首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A general review is given of the results of the airglow and auroral investigations during I.G.Y and I.G.C. in the Institute for Atmospheric Physics of the Academy of Sciences of the U.S.S.R. A strong helium emission at 10830 Å has been discovered in sunlit aurorae and in the ordinary twilight airglow. It is now observed regularly. A detailed theory of this fluorescent emission has been developed. Extensive observations on the hydroxyl bands between 5000 and 12,000 Å have been carried out at a number of stations. Marked seasonal and geographical variations have been found in them. During intense aurorae the line-width of the 6300 Å emission from great altitudes increases. The effect has been studied using Fabry-Perot interferometers. Contributions have been made to knowledge on auroral morphology. The interpretation of some of the results which are described in the review are discussed.  相似文献   

2.
A study is made of the intensity distribution among the bands of the Meinel and first negative system of N2+ due to resonance scattering of sunlight. Absolute transition probabilities are used to calculate the relative populations among the ion states under resonance scattering conditions; the mean lifetime for deactivation is the parameter which determines the amount of resonance scattering. Photon scattering rates are calculated for most of the ion bands and it is suggested that an appropriate value for the 3914 Å band would be 0·050 photons/ sec per ion. Observations of the Δυ = −1 sequence of the first negative system in the twilight spectrum are reported. Extended vibrational development is detected which indicates that only about 80 per cent of the emission is resonance scattered. Sunlit auroral spectra of N2+, however, which have been generally considered to be due predominantly to resonance scattering, indicates only about 40 per cent of the emission is due to resonance scattering. Measurable effects resulting from a charge-transfer ion source (O+(2D)) are predicted.  相似文献   

3.
An auroral arc system excited by soft electrons was studied with a combination of in situ rocket measurements and optical tomographic techniques, using data from a photometer on a horizontal, spinning rocket and a line of three meridian scanning photometers. The ground-based scanner data at 4709, 5577, 8446 and 6300 Å were successfully inverted to provide a set of volume emission rate distributions in the plane of the rocket trajectory, with a basic time resolution of 24 s. Volume emission rate profiles, derived from these distributions peaked at about 150 km for 5577 and 4709 Å, while the 8446 Å emission peaked at about 170 km with a more extended height distribution. The rocket photometer gave comparable volume emission rate distributions for the 3914 Å emission as reported in a separate paper by McDade et al. (1991, Planet. Space Sci. 39, 895). Instruments on the rocket measured the primary electron flux during the flight and, in particular, the flux precipitating into the auroral arc overflown at apogee (McEwen et al., 1991; in preparation). The local electron density and temperature were measured by probes on the rocket (Margot and McNamara (1991; Can. J. Phys. 69, 950). The electron density measurements on the downleg were modelled using ion production rate data derived from the optical results. Model calculations of the emission height profile based on the measured electron flux agree with the observed profiles. The height distribution of the N2+ emission in the equatorward band, through which the rocket passed during the descent, was measured by both the rocket and the ground-based tomographic techniques and the results are in good agreement. Comparison of these profiles with model profiles indicates that the exciting primary spectrum may be represented by an accelerated Maxwellian or a Gaussian distribution centered at about 3 keV. This distribution is close to what would be obtained if the electron flux exciting the poleward form were accelerated by a 1–2 kV upward potential drop. The relative height profiles for the volume emission rate of the 5577 Å OI emission and the 4709 Å N2+ emission were almost indistinguishable from each other for both the forms measured, with ratios in the range 38–50; this is equivalent to I(5577)/I(4278) ratios of 8–10. The auroral intensities and intensity ratios measured in the magnetic zenith from the ground during the period before and during the rocket flight are consistent with the primary electron fluxes and height distributions measured from the rocket. Values of I(5577)/I(4278) in the range 8–10 were also measured directly by the zenith ground photometers over which the arc system passed. These values are slightly higher than those reported by Gattinger and Vallance-Jones (1972) and this may possibly indicate an enhancement of the atomic oxygen concentration at the time of the flight. Such an enhancement would be consistent with our result, that the observed values of I(5577) and I(8446) are also significantly higher than those modelled on the basis of the electron flux spectrum measured at apogee.  相似文献   

