首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Private wells in Cayuga and Orange counties in New York were sampled to determine the occurrence of pesticide contamination of groundwater in areas where significant pesticide use coincides with shallow or otherwise vulnerable groundwater. Well selection was based on local groundwater knowledge, risk modeling, aerial photo assessments, and pesticide application database mapping. Single timepoint samples from 40 wells in each county were subjected to 93‐compound chromatographic scans. All samples were nondetects (reporting limits ≤1 μg/L), thus no wells from either county exceeded any of 15 state groundwater standards or guidance values. More sensitive enzyme‐linked immunosorbent assays (ELISA) found two wells with quantifiable atrazine in each county (0.1–0.3 μg/L), one well with quantifiable diazinon (0.1 μg/L) in Orange County, and one well with quantifiable alachlor (0.2 μg/L) in Cayuga County. Trace detections (<0.1 μg/L) in Cayuga County included atrazine (five wells), metolachlor (six wells), and alachlor (one well), including three wells with multiple detections. All 12 Cayuga County wells with ELISA detections had either corn/grain or corn/forage rotations as primary surrounding land uses (although 20 other wells with the same land uses had no detections) and all quantified detections and most trace detections occurred in wells up to 9‐m deep. Orange County trace (<0.1 μg/L) ELISA detections (atrazine three wells, diazinon one well, and metolachlor five wells) and quantified detections were only generally associated with agricultural land uses. Finding acceptable drinking water quality in areas of vulnerable groundwater suggests that water quality in less vulnerable areas will also be good.  相似文献   

2.
Groundwater beneath the former Nebraska Ordnance Plant (NOP) is contaminated with the explosive hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine (RDX) and trichloroethene (TCE). Previous treatability experiments confirmed that permanganate could mineralize RDX in NOP aquifer material. The objective of this study was to determine the efficacy of permanganate to transform RDX in the field by monitoring a pilot‐scale in situ chemical oxidation (ISCO) demonstration. In this demonstration, electrical resistivity imaging (ERI) was used to create two‐dimensional (2‐D) images of the test site prior to, during, and after injecting sodium permanganate. The ISCO was performed by using an extraction‐injection well configuration to create a curtain of permanganate. Monitoring wells were positioned downgradient of the injection zone with the intent of capturing the permanganate‐RDX plume. Differencing between ERI taken preinjection and postinjection determined the initial distribution of the injected permanganate. ERI also quantitatively corroborated the hydraulic conductivity distribution across the site. Groundwater samples from 12 downgradient wells and 8 direct‐push profiles did not provide enough data to quantify the distribution and flow of the injected permanganate. ERI, however, showed that the permanganate injection flowed against the regional groundwater gradient and migrated below monitoring well screens. ERI combined with monitoring well samples helped explain the permanganate dynamics in downgradient wells and support the use of ERI as a means of monitoring ISCO injections.  相似文献   

3.
Spatial variability of in situ microbial activity: biotracer tests   总被引:3,自引:0,他引:3  
Biotracer tests have been proposed as a means by which to characterize the in situ biodegradation potential for field-scale systems. In this study, field experiments were conducted at two sites to evaluate the utility of the biotracer method for characterizing the spatial variability of microbial activity. The first site is a mixed waste-contaminated surficial aquifer in Utah, and the second site is a chlorinated solvent-contaminated regional aquifer in Tucson, Arizona. Mass recovery of the biotracer decreased approximately linearly with increasing residence time for the Tucson site. Similar behavior was observed at the Utah site, except in the region adjacent to the injection zone, where percent recoveries were much lower than those predicted using a correlation determined using data collected downgradient of the injection zone. First-order biodegradation rate coefficients obtained from model calibration of the tracer data varied between 0.2 and 0.5/day for the Tucson site. For the Utah site, the values varied between 0.1 and 0.6/day downgradient of the injection wells, and between 0.7 and 2.6/day near the injection wells. Considering the large range over which biodegradation rate coefficients can vary, the rate coefficient exhibited relatively minimal spatial variability (factor of 2.5) for the Tucson site. Conversely, the spatial variability of the rate coefficient was an order of magnitude greater for the Utah site. These differences in variability are consistent with conditions associated with the respective sites. For example, the greater microbial activity observed in the vicinity of the injection wells for the Utah site is consistent with the biomass distribution determined from analysis of core samples, which shows larger bacterial cell densities for the region near the injection wells. These results illustrate the utility of biotracer tests for in situ characterization of microbial activity (e.g., biodegradation potential), including evaluation of potential spatial variability.  相似文献   

