首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Observations of pile foundation performance during previous earthquakes have shown that pile failure has been caused by lateral ground movements resulting from soil liquefaction. The recognition that lateral ground movements may play a critical role in pile performance during an earthquake has important implications for design and risk assessment, and requires that analytical models be devised to evaluate these potential problems.In this paper, parametric studies were conducted to estimate the maximum bending moments induced in piles subjected to lateral ground displacement. The results are summarized in charts using dimensionless parameters.The analyses reveal that the existence of a nonliquefiable layer at the ground surface can affect significantly the maximum bending moment of the pile. When a relatively thick nonliquefiable layer exists above a liquefiable layer, neither the material nonlinearity of the soil nor loss of soil stiffness within the liquefiable layer significantly affect the maximum bending moment. When the thickness of the liquefiable soils is greater than about three times that of an overlying intact layer, soil stiffness in the liquefiable layer must be chosen carefully when evaluating the maximum bending moment.  相似文献   

2.
The response of pile foundations near a quay wall under liquefaction-induced lateral spreading remains a complex problem. This study presents the results of a shake-table test on a 2×2 pile group behind a sheet-pile quay wall that was subjected to lateral spreading. The quay wall was employed to trigger liquefaction-induced large lateral ground deformation. The discussions focus on the behavior of the pile and the soil and on the bending moment distributions within the group pile and the restoring force characteristics at the superstructure. Overall, the piles exhibited apparent pinning effects that reduced soil deformation. In addition, the rear-row piles near the quay wall experienced larger bending moments than did the front-row piles, indicating significant pile group effects. The tests showed that lateral spreading could be a primary cause of larger monotonic deformations and bending moments. It can also be concluded that the monotonic bending moments were significantly decreased due to the presence of slow soil flow. The stiffness at the superstructure was reduced because of accumulated excess pore pressure before liquefaction, and it was recovered during lateral spreading. The present study further enhances current understanding of the behavior of low-cap pile foundations under lateral spreading.  相似文献   

3.
近岸水平场地液化侧向大变形影响因素分析   总被引:2,自引:0,他引:2  
利用改进的软化模量分析方法,对近岸水平场地液化侧向大变形进行数值计算,以研究地震波波形和幅值大小、液化、竖向地震动对侧向大变形的影响。结果表明:不同的地震波作用下,即使峰值加速度相同,液化程度与侧移距离也可能有较大不同,表现了土体变形的强非线性性质,但大地震下液化导致的侧移几乎都在米的量级上;计算区域中无液化区时,岸壁侧向永久位移很小,在几公分左右,随水平峰值加速度及不同地震动输入改变不大;计算区域中有液化区时,岸壁侧向永久位移显著增大,且随输入水平峰值加速度的增大而明显增大,其机理是强地震动使液化范围加大;水平竖向两向地震动输入与单独水平地震动输入相比,前者场地液化范围增大,平均增大42%,侧移量增加,平均增加37%。  相似文献   

4.
Considerable bridge-ground interaction effects are involved in evaluating the consequences of liquefaction-induced deformations. Due to seismic excitation, liquefied soil layers may result in substantial accumulated permanent deformation of sloping ground near the abutments. Ultimately, global response is dictated by the bridge-ground interaction as an integral system. However, a holistic assessment of such response generally requires a highly demanding full three-dimensional (3D) model of the bridge and surrounding ground. As such, in order to capture a number of the salient involved mechanisms, this study focuses on the longitudinal seismic performance of a simpler idealized configuration, motivated by details of an existing bridge-ground configuration. In this model, a realistic multilayer soil profile is considered with interbedded liquefiable/nonliquefiable strata. The effect of the resulting liquefaction-induced ground deformation is explored. Attention is given to overall deformation of the bridge structure due to lateral spreading in the vicinity of the abutments. The derived insights indicate a need for such global analysis techniques, when addressing the potential hazard of liquefaction and its consequences.  相似文献   

5.
近岸水平场地液化侧向大变形机理及软化模量分析方法   总被引:3,自引:1,他引:3  
本文依据震害现象和实验探讨近岸水平场地地面液化侧向大变形机理,改进现有软化模量分析技术,给出一套地面液化侧向大变形的分析方法。近岸水平场地侧向大变形机理因地基中孔隙水压力升高、土体模量衰减、土骨架变软使偏应变得到充分发展所致,其水平永久侧移可用从底部到顶部呈增加形式的整体变形描述。利用本文方法,对1995年阪神地震中近岸沉箱岸壁和土体液化侧向大变形进行了数值模拟,结果与震后实测结果和试验结果在主要特征上一致,说明改进的软化模量法可以用于地面液化侧向大变形的分析。  相似文献   

