首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B. G. Hunt 《Climate Dynamics》2014,42(9-10):2271-2285
Output from a multi-millennial control simulation of the CSIRO Mark 2 coupled model has been used to investigate quantitatively the relation between the Indian summer monsoon rain and El Nino/Southern Oscillation events. A moving window correlation between these two features revealed marked interannual and multi-decadal variability with the correlation coefficient varying between ?0.8 and +0.2. This suggests that current observations showing a decline in this correlation are due to natural climatic variability. A scatter diagram of the anomalies of the Indian summer monsoon rainfall and NINO 3.4 surface temperature showed that in almost 40 % of the cases ENSO events were associated with rainfall anomalies opposite to those implied by the climatological correlation coefficient. Case studies and composites of global distributions of surface temperature and rainfall anomalies for El Nino (or La Nina) events highlight the opposite rainfall anomalies over India that can result from very similar ENSO surface temperature anomalies. Composite differences are used to demonstrate the unique sensitivity of Indian summer monsoon rainfall anomalies to ENSO events. The problem of predicting such anomalies is discussed in relation to the fact that time series of the monsoon rainfall, both observed and simulated, consist of white noise. Based on the scatter diagram it is concluded that in about 60 % of the cases seasonal or annual prediction of monsoon rainfall based on individual ENSO events will result in the correct outcome. Unfortunately, there is no way, a priori, of determining for a given ENSO event whether the correct or a rogue prediction will result. Analysis of the present model’s results suggest that this is an almost world-wide problem for seasonal predictions of rainfall.  相似文献   

2.
3.
The simulation and prediction of extreme heat over Australia on intraseasonal timescales in association with the El Niño–Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) is assessed using the Bureau of Meteorology’s Predictive Ocean Atmosphere Model for Australia (POAMA). The analysis is based on hindcasts over 1981–2010 and focuses on weeks 2 and 3 of the forecasts, i.e. beyond a typical weather forecast. POAMA simulates the observed increased probabilities of extreme heat during El Niño events, focussed over south eastern and southern Australia in SON and over northern Australia in DJF, and the decreased probabilities of extreme heat during La Niña events, although the magnitude of these relationships is smaller than observed. POAMA also captures the signal of increased probabilities of extreme heat during positive phases of the IOD across southern Australia in SON and over Western Australia in JJA, but again underestimates the strength of the relationship. Shortcomings in the simulation of extreme heat in association with ENSO and the IOD over southern Australia may be linked to deficiencies in the teleconnection with Indian Ocean SSTs. Forecast skill for intraseasonal episodes of extreme heat is assessed using the Symmetric Extremal Dependence Index. Skill is highest over northern Australia in MAM and JJA and over south-eastern and eastern Australia in JJA and SON, whereas skill is generally poor over south-west Western Australia. Results show there are windows of forecast opportunity related to the state of ENSO and the IOD, where the skill in predicting extreme temperatures over certain regions is increased.  相似文献   

4.
The day-to-day behavior of Indian summer monsoon rainfall (IMR) is associated with a hierarchy of quasi-periods, namely 3?C7, 10?C20 and the 30?C60?days. These two periods, the 10?C20?days and the 30?C60?days have been related with the active and break cycles of the monsoon rainfall over the Indian sub-continent. The seasonal strength of Indian summer monsoon rainfall may depend on the frequency and duration of spells of break and active periods associated with the fluctuations of the above intra-seasonal oscillations (ISOs). Thus the predictability of the seasonal (June through September) mean Indian monsoon depends on the extent to which the intra-seasonal oscillations could be predicted. The primary objective of this study is to bring out the dynamic circulation features during the pre-monsoon/monsoon season associated with the extreme phases of these oscillations The intense (weak) phase of the 10?C20 (30?C60) days oscillation is associated with anti-cyclonic circulation over the Indian Ocean, easterly flow over the equatorial Pacific Ocean resembling the normal or cold phase (La Nina) of El Nino Southern Oscillation (ENSO) phenomenon, and weakening of the north Pacific Sub-tropical High. On the other hand the weak phase of 10?C20?days mode and the intense phase of 30?C60?days mode shows remarkable opposite flow patterns. The circulation features during pre-monsoon months show that there is a tendency for the flow patterns observed in pre-monsoon months to persist during the monsoon months. Hence some indications of the behavior of these modes during the monsoon season could be foreshadowed from the spring season patterns. The relationship between the intensity of these modes and some of the long-range forecasting parameters used operationally by the India Meteorological Department has also been examined.  相似文献   