4.
An injectable permeable reactive barrier (PRB) technology was developed to sequester 90Sr in groundwater through the in situ formation of calcium‐phosphate mineral phases, specifically apatite that incorporates 90Sr into the chemical structure. This injectable barrier technology extends the PRB concept to sites where groundwater contaminants are too deep or where site conditions otherwise preclude the application of more traditional trench‐emplaced barriers. An integrated, multiscale development and testing approach was used that included laboratory bench‐scale experiments, an initial pilot‐scale field test, and the emplacement and evaluation of a 300‐feet‐long treatability‐test‐scale PRB. The apatite amendment formulation uses two separate precursor solutions, one containing a Ca‐citrate complex and the other a Na‐phosphate solution, to form apatite precipitate in situ. Citrate is needed to keep calcium in solution long enough to achieve a more uniform and areally extensive distribution of precipitate formation. In the summer of 2008, the apatite PRB technology was applied as a 91‐m‐long (300 feet) PRB on the downgradient edge of a 90Sr plume beneath the Hanford Site in Washington State. The technology was deployed to reduce 90Sr flux discharging to the Columbia River. Performance assessment monitoring data collected to date indicate that the barrier is meeting treatment objectives (i.e., 90% reduction in 90Sr concentration). The average reduction in 90Sr concentrations at four downgradient compliance monitoring locations was 95% relative to the high end of the baseline range approximately 1 year after treatment, and continues to meet remedial objectives more than 4 years after treatment.  相似文献   

5.
An abandoned creosote facility in Conroe, Texas, has become a field site for the National Center for Ground Water Research (NCGWR) at Rice University. Ground-water contamination in the shallow aquifer beneath the site was characterized by sampling soils and water quality at 14 monitoring wells and 35 boreholes. Results from six sampling trips over two years for inorganic and organic chemical concentrations in the ground water show wells around the site were contaminated to levels above 800 μg/l for naphthalene, 400 μg/1 for methyl naphthalene, and 150 μg/1 for dibenzofuran. Conservative constituents, traced by chloride concentrations up to 75 mg/l, have migrated 300 ft (90 m) downgradient of the site. Organic contaminants have been adsorbed and microbially degraded in their migration from the waste source as evidenced by their attenuated concentrations. Detailed field pump tests have been performed to evaluate hydraulic conductivity at several of the shallow wells. The U.S. Geological Survey (USGS) Solute Transport Model (Konikow and Bredehoeft, 1978) has been used to predict chloride plume patterns and evaluate parameters which govern transport processes at the Conroe waste site.  相似文献   