6.
基于u-p有限元公式模拟饱和砂土中水和土颗粒完全耦合效应,建立液化侧向流场地群桩动力反应分析的三维数值模型。模型中,砂土采用多屈服面弹塑性本构模型模拟、黏土采用多屈服面运动塑性模型模拟,群桩在计算过程中保持线弹性状态;采用20节点的六面体单元和考虑孔压效应的20-8节点分别划分黏土层和饱和砂层;选用剪切梁边界处理计算域的人工边界,模拟地震过程中土层的剪切效应;应用瑞利阻尼考虑体系的阻尼效应。随后对比分析2×2群桩中各单桩的地震反应规律,结果表明,各单桩的弯矩、位移时程规律基本一致,峰值弯矩及峰值位移出现时刻滞后于输入加速度峰值时刻,上坡向桩的弯矩和位移峰值大于下坡向的桩的反应值。接着通过改变桩间距研究群桩效应,随着桩间距增加,群桩中各单桩的弯矩最大值均出现在土层分界处,且各单桩的弯矩、桩顶位移逐渐增大。最后给出液化侧向流场地群桩效应的基本原因,得出该类场地群桩抗震设计的基本认识。  相似文献   

7.
A revised empirical model has been developed for predicting liquefaction-induced lateral spreading displacement (LD) as a function of both response spectral acceleration derived from strong-motion atte...  相似文献   

8.
液化场地上土体侧向变形对桩基影响研究评述   总被引:7,自引:0,他引:7  
总结了地震作用下桩基震害现象以及桩-土-结构动力相互作用、液化引起地面侧向扩展对桩基的影响方面理论模型和分析方法的研究现状,指出了存在的问题,讨论了今后的发展趋势。  相似文献   

9.
基于平面应变简化假定的桩扭转振动理论精度研究   总被引:3,自引:1,他引:2  
利用拉普拉斯变换对考虑桩土耦合扭转振动条件下,桩顶受到任意激振扭矩作用的端承桩桩顶频域及时域响应进行解析求解,推导求得了桩顶位移、速度频域响应,桩顶复阻抗的解析表达式和半正弦脉冲激励作用下的桩顶时域响应半解析解;将本文所得理论解与基于平面应变假定的桩基扭转耦合振动的频域解和时域解进行了全面对比研究,具体比较范围涉及土层对桩的局部复阻抗、桩顶复频响应、速度导纳、桩顶复刚度和桩顶时域响应等方面,并得到若干重要结论。研究成果校核了平面应变假定在桩基扭转振动理论研究中的合理运用,为进一步了解桩土耦合振动的内在机理提供理论支持。  相似文献   

10.
通过给饱和砂土层施加反压,模拟地震荷载作用下具有残余孔压的饱和弱化、液化土层。选择粉质细砂与细砂,进行了18组水平荷载作用下桩与饱和弱化、液化土层相互作用的模型试验,研究了饱和弱化、液化土层水平极限抗力随土层残余孔压增加的变化规律。结果表明,随土层中残余孔压增加,水平极限抗力逐渐降低,土层液化后的水平极限抗力大约降低80%~90%。通过定义饱和弱化、液化土层的强度,定量分析了饱和弱化、液化砂土的强度参数与水平极限抗力之间关系。又通过引入土层的残余孔压比折减系数,建立了确定饱和弱化、液化土层等效强度的关系式,进而提出了一种按等效强度确定饱和弱化、液化土层水平极限抗力的方法。  相似文献   