4.
A P Cygni profile with absorption at 1.05 μm was observed in three pre-maximum J -band spectra of the Type Ia supernova (SN) 1994D. The feature was not present in two post-maximum spectra. The line was attributed to He I 10830 ... or Mg II 10926 ..., based on a local thermodynamic equilibrium (LTE) treatment. The detection of He in the ejecta of a SN Ia would be useful for determining the pre-SN evolution and the explosion mechanism of SNe Ia.
In this paper, synthetic spectra are presented for both the He and Mg models. The population of the He levels has been computed in non-local thermodynamic equilibrium (NLTE), including non-thermal excitation and ionization effects resulting from the deposition of γ-rays from the decay of 56Ni and 56Co.
The J -band feature in the pre-maximum spectra can be reproduced either assuming the presence of a narrow shell, between 10000 and 12500 km s−1, containing about 0.01 M⊙ of He, or increasing the abundance of Mg by about a factor of 5 with respect to the W7 value, implying a Mg mass of about 0.08 M⊙ above 10000 km s−1. Both models are in good agreement with the optical spectrum. In particular, a strong He I 10830-... line does not imply a strong 5876-... line, because the departure coefficients of the 2p and 2s levels of He I differ by about an order of magnitude.
Unfortunately, neither model is able to reproduce the sudden disappearance of the J -band feature in the post-maximum spectra. Possible explanations are discussed.  相似文献   

5.
We report intermediate resolution H spectroscopy of the black hole candidate Nova Muscae 1991 during quiescence. We classify the companion star as a K3-K4V which contributes 85±6 percent to the total flux from the binary. The photospheric absorption lines are broadened by 106±13 kms−1 with respect to template field stars, leading to a system mass ratio of q =M1/M2 = 7.8−2.0+3.4. Doppler imaging of the H line shows strong emission coming from the secondary star (EW=3.1±0.6Å) which we associate with chromospheric activity. However, the hot-spot is not detected and this may indicate a lower mass transfer rate than in other X-ray transients of comparable orbital periods. The surface brightness distribution of the accretion disk in H follows a relation I∝R−1.1, less steep than typically observed in cataclysmic variables. Updated system parameters are also presented.  相似文献   

6.
We present long-term spectral observations (R = 20000) of IN Com in the region of the Hα, Hβ, and He I 5876 lines. One distinguishing characteristic of the stellar spectrum is the presence in the Hα line of an extended two-component emission with limits up to ±400 km/s. Emission parameters show the rotation modulation with the stellar rotation period and a significant variability on the long-term scale. Similar emissions are also observed in the Hβ and He I 5876 lines. Our results allow us to conclude that observational emission profiles are formed in an optically thin hot gas. This is a result of the presence of a circumstellar gas disk around IN Com. Its size does not exceed several stellar radii. The material for the disk is supported by the stellar wind from IN Com. The detected variability of Hα-emission parameters shows a clear connection with the photopolarimetric activity of the star. This fact allows us to associate the long-term spectral variability with cycles of stellar activity of IN Com.  相似文献   

7.
The POLAR 5 sounding rocket, launched from Andøya, Norway on 1 February, 1976 was of a “mother-daughter” configuration. An electron accelerator, mounted on the “daughter,” produced a pulsed electron beam with currents up to 130 mA and electron energies up to 10 keV. The waves, artificially stimulated by the injected electron beam, was studied using wave receivers, mounted on the “mother.” The receivers covered the frequency range from 0.1 kHz to 5 MHz.

In addition to the stimulated waves observed during beam injection, enhanced wave emissions were observed 10–20 ms after the end of beam injection. This emission seemed to be relatively independent of whether the electron beam is launched up or down along the geomagnetic field.