6.
A pilot‐scale zero valent iron (ZVI) Permeable Reactive Barrier (PRB) was installed using an azimuth‐controlled ‐vertical hydrofracturing at an industrial facility to treat a chlorinated Volatile Organic Compound (VOC) plume. Following ZVI injection, no significant reduction in concentration was observed to occur with the exception of some multilevel monitoring wells, which also showed high levels of total organic carbon (TOC). These patterns suggested that the zero valent iron was not well distributed in the PRB creating leaky conditions. The geochemical data indicated reducing conditions in these areas where VOC reduction was observed, suggesting that biotic processes, associated to the guar used in the injection of the iron, could be a major mechanism of VOC degradation. Compound‐Specific Isotope Analysis (CSIA) using both carbon and chlorine stable isotopes were used as a complementary tool for evaluating the contribution of abiotic and biotic processes to VOC trends in the vicinity of the PRB. The isotopic data showed enriched isotope values around the PRB compared to the isotope composition of the VOC source confirming that VOC degradation is occurring along the PRB. A batch experiment using site groundwater collected near the VOC source and the ZVI used in the PRB was performed to evaluate the site‐specific abiotic isotopic fractionation patterns. Field isotopic trends, typical of biodegradations were observed at the site and were different from those obtained during the batch abiotic experiment. These differences in isotopic trends combined with changes in VOC concentrations and redox parameters suggested that biotic processes are the predominant pathways involved in the degradation of VOCs in the vicinity of the PRB.  相似文献   

7.
Chloride contamination of groundwater in urban areas due to deicing is a well‐documented phenomenon in northern climates. The objective of this study was to evaluate the effects of permeable pavement on degraded urban groundwater. Although low impact development practices have been shown to improve stormwater quality, no infiltration practice has been found to prevent road salt chlorides from entering groundwater. The few studies that have investigated chlorides in permeable asphalt have involved sampling directly beneath the asphalt; no research has looked more broadly at surrounding groundwater conditions. Monitoring wells were installed upgradient and downgradient of an 860 m2 permeable asphalt parking lot at the University of Connecticut (Storrs, Connecticut). Water level and specific conductance were measured continuously, and biweekly samples were analyzed for chloride. Samples were also analyzed for sodium (Na), calcium (Ca), and magnesium (Mg). Analysis of variance analysis indicated a significantly (p < 0.001) lower geometric mean Cl concentration downgradient (303.7 mg/L) as compared to upgradient (1280 mg/L). Concentrations of all alkali metals increased upgradient and downgradient during the winter months as compared to nonwinter months, indicating that cation exchange likely occurred. Despite the frequent high peaks of chloride in the winter months as well as the increases in alkali metals observed, monitoring revealed lower Cl concentrations downgradient than upgradient for the majority of the year. These results suggest that the use of permeable asphalt in impacted urban environments with high ambient chloride concentrations can be beneficial to shallow groundwater quality, although these results may not be generalizable to areas with low ambient chloride concentrations.  相似文献   

8.
Occurrence of Industrial Chemicals (HPS, BPS, and SPS) in Surface Water The paper gives the results of water examinations for different phenylsulfonamides. Random samples taken every month between May 1999 and August 2000 from surface water out of the river Rhine (kilometer 838), the river Ruhr (Mülheim Styrum) and the river Emscher (Oberhausen center) were tested for the corrosion inhibiting agent 6‐[methyl(phenylsulfonyl)amino]‐hexanoic acid (HPS) as well as its metabolites 4‐[methyl‐(phenylsulfonyl)amino]‐butanoic acid (BPS) and sarkosin‐N‐(phenylsulfonyl) (SPS). Furthermore, the sewage plant effluents of two municipal wastewater treatment plants from the rural area were also included in the monitoring program. The analytical method includes solid‐phase extraction (SPE), a derivatization step as well as gas chromatography mass spectrometry (GC‐MS). SPS is regularly found in all investigated surface waters, but only occasionally in the effluents of the two rural sewage plants. The median values for SPS amount to 0.09 μg/L in the river Rhine, 0.60 μg/L in the river Ruhr, and 0.70 μg/L in the river Emscher. BPS can only be found in the river Ruhr (median value: 0.08 μg/L) and in the river Emscher (median value: 0.41 μg/L). HPS was regularly found in a surface water for the first time. This substance can be detected in the Emscher through the whole measurement period. The median value for HPS amounts to 1.78 μg/L. Aditionally, the validation characteristics of an alternative analytical method including solid‐phase microextraction (SPME) is worked out. The fully automated process includes an on‐fiber methylation step and the GC‐MS. The repeatability standard deviation of the process amounts to RSD < 12%. Detection limits between 0.07 and 0.70 μg/L are achieved.  相似文献   