11.
A three dimensional dynamic numerical methodology is developed and used to back-analyze experimental data on the seismic response of single piles in laterally spreading slopes. The aim of the paper is not to seek successful a-priori (Type A) predictions, but to explore the potential of currently available numerical techniques, and also to get feedback on modeling issues and assumptions which are not yet resolved in the international literature. It is illustrated that accurate simulation of the physical pile–soil interaction mechanisms is not a routine task, as it requires the incorporation of advanced numerical features, such as an effective stress constitutive soil model that can capture cyclic response and shear-induced dilation, interface elements to simulate the flow of liquefied ground around the pile and proper calibration of soil permeability to model excess pore pressure dissipation during shaking. In addition, the “conventional tied node” formulation, commonly used to simulate lateral boundary conditions during shaking, has to be modified in order to take into account the effects of the hydrostatic pore pressure surplus that is created at the down slope free field boundary of submerged slopes. A comparative analysis with the two different lateral boundary formulations reveals that “conventional tied nodes”, which also reflect the kinematic conditions imposed by laminar box containers in centrifuge and shaking table experiments, may underestimate seismic demands along the upper part of the pile foundation.  相似文献   

12.
Lateral deformation of liquefiable soil is a cause of much damage during earthquakes, reportedly more than other forms of liquefaction-induced ground failures. Researchers have presented studies in which the liquefied soil is considered as viscous fluid. In this manner, the liquefied soil behaves as non-Newtonian fluid, whose viscosity decreases as the shear strain rate increases. The current study incorporates computational fluid dynamics to propose a simplified dynamic analysis for the liquefaction-induced lateral deformation of earth slopes. The numerical procedure involves a quasi-linear elastic model for small to moderate strains and a Bingham fluid model for large strain states during liquefaction. An iterative procedure is considered to estimate the strain-compatible shear stiffness of soil. The post-liquefaction residual strength of soil is considered as the initial Bingham viscosity. Performance of the numerical procedure is examined by using the results of centrifuge model and shaking table tests together with some field observations of lateral ground deformation. The results demonstrate that the proposed procedure predicts the time history of lateral ground deformation with a reasonable degree of precision.  相似文献   

13.
The beneficial or detrimental role of battered piles on the dynamic response of piled foundations has not been yet fully elucidated. In order to shed more light on this aspect, kinematic interaction factors of deep foundations with inclined piles, are provided for single‐battered piles, as well as for 2 × 2 and 3 × 3 groups of piles subjected to vertically incident plane shear S waves. Piles are modelled as linear‐elastic Bernoulli beams, whereas soil is assumed to be a linear, isotropic, homogeneous viscoelastic half‐space. Different pile group configurations, pile‐soil stiffness ratios, and rake angles are considered. The relevance and main trends observed in the influence of the rake angle on the kinematic interaction factors of the analysed foundations are inferred from the presented results. An important dependence of the kinematic interaction factors on the rake angle is observed together with the existence of an inclination angle at which cap rotation and excitation become out of phase in the low‐to‐mid frequency range. The existence of a small batter angle that provides minimum cap rotation is also shown. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Nonlinear lateral interaction in pile dynamics   总被引:4,自引:0,他引:4  
A model for pile lateral response to transient dynamic loading and to harmonic loading is presented allowing for nonlinear soil behaviour, discontinuity conditions at the pile-soil interface and energy dissipation through different types of damping. The approach is used to establish equivalent linear stiffness and damping parameters of single piles as well as dynamic interaction factors for approximate nonlinear analysis of pile groups. The applicability of these parameters to the pile-group analysis was examined, and a reasonable agreement with the direct analysis was found. The superposition technique may be used to analyze the response of small pile groups. Also, the dynamic stiffness of pile groups is greatly affected by both the nonlinear behavior of the soil and the slippage and gapping between the pile and soil. For a basic range of soil and pile parameters, equivalent linear stiffness and damping parameters of single piles and interaction factors for approximate nonlinear analysis are provided.  相似文献   

15.
Construction of seaside and underground wall bracing often uses stiffened deep cement mixed columns (SDCM). This research investigates methods used to improve the level of bearing capacity of these SDCM when subjected to cyclic lateral loading via various types of stiffer cores. Eight piles, two deep cement mixed piles and six stiffened deep cement mixing piles with three different types of cores, H shape cross section prestressed concrete, steel pipe, and H-beam steel, were embedded though soft clay into medium-hard clay on site in Thailand. Cyclic horizontal loading was gradually applied until pile failure and the hysteresis loops of lateral load vs. lateral deformation were recorded. The lateral carrying capacities of the SDCM piles with an H-beam steel core increased by 3-4 times that of the DCM piles. This field research clearly shows that using H-beam steel as a stiffer core for SDCM piles is the best method to improve its lateral carrying capacity, ductility and energy dissipation capacity.  相似文献   