The high frequency emission observed after beam injection is found to be correlated with the passage through an auroral arc. In particular this emission is closely correlated with the flux of 4–5 keV auroral electrons.

The low frequency emissions observed after beam injection are concentrated in two bands below the lower hybrid frequency.

Different mechanisms for explaining the observed time delays between the beam injection and the observation of the emissions are discussed.  相似文献   


8.
Electric and magnetic fields and auroral emissions have been measured by the Intercosmos-Bulgaria-1300 satellite on 10–11 January 1983. The measured distributions of the plasma drift velocity show that viscous convection is diminished in the evening sector under IMF By < 0 and in the morning sector if IMF By > 0. A number of sun-aligned polar cap arcs were observed at the beginning of the period of strongly northward IMF and after a few hours a θ-aurora appeared. The intensity of ionized oxygen emission [O+(2P), 7320 Å] increased significantly reaching up to several kilo-Rayleighs in the polar cap arc. A complicated pattern of convection and field-aligned currents existed in the nightside polar cap which differed from the four-cell model of convection and NBZ field-aligned current system. This pattern was observed during 12 h and could be interpreted as six large scale field-aligned current sheets and three convective vortices inside the polar cap. Sun-aligned polar cap arcs may be located in regions both of sunward and anti-sunward convection. Structures of smaller spatial scale correspond to the boundaries of hot plasma regions related to polar cap arcs. Obviously these structures are due to S-shaped distributions of electric potential. Parallel electric fields in these S-structures provide electron acceleration up to 1 keV at the boundaries of polar cap arcs. The pairs of field-aligned currents correspond to those S-structures: a downward current at the external side of the boundary and an upward current at the internal side of it.  相似文献   

9.
The relative variations between 82 km and 205 km in the emission rates of nightglow radiation features at 5300 Å, 5577 Å, 5893 Å and 6300 Å have been photometrically measured from a Skylark rocket flown from Woomera, S. Australia at 2053 hours CST (1123 hours GMT) on 18 October, 1965.

Emission profiles obtained for the first three features show that these layers have their centre of intensity at, respectively, 94.0 ± 1 km, 94.5 ± 0.5, and 98.0 ± 2 km. The results further indicate that not more than 10% of the 6300 Å radiation was emitted below apogee at 205 km.

By virtue of a rather complicated vehicle motion—almost a slow tumble in the vertical plane—evidence is adduced which suggests that differences between these profiles and those of previous flights could be explained by insufficient or incorrect account being then taken of the contamination from extra-atmospheric sources such as starlight and galactic light.

Regarding the continuum, it is found that, depending on the particular region of sky background, up to 80% of the 5300 Å emission observed from the Earth may be extra-atmospheric in origin. Furthermore, of the extra-atmospheric component, again depending on the viewing direction in the sky, the emission intensity at 5577 Å may be from 10% to 50% greater than that at 5300 Å.

While it is to be expected that, before penetrating the layer, the zenithal emission intensity as registered by the photometers should remain constant, this constancy was not generally observed and the 5300 Å and 5577 Å photometers, both of which were independently duplicated, indicate an initial increasing emission intensity. Marked differences in the variation of each pair of photometers suggest that interpretation by means of aerosol absorption of the radiation in the 80 to 100-km region is incorrect and that the effect is probably instrumental in origin and of a temporary nature.  相似文献   