9.
Perchlorate was detected in a municipal wellfield in Evart, Michigan in April 2015. Perchlorate concentrations were detected initially in six of the City's wells at concentrations ranging up to 20 μg/L. An investigation to identify the source determined that the perchlorate was from fireworks launched during the annual 4th of July show held at the fairgrounds located upgradient from the wellfield. The use of approximately 600 kg of fireworks during the annual display resulted in an annual loading of approximately 4 kg of perchlorate to groundwater. An aggressive groundwater extraction system began operation in June 2016 to restore water quality in the affected aquifer, and the 2016 fireworks display was relocated to a location outside the capture zone of the water supply wells. Within 18 months average perchlorate concentrations in the water supply wells had been reduced to about 0.6 μg/L. The extraction system continued to operate through the end of 2019, by which time the average perchlorate concentrations in the water supply wells were reduced to 0.2 μg/L. In 2019, approximately 0.4 kg of perchlorate were removed from the aquifer, about one-half of the amount removed in 2018, reflecting the slow leaching of perchlorate of fireworks residuals from vadose zone soils.  相似文献   

10.
A tracer test was conducted to characterize the flow of groundwater across a permeable reactive barrier constructed with plant mulch (a biowall) at the OU‐1 site on Altus Air Force Base, Oklahoma. This biowall is intended to intercept and treat groundwater contaminated by trichloroethylene (TCE) in a shallow aquifer. The biowall is 139‐m long, 7.3‐m deep, and 0.5‐m wide. Bromide was injected from an upgradient well into the groundwater as a conservative tracer, and was subsequently observed breaking through in monitoring wells within and downgradient of the biowall. The bromide breakthrough data demonstrate that groundwater entering the biowall migrated across it, following the slope of the local groundwater surface. The average seepage velocity of groundwater was approximately 0.06 m/d. On the basis of the Darcy velocity of groundwater and geometry of the biowall, the average residence time of groundwater in the biowall was estimated at 10 d. Assuming all TCE removal occurred in the biowall, the reduction in TCE concentrations in groundwater across the biowall corresponds to a first‐order attenuation rate constant in the range of 0.38 to 0.15 per d. As an independent estimate of the degradation rate constant, STANMOD software was used to fit curves through data on the breakthrough of bromide and TCE in selected wells downgradient of the injection wells. Best fits to the data required a first‐order degradation rate constant for TCE removal in the range of 0.13 to 0.17 per d. The approach used in this study provides an objective evaluation of the remedial performance of the biowall that can provide a basis for design of other biowalls that are intended to remediate TCE‐contaminated groundwater.  相似文献   

11.
Unlined municipal waste stabilization lagoons are potential sources of ground-water contamination. Fourteen monitoring wells were installed around the Mc Ville, North Dakota lagoon, a site at which the impoundment is excavated into permeable sediments of an unconfined glacio-fluvial aquifer with a shallow water table. One cell at the site, Cell I, retains waste water continuously, while another, Cell II, is used for periodic overflow discharges from Cell I. Seepage through the bottom of Cell I passes through a strongly reducing organic sludge layer. Sulfate in the waste water is reduced to sulfide and possibly precipitated as sulfide minerals in or below this sludge layer. In the unsaturated or shallow saturated zone beneath the pond, the infiltrating waste water reduces ferric iron in iron oxide minerals to more soluble ferrous iron. Proximal down-gradient well analyses indicate high iron concentrations and very low sulfate levels. Downgradient wells near the lagoon have very high ammonium concentrations. The source of the ammonium is either rapid infiltration from Cell II or denitrification of the nitrate present in ground water upgradient from the lagoon. About 300 feet downgradient from Cell I, ammonium concentrations decline to near zero. The most likely mechanism for this decrease is cation  相似文献   