16.
Dynamic response of single piles to seismic waves is fundamentally different from the free‐field motion because of the interaction between the pile and the surrounding soil. Considering soil–pile interaction, this paper presents a new displacement model for the steady‐state kinematic response of single piles to vertically incident P‐waves on the basis of a continuum model. The governing equations and boundary conditions of the two undetermined functions in the model are obtained to be coupled by using Hamilton's principle. Then, the two unknown functions are decoupled and solved by an iterative algorithm numerically. A parametric study is performed to investigate the effects of the properties of the soil–pile system on the kinematic response of single piles. It is shown that the effects of the pile–soil modulus ratio, the slenderness ratio of the pile, and the frequency of the incident excitations are very significant. By contrast, the influence of soil damping on the kinematics of the system is slight and can be neglected. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents a parametric study that looks into the influence of pile rake angle on the kinematic internal forces of deep foundations with inclined piles. Envelopes of maximum kinematic bending moments, shear forces and axial loads are presented along single inclined piles and 2 × 2 symmetrical square pile groups with inclined elements subjected to an earthquake generated by vertically incident shear waves. Inclination angles from 0° to 30° are considered, and three different pile–soil stiffness ratios are studied. These results are obtained through a frequency–domain analysis using a boundary element–finite element code in which the soil is modelled by the boundary element method as a homogeneous, viscoelastic, unbounded region, and the piles are modelled by finite elements as Euler–Bernoulli beams. The rotational kinematic response of the pile foundations is shown to be a key factor on the evolution of the kinematic internal forces along the foundations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
This paper evaluates the seismic vulnerability of different classes of typical bridges in California when subjected to seismic shaking or liquefaction-induced lateral spreading. The detailed structural configurations in terms of superstructure type, connection, continuity at support and foundation type, etc. render different damage resistant capability. Six classes of bridges are established based on their anticipated failure mechanisms under earthquake shaking. The numerical models that are capable of simulating the complex soil-structure interaction effects, nonlinear behavior of columns and connections are developed for each bridge class. The dynamic responses are obtained using nonlinear time history analyses for a suite of 250 earthquake motions with increasing intensity. An equivalent static analysis procedure is also implemented to evaluate the vulnerability of the bridges when subjected to liquefaction-induced lateral spreading. Fragility functions for each bridge class are derived and compared for both seismic shaking (based on nonlinear dynamic analyses) and lateral spreading (based on equivalent static analyses) for different performance states. The study finds that the fragility functions due to either ground shaking or lateral spreading show significant correlation with the structural characterizations, but differences emerge for ground shaking and lateral spreading conditions. Structural properties that will mostly affect the bridges' damage resistant capacity are also identified.  相似文献   

19.
The influence of inclined piles on the dynamic response of deep foundations and superstructures is still not well understood and needs further research. For this reason, impedance functions of deep foundations with inclined piles, obtained numerically from a boundary element–finite element coupling model, are provided in this paper. More precisely, vertical, horizontal, rocking and horizontal–rocking crossed dynamic stiffness and damping functions of single inclined piles and 2 × 2 and 3 × 3 pile groups with battered elements are presented in a set of plots. The soil is assumed to be a homogeneous viscoelastic isotropic half‐space and the piles are modeled as elastic compressible Euler–Bernoulli beams. The results for different pile group configurations, pile–soil stiffness ratios and rake angles are presented. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
This paper describes a quasi-static test program featuring lateral cyclic loading on single piles in sandy soil. The tests were conducted on 18 aluminum model piles with different cross sections and lateral load eccentricity ratios, e/d, (e is the lateral load eccentricity and d is the diameter of pile) of 0, 4 and 8, embedded in sand with a relative density of 30% and 70%. The experimental results include lateral load-displacement hysteresis loops, skeleton curves and energy dissipation curves. Lateral capacity, ductility and energy dissipation capacity of single piles under seismic load were evaluated in detail. The lateral capacities and the energy dissipation capacity of piles in dense sand were much higher than in loose sand. When embedded in loose sand, the maximum lateral load and the maximum lateral displacement of piles increased as e/d increased. On the contrary, when embedded in dense sand, the maximum lateral load of piles decreased as e/d increased. Piles with a higher load eccentricity ratio experienced higher energy dissipation capacity than piles with e/d of 0 in both dense and loose sand. At a given level of displacement, piles with circular cross sections provided the best energy dissipation capacity in both loose and dense sand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号