10.
Rocket results are presented on the OI 6300 Å line and on the N2+ 3914 Å band in the dayglow. An altitude range of 78–335 km is covered. Theoretical interpretations are given, using results of simultaneous measurements of electron density and electron temperature. The apparent brightness of the 6300 Å line at the base of the emitting region is found to be 13 kR, of which 5.5 kR are ascribed to excitation through the Schumann-Runge dissociation of O2 by the solar UV radiations, 0.55 kR to the dissociative recombination of O2+ and NO+ ions, and 0.03 kR to the excitation of O by thermal electrons. An additional source of excitation above 280 km is suggested. The deactivation of O(1D) by O2(X3Σg) is found to be appreciable below 200 km, and its rate coefficient is estimated to be 2 × 10−10 cm3/sec. The apparent brightness of the 3914 Å band at the base of the emitting region is found to be 6.5 kR, decreasing to 3.2 kR at 330 km. Assuming that fluorescent scattering of solar radiation is the mechanism involved the distribution of N2+ ions is calculated. The rate coefficients for the loss of these ions are hence calculated.  相似文献   

11.
An investigation has been made of the relation between auroral emission at λ5577 Å and the cosmic noise absorption using a new technique. A photometer and the antenna of a riometer were mounted on a 60 m long rotating antenna boom which had a speed of 1 rev per 3 min. The instruments were directed at an elevation angle of 45°. From the analysis of several break-ups of the aurora it has been found that during a period of 15–20 min in the middle of a break-up there may be an increase of the absorption by a factor 2 to 4 which does not correspond to a similar increase of the auroral emission. These changes in the emission-absorption ratio has been interpreted as peaks in the energy spectrum of the incoming particles. The structures of auroral emission and auroral absorption are sometimes very similar over periods of hours and the appearance of the structure is usually in the form of an east-west oriented arc. The cross correlation coefficient may be as high as 0·9 during these events over long periods of time. However, a number of exceptional cases have appeared where little structure was found in the riometer record while the photometer showed structure and vice versa.  相似文献   

12.
Y.C. Minh  W.M. Irvine   《New Astronomy》2006,11(8):594-599
The large-scale structure associated with the 2′N HNCO peak in Sgr B2 [Minh, Y.C., Haikala, L., Hjalmarson, Å., Irvine, W.M., 1998. ApJ 498, 261 (Paper I)] has been investigated. A ring-like morphology of the HNCO emission has been found; this structure may be colliding with the Principal Cloud of Sgr B2. This “HNCO Ring” appears to be centered at (l,b) = (0.7°,−0.07°), with a radius of 5 pc and a total mass of 1.0 × 105 to 1.6 × 106 M. The expansion velocity of the Ring is estimated to be 30–40 km s−1, which gives an expansion time scale of 1.5 × 105 year. The morphology suggests that collision between the Ring and the Principal Cloud may be triggering the massive star formation in the Sgr B2 cloud sequentially, with the latest star formation taking place at the 2′N position. The chemistry related to HNCO is not certain yet, but if it forms mainly via reaction with the evaporated OCN from icy grain mantles, the observed enhancement of the HNCO abundance can be understood as resulting from shocks associated with the collision between the Principal Cloud and the expanding HNCO Ring.  相似文献   

13.
Characteristics of the supersonic auroral arcs within the 0905 UT 2 April 1973 substorm were determined using data from (1) all-sky cameras; (2), surface magnetometers, (3) multispectral scanning photometers, (4) 30MHz riometers, (5) Chatanika incoherent-scatter radar, (6) Homer auroral radar, and (7) infrasonic microphone arrays at College and Stevens Village in Alaska. These data were analyzed to determine the properties of an auroral electrojet arc that generates auroral infrasonic waves (AIW).

An arc that was show to be the source of an AIW was found to have the following characteristics: (1) a velocity of 500 m/sec traveling from an azimuth of 350°; (2) an intensity in 4278 A of 26 Kr, (3) a maximum electron density of 2.8 × 106 el/cm6 at 100km height, (4) an equivalent westward line current of 2.8 × 106 A, (5) orientation of ΔH parallel to the AIW direction of travel and perpendicular to the arc's long axis, (6) a characteristic energy of the primary auroral electron spectrum of 3.0keV, and (7) an energy deposition rate for the auroral pdarticles of 100 erg/cm2 sec.  相似文献   