12.
A large-scale air sparging/soil vapor extraction (AS/SVE) project constructed within coastal plain sediments in New Jersey has demonstrated substantial progress toward remediating ground water through removal of volatile organic compounds (VOCs). Potential concerns identified prior to project implementation regarding hydraulic mounding, reduction in hydraulic conductivity, development of air channels, and the absence of hydraulic containment were assessed and addressed through testing and operational features incorporated into the project. At the project site, AS/SVE has successfully reduced the presence of many VOCs to undetectable levels, while reducing the concentrations of the remaining VOCs by factors of two to 500. The physical agitation caused by air sparging, and incomplete transformation from sorbed and nonaqueous phases to the vapor phase, appears to temporarily increase VOC concentrations and/or mobility of dense nonaqueous phase liquids (DN APLs) within source areas at the project site, but this is addressed in terms of subsequent removal of VOCs by properly placed downgradient treatment lines and VOCs by properly placed downgradient treatment lines and DNAPL recovery wells. This case study identifies and evaluates project-specific features and provides empirical data for potential comparison to other candidates AS/SVE sites.  相似文献   

13.
Arrays of unpumped wells can be used as discontinuous permeable walls in which each well serves both as a means to focus ground water flow into the well for treatment and as a container either for permeable reactive media which directly destroy dissolved ground water contaminants or for devices or materials which release amendments that support in situ degradation of contaminants within the aquifer downgradient of the wells. This paper addresses the use of wells for amendment delivery, recognizing the potential utility of amendments such as electron acceptors (e.g., oxygen nitrate), electron donors (primary substrates), and microbial nutrients for stimulating bioremediation, and the potential utility of oxidizers, reducers, etc., for controlled abiotic degradation. Depending on its rate and constraints, the remedial reaction may occur within the well and/or downgradient. For complete remediation of ground water passing through the well array, the total flux of amendment released must meet or exceed the total flux demand imposed by the plume. When there are constraints on the released concentration of amendment (relative to the demand), close spacing of the wells may be required. If the flux balance allows wider spacing, it is likely that limited downgradient spreading of the released amendment will then be the primary constraint on interwell spacing. Divergent flow from the wells, roughly two times the well diameter, provides the bulk of downgradient spreading and constrains maximum well spacing in the absence of significant lateral dispersion. Stronger lateral dispersion enhances the spreading of amendment, thereby increasing the lateral impact of each well, which allows for wider well spacing.  相似文献   

14.
Reactive barriers: hydraulic performance and design enhancements   总被引:2,自引:0,他引:2  
Painter BD 《Ground water》2004,42(4):609-617
The remediation of contaminated ground water is a multibillion-dollar global industry. Permeable reactive barriers (PRBs) are one of the leading technologies being developed in the search for alternatives to the pump-and-treat method. Improving the hydraulic performance of these PRBs is an important part of maximizing their potential to the industry. Optimization of the hydraulic performance of a PRB can be defined in terms of finding the balance between capture, residence time, and PRB longevity that produces a minimum-cost acceptable design. Three-dimensional particle tracking was used to estimate capture zone and residence time distributions. Volumetric flow analysis was used for estimation of flow distribution across a PRB and in the identification of flow regimes that may affect the permeability or reactivity of portions of the PRB over time. Capture zone measurements extended below the base of partially penetrating PRBs and were measured upgradient from the portion of aquifer influenced by PRB emplacement. Hydraulic performance analysis of standard PRB designs confirmed previously presented research that identified the potential for significant variation in residence time and capture zone. These variations can result in the need to oversize the PRB to ensure that downgradient contaminant concentrations do not exceed imposed standards. The most useful PRB design enhancements for controlling residence time and capture variation were found to be customized downgradient gate faces, velocity equalization walls, deeper emplacement of the funnel than the gate, and careful manipulation of the hydraulic conductivity ratio between the gate and the aquifer.  相似文献   

