大漫滩面积比值与高水位之间基本呈线性关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号