14.
The Cassini spacecraft Ultraviolet Imaging Spectrograph (UVIS) obtained observations of Jupiter's auroral emissions in H2 band systems and H Lyman-α from day 275 of 2000 (October 1), to day 81 of 2001 (March 22). Much of the globally integrated auroral variability measured with UVIS can be explained simply in terms of the rotation of Jupiter's main auroral arcs with the planet. These arcs were also imaged by the Space Telescope Imaging Spectrograph (STIS) on Hubble Space Telescope (HST). However, several brightening events were seen by UVIS in which the global auroral output increased by a factor of 2-4. These events persisted over a number of hours and in one case can clearly be tied to a large solar coronal mass ejection event. The auroral UV emissions from these bursts also correspond to hectometric radio emission (0.5-16 MHz) increases reported by the Galileo Plasma Wave Spectrometer (PWS) and Cassini Radio and Plasma Wave Spectrometer (RPWS) experiments. In general, the hectometric radio data vary differently with longitude than the UV data because of radio wave beaming effects. The 2 largest events in the UVIS data were on 2000 day 280 (October 6) and on 2000 days 325-326 (November 20-21). The global brightening events on November 20-21 are compared with corresponding data on the interplanetary magnetic field, solar wind conditions, and energetic particle environment. ACE (Advanced Composition Explorer) solar wind data was numerically propagated from the Earth to Jupiter with an MHD code and compared to the observed event. A second class of brief auroral brightening events seen in HST (and probably UVIS) data that last for ∼2 min is associated with auroral flares inside the main auroral ovals. On January 8, 2001, from 18:45-19:35 UT UVIS H2 band emissions from the north polar region varied quasiperiodically. The varying emissions, probably due to auroral flares inside the main auroral oval, are correlated with low-frequency quasiperiodic radio bursts in the 0.6-5 kHz Galileo PWS data.  相似文献   

15.
The existence of free–free absorption in the nucleus of Cen A was suggested by Tingay & Murphy in 2001 as an explanation for the large value of the spectral index between 2.2 and 5 GHz. In this paper we present further evidence for this absorption, based on the observations of short time-scale variability at mm wavelengths and their lack of correlation with X-ray emission, as expected if they were both originated in the same physical process. To explain the short-term variability, we assumed that the mm-wave emission is produced near the base of the inhomogeneous parsec-scale jet that has a bulk velocity of about 0.5 c . The presence of an ionized media between the jet and the observer will produce the observed 7-mm flux density variability, as different jet features move behind the absorbing material. We estimated that a region with 5 × 106 electrons cm−3 and 1.5 × 1015 cm radius can explain the intensity and the duration of the mm-flux variations, but the corresponding column density would not be enough to absorb significantly the X-ray flux, explaining the lack of correlation between the radio and X-ray variability. The upper limit for the cloud size inferred for the absorbing region shows that the media surrounding the core of Cen A must be clumpy.  相似文献   

16.
About a year's observations of the N2+ band (3914 Å) at Kitt Peak (latitude 32°) are reported. Morning intensities are the same throughout the year, but there is a strong winter maximum in the evening. It is suggested that the additional ionization is produced by photoelectrons from the magnetic conjugate point. Heights are estimated by the zenith-horizon method, which gives 235 km for the constant component and 350 km during the evening enhancement. The intensity variation through twilight is therefore entirely due to changes of the N2+ concentration; each ion scatters light at a constant rate. The rotational distribution resembles that for a temperature of 1600°K, much higher than the temperature of the atmosphere. It is suggested that part of the ions may be produced by charge transfer from metastable O+(2D). N2+ concentrations resulting from photoionization are calculated; they give a fair account of the observed horizon intensities, but not the zenith. Non-local electrons from higher in the atmosphere are suggested as a possible extra source; alternatively, the zenith measurements may be perturbed by scattered horizon light. The band intensity in the nightglow cannot be measured; the upper limit is 1 R.  相似文献   