15.
Toxic and carcinogenic effects of arsenic in drinking water continue to impact people throughout the world and arsenic remains common in groundwater at cleanup sites and in areas with natural sources. Advances in groundwater remediation are needed to attain the low concentrations that are protective of human health and the environment. In this article, we present the successful use of a permeable reactive barrier (PRB) utilizing sulfate reduction coupled with zero‐valent iron (ZVI) to remediate the leading edge of a dissolved arsenic plume in a wetland area near Tacoma, Washington. A commercially available product (EHC‐M®, Adventus Americas Inc., Freeport, Illinois) that contains ZVI, organic carbon substrate, and sulfate was injected into a reducing, low‐seepage‐velocity aquifer elevated in dissolved arsenic and iron from a nearby, slag‐containing landfill. Removal effectiveness was strongly correlated with sulfate concentration, and was coincident with temporary redox potential (Eh) reductions, consistent with arsenic removal by iron sulfide precipitation. The PRB demonstrates that induced sulfate reduction and ZVI are capable of attaining a regulatory limit of 5 µg/L total arsenic, capturing of 97% of the arsenic entering the PRB, and sustaining decreased arsenic concentrations for approximately 2 years, suggesting that the technology is appropriate for consideration at other sites with similar hydrogeochemical conditions. The results indicate the importance of delivery and longevity of minimum sulfate concentrations and of maintaining sufficient dissolved organic carbon and/or microscale ZVI to precipitate FeS, a precursor phase to arsenic‐bearing pyrite that may provide a stable, long‐term sink for arsenic.  相似文献   

16.
A three‐dimensional numerical model was used to simulate the impact of different well‐field configurations on pump‐and‐treat mass removal efficiency for large groundwater contaminant plumes residing in homogeneous and layered domains. Four well‐field configurations were tested, Longitudinal, Distributed, Downgradient, and natural gradient (with no extraction wells). The reductions in contaminant mass discharge (CMDR) as a function of mass removal (MR) were characterized to assess remediation efficiency. Systems whose CDMR‐MR profiles are below the 1:1 relationship curve are associated with more efficient well‐field configurations. For simulations conducted with the homogeneous domain, the CMDR‐MR curves shift leftward, from convex‐downward profiles for natural gradient and Longitudinal to first‐order behaviour for Distributed, and further leftward to a sigmoidal profile for the Downgradient well‐field configuration. These results reveal the maximum potential impacts of well‐field configuration on mass‐removal behaviour, which is attributed to mass‐transfer constraints associated with regions of low flow. In contrast, for the simulations conducted with the layered domain, the CMDR‐MR relationships for the different well‐field configurations exhibit convex‐upward profiles. The nonideal mass‐removal behaviour in this case is influenced by both well‐field configuration and back diffusion associated with low‐permeability units.  相似文献   

17.
Approximately 190 kg of 2 μm‐diameter zero‐valent iron (ZVI) particles were injected into a test zone in the top 2 m of an unconfined aquifer within a trichloroethene (TCE) source area. A shear‐thinning fluid was used to enhance ZVI delivery in the subsurface to a radial distance of up to 4 m from a single injection well. The ZVI particles were mixed in‐line with the injection water, shear‐thinning fluid, and a low concentration of surfactant. ZVI was observed at each of the seven monitoring wells within the targeted radius of influence during injection. Additionally, all wells within the targeted zone showed low TCE concentrations and primarily dechlorination products present 44 d after injection. These results suggest that ZVI can be directly injected into an aquifer with shear‐thinning fluids to induce dechlorination and extends the applicability of ZVI to situations where other emplacement methods may not be viable.  相似文献   