5.
6.
7.
春季青藏高原感热对中国东部夏季降水的影响和预测作用   总被引:1,自引:0,他引:1  
利用1980-2012年青藏高原中、东部71个站点观测资料、全中国756站的月降水资料、哈得来中心提供的HadISST v1.1海温资料以及ERA-Interim再分析资料,综合青藏高原的感热加热以及全球海温,研究了春季青藏高原感热对中国东部夏季降水的影响,并建立预报方程,探讨了青藏高原春季感热对中国降水的预报作用。结果表明,青藏高原春季感热与中国东部降水关系密切,青藏高原春季感热异常增强伴随着长江流域中下游同期降水增多,后期夏季长江流域整流域降水也持续偏多,华南东部降水偏少。春季青藏高原感热的增强与环北半球中高纬度的罗斯贝波列密切相关,扰动在北太平洋形成的反气旋环流向西南方向延伸至西北太平洋,为长江流域输送大量的水汽,有利于降水的发生。夏季,伴随着前期青藏高原感热的增强,南亚高压位置偏东,西北太平洋副热带高压(西太副高)位置偏西偏南,西太副高北侧为气旋式环流异常。在西太副高的控制下,华南东部降水减少;西太副高西侧的偏南气流为长江流域带来大量水汽,并与来自北部气旋式环流异常西侧的偏北风发生辐合,降水增多。青藏高原春季感热异常是华南和长江流域夏季降水异常的重要前兆信号。加入青藏高原春季感热后,利用海温预报的华南、长江流域夏季降水量与观测值的相关系数有所提高,预报方程对区域降水的解释方差提高约15%。   相似文献   

8.
We assess the occurrence and probability of extreme heat over Australia in association with the Southern Annular Mode (SAM), persistent anticyclones over the Tasman Sea, and the Madden–Julian Oscillation (MJO), which have previously been shown to be key drivers of intra-seasonal variations of Australian climate. In this study, extreme heat events are defined as occurring when weekly-mean maximum temperature anomalies exceed the 90th percentile. The observed probability of exceedance is reduced during the positive phase of the SAM and enhanced during the negative phase of the SAM over most of Australia. Persistent anticyclones over the Tasman Sea are described in terms of (1) split-flow blocking at 160°E and (2) high pressure systems located in the vicinity of the subtropical ridge (STRHs), about 10° north of the split-flow blocking region, for which we devise a simple index. Split-flow blocks and STRHs have contrasting impacts on the occurrence of extreme heat over Australia, with STRHs showing enhanced probability of upper decile heat events over southern Australia in all seasons. The observed probability of an upper decile heat event varies according to MJO phase and time of year, with the greatest impact of the MJO on extreme heat occurring over southern Australia (including the Mallee agricultural region) in spring during phases 2–3. We show that this modulation of the probability of extreme heat by the SAM, persistent anticyclones over the Tasman Sea, and the MJO is well simulated in the Bureau of Meteorology dynamical intra-seasonal/seasonal forecast model POAMA-2 at lead times of 2–3 weeks. We further show that predictability of heat extremes increases in association with the negative SAM phase, STRH and MJO, thus providing a basis for skilful intra-seasonal prediction of heat extremes.  相似文献   

9.
利用1979—2018年夏季逐日观测和再分析数据,对北半球夏季热带季节内振荡影响我国夏季降水的规律和预测方法开展了研究。首先,利用非传统滤波即异常相对倾向(Anomalous Relative Tendency,ART)方法获取了气象要素的次季节变化分量,并采用EOF分析方法提取了北半球夏季热带主要季节内振荡信号,结果表明向外长波辐射(Outgoing Longwave Radiation,OLR)异常相对倾向EOF前两个模态共同反映了北半球夏季起源于印度洋并向东和向北传播的、具有30~60 d周期的季节内振荡(Boreal Summer Intraseasonal Oscillation,BSISO)信号。回归分析表明,该季节内振荡信号能够导致当地及其北面地区低层风场和位势高度场异常,影响该地区及其北面地区的水汽辐合辐散,从而能引起我国尤其是我国南方地区季节内旱涝变化,并一定程度上反映了我国异常雨带的向北推进过程。而后,将提取的热带主要季节内振荡信号作为预测因子,将降水异常相对倾向作为先行预板对象,利用多元线性回归方法构建了我国夏季旬降水异常相对倾向的预报模型,将预报的旬降水异常相对倾向加上观测已知的降水近期背景距平,从而得到旬降水距平的预报结果。通过历史回报和交叉检验,评估了该模型对梅雨期我国江淮流域降水(包括2020年梅汛期异常降水)的次季节预测能力。  相似文献   