17.
We present infrared spectroscopy of the Be/X-ray binary HDE 245770/A0535+26 obtained over the period 1992–1995. The spectra show significant variability, reflecting changes in the circumstellar environment during this time. A reduction in the flux observed in the Paschen series lines between 1993 December and 1994 September correlates with a similar reduction in both the strength of Hα and the optical continuum emission, which can be attributed to a reduction in the emission measure of the disc. A turnover between optically thin and thick emission is seen for both Paschen and Brackett series lines, and allows an estimate of the disc density as ∼1012 cm−3. Echelle spectroscopy reveals strong similarities between the He I 1.008, 2.058 μm, Hα and Paschen series line profiles, suggesting their formation in a similar (and asymmetric) region of the disc. In contrast, the line profile of He I 6678 Å indicates that it is formed at smaller radii than the other transitions.  相似文献   

18.
The Bethe approximation is used with measured and theoretical values of ionization cross sections and measured values of differential oscillator strengths to derive the initial energy spectrum of auroral secondary electrons. The differential flux of the auroral secondaries is then calculated, using the approximation of continuous energy loss. The calculations are applied to a particular aurora for which rocket data have been published. There is substantial disagreement between theoretical and measured electron spectra. The theoretical spectra show structure at energies less than 20 eV, associated primarily with vibrational and electronic excitation of molecular nitrogen. This structure is largely absent in the measured spectrum. Substantially more high energy electrons were measured than theory predicts. In addition, there are disagreements in the altitude profiles of the total number of non-thermal secondary electrons.

Calculated values of OI green line photon emission rates which result from excitation by secondary electrons and dissociative recombination of O2+ fall short of the measured values. The effect on the excitation rate of varying several parameters is investigated, and it is found that the results are particularly sensitive to competing inelastic processes in N2.  相似文献   


19.
Recently, BeppoSAX and ASCA have observed an unusual resurgence of soft X-ray emission during the afterglows of GRB 970508 and 970828, together with marginal evidence for the existence of Fe lines in both objects. We consider the implications of the existence of a torus of iron-rich material surrounding the sites of gamma-ray bursts, as would be expected in the supra-nova model; in particular, we show that the fireball will quickly hit this torus, and bring it to a temperature of ≈3×107 K. Bremsstrahlung emission from the heated-up torus will cause a resurgence of the soft X-ray emission with all expected characteristics (flux level, duration and spectral hardening with time) identical to those observed during the re-burst. Also, thermal emission from the torus will account for the observed iron line flux. These events are also observable, for instance by new missions such as SWIFT , when beaming away from our line of sight makes us miss the main burst, as fast (soft) X-ray transients, with durations of ≈103 s and fluences of ≈10−7–10−4 erg cm−2. This model provides evidence in favour of the supra-nova model for gamma-ray bursts.  相似文献   

20.
We present echelle spectroscopy in the 3500- to 7060-... range for two positions of the Orion nebula. The data were obtained using the 2.1-m telescope at Observatorio Astronómico Nacional in San Pedro Mártir, Baja California. We have measured the intensities of about 220 emission lines, in particular 81 permitted lines of C+, N+, N++, O0, O+, Ne0, Si+, Si++ and S+, some of them produced by recombination only and others mainly by fluorescence. We have determined electron temperatures, electron densities and ionic abundances using different continuum and line intensity ratios. We derived the He, C and O abundances from recombination lines and find that the C/H and O/H values are very similar to those derived from B stars of the Orion association, and that these nebular values are independent of the temperature structure. We have also derived abundances from collisionally excited lines. These abundances depend on the temperature structure; accurate t 2 values have been derived comparing the O II recombination lines with the [O III ] collisionally excited lines. The gaseous abundances of Mg, Si and Fe show significant depletions, implying that a substantial fraction of these atoms is tied up in dust grains. The derived depletions are similar to those found in warm clouds of the Galactic disc, but are not as large as those found in cold clouds. A comparison of the solar and Orion chemical abundances is made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号