18.
There are many fundamental problems with the injection of nano‐zero‐valent iron (NZVI) particles to create permeable reactive barrier (PRB) treatment zone. Among them the loss of medium porosity or pore blocking over time can be considered which leads to reduction of permeability and bypass of the flow and contaminant plume up‐gradient of the PRB. Present study provides a solution for such problems by confining the target zone for injection to the gate in a funnel‐and‐gate configuration. A laboratory‐scale experimental setup is used in this work. In the designed PRB gate, no additional material from porous media exists. NZVI (d50 = 52 ± 5 nm) particles are synthesized in water mixed with ethanol solvent system. A steady‐state condition is considered for the design of PRB size based on the concept of required contact time to obtain optimum width of PRB gate. Batch experiment is carried out and the results are used in the design of PRB gate width (~50 mm). Effect of high initial NO3‐N concentration, NZVI concentration, and pore velocity of water in the range of laminar groundwater flow through porous media are evaluated on nitrate‐N reduction in PRB system. Results of PRB indicate that increasing the initial NO3‐N concentration and pore velocity has inhibitor effect—against the effect of NZVI concentration—on the process of NO3‐N removal. Settlement velocity (S.V.) of injected NZVI with different concentrations in the PRB is also investigated. Results indicate that the proposed PRB can solve the low permeability of medium in down‐gradient but increasing of the S.V. especially at higher concentration is one of the problems with this system that needs further investigations.  相似文献   

19.
Chlorinated solvents are one of the most commonly detected groundwater contaminants in industrial areas. Identification of polluters and allocation of contaminant sources are important concerns in the evaluation of complex subsurface contamination with multiple sources. In recent years, compound‐specific isotope analyses (CSIA) have been employed to discriminate among different contaminant sources and to better understand the fate of contaminants in field‐site studies. In this study, the usefulness of dual isotopes (carbon and chlorine) was shown in assessments of groundwater contamination at an industrial complex in Wonju, Korea, where groundwater contamination with chlorinated solvents such as trichloroethene (TCE) and carbon tetrachloride (CT) was observed. In November 2009, the detected TCE concentrations at the study site ranged between nondetected and 10,066 µg/L, and the CT concentrations ranged between nondetected and 985 µg/L. In the upgradient area, TCE and CT metabolites were detected, whereas only TCE metabolites were detected in the downgradient area. The study revealed the presence of separate small but concentrated TCE pockets in the downgradient area, suggesting the possibility of multiple contaminant sources that created multiple comingling plumes. Furthermore, the variation of the isotopic (δ13C and δ37Cl) TCE values between the upgradient and downgradient areas lends support to the idea of multiple contamination sources even in the presence of detectable biodegradation. This case study found it useful to apply a spatial distribution of contaminants coupled with their dual isotopic values for evaluation of the contaminated sites and identification of the presence of multiple sources in the study area.  相似文献   

20.
The tetrachloroethene (PCE) source zone at a site in Endicott, New York had caused a dissolved PCE plume. This plume was commingled with a petroleum hydrocarbon plume from an upgradient source of fuel oil. The plume required a system for hydraulic containment, using extraction wells located about 360 m downgradient of the source. The source area was remediated using in situ thermal desorption (ISTD). Approximately 1406 kilograms (kg) of PCE was removed in addition to 4082 kg of commingled petroleum‐related compounds. The ISTD treatment reduced the PCE mass discharge into the plume from an estimated 57 kg/year to 0.07 kg/year, essentially removing the source term. In the 5 years following the completion of the thermal treatment in early 2010, the PCE plume has collapsed, and the concentration of degradation products in the PCE‐series plume area has declined by two to three orders of magnitude. Anaerobic dechlorination is the suspected dominant mechanism, assisted by the presence of a fuel oil smear zone and a petroleum hydrocarbon plume from a separate source area upgradient of the PCE source. Based on the post‐thermal treatment groundwater monitoring data, the hydraulic containment system was reduced in 2014 and discontinued in early 2015.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号