10.
It is well known that during an El Niño-Southern Oscillation (ENSO) warm event, drought occurs in regions of northeastern (NE) Australia, leading to anomalously low annual rainfall. The present study explores fluctuations of this ENSO-rainfall relationship. It is found that the relationship tends to weaken when the linearly detrended global mean temperature is rising or particularly high, as in the period of 1931–45 period and since the late 1970s. Prior to a weakening, a correlation pattern of increased rainfall during El Niño events is seen first in northwestern Australia, then in eastern and southeastern Australia, and eventually in NE Australia. The 1931–45 period was particularly intriguing, when in terms of rainfall variability over NE Australia, the interannual ENSO-rainfall relationship went through a process of weakening, reversal, and rapid recovery. Features associated with the reversal are therefore examined and these features are: (1) the global background anomaly pattern (upon which internnal ENSO events operate) is ENSO-like; (2) ENSO sea surface temperature (SST) anomalies in tropical Pacific are weaker compared with those averaged over all ENSO events, whereas SST anomalies in the mid- to-high latitude Pacific (which have opposing polarity to those in tropical Pacific) are larger; (3) there is strong coherence between ENSO and variability in northern mid- to high-latitudes; and (4) the relationship that an El Niño event contributes to a warming anomaly of global mean SST weakens. Possible interrelationship among these features are discussed.  相似文献   

11.
A new methodology is proposed that allows patterns of interannual covariability, or teleconnections, between the intraseasonal and slow components of seasonal mean Australian rainfall and the corresponding components in the Southern Hemisphere atmospheric circulation to be estimated. In all seasons, the dominant rainfall–circulation teleconnections in the intraseasonal component are shown to have the characteristic features associated with well-known intraseasonal dynamical and statistical atmospheric modes and their relationship with rainfall. Thus, for example, there are patterns of interannual covariability that reflect rainfall relationships with the intraseasonal Southern Annular Mode, the Madden-Julian Oscillation and wavenumber 3 and 4 intraseasonal modes of variability. The predictive characteristics of the atmospheric circulation–rainfall relationship are shown to reside with the slow components. In all seasons, we find rainfall–circulation teleconnections in the slow components related to the El Niño-Southern Oscillation. Each season also has a coupled mode, with a statistically significant trend in the time series of the atmospheric component that appears to be related to recent observed trends in rainfall. The slow Southern Annular Mode also features in association with southern Australian rainfall, especially during austral winter and spring. There is also evidence of an influence of Indian Ocean sea surface temperature variability on rainfall in southeast Australia during austral winter and spring.  相似文献   

12.
巢纪平 《大气科学》1980,4(3):230-235
应用WKB近似,分析了大尺度大气层结的水平不均匀和时间变化对缓变重力惯性波中垂直运动发展的影响,用得到的理论结果,对暴雨预报中的某些问题作了初步的定性解释。  相似文献   

13.
By using the monthly ERA-40 reanalysis data and observed rainfall data, we investigated the effect of the Indian summer monsoon (ISM) on the South Asian High (SAH) at 200 hPa, and the role played by the SAH in summer rainfall variation over China. It is found that in the interannual timescale the east–west shift is a prominent feature of the SAH, with its center either over the Iranian Plateau or over the Tibetan Plateau. When the ISM is stronger (weaker) than normal, the SAH shifts westward (eastward) to the Iranian Plateau (Tibetan Plateau). The east–west position of SAH has close relation to the summer rainfall over China. A westward (eastward) location of SAH corresponds to less (more) rainfall in the Yangtze-Huai River Valley and more (less) rainfall in North China and South China. A possible physical process that the ISM affects the summer rainfall over China via the SAH is proposed. A stronger (weaker) ISM associated with more (less) rainfall over India corresponds to more (less) condensation heat release and anomalous heating (cooling) in the upper troposphere over the northern Indian peninsula. The anomalous heating (cooling) stimulates positive (negative) height anomalies to its northwest and negative (positive) height anomalies to its northeast in the upper troposphere, causing a westward (eastward) shift of the SAH with its center over the Iranian Plateau (Tibetan Plateau). As a result, an anomalous cyclone (anticyclone) is formed over the eastern Tibetan Plateau and eastern China in the upper troposphere. The anomalous vertical motions in association with the circulation anomalies are responsible for the rainfall anomalies over China. Our present study reveals that the SAH may play an important role in the effect of ISM on the East Asian summer monsoon.  相似文献   

14.
江苏不同强度降雨对能见度影响分析   总被引:1,自引:0,他引:1       下载免费PDF全文
利用江苏70个基本站多年逐时雨量、相对湿度、风向、风速以及同时段内最低能见度等观测资料,分析不同强度降雨对能见度的影响,并对比分析两种不同强度降雨造成的低能见度事件统计特征。结果表明:降雨是除雾以外,江苏低能见度的主要影响天气(14. 7%),其中稳定性弱降雨和短时强降雨影响最大。与低能见度雾事件不同,降雨造成的低能见度事件全天各时段均可能出现,发生时可伴随较强的风速(2 m/s),短强低能见度多见风速4 m/s(26. 6%)。江苏冬春两季为雨雾高发季,主要受降雨持续时间影响,对应的低能见度区间为500~1 000 m,有明显日变化。短强低能见度主要受雨强影响,多发生于6—9月,对应的低能见度区间为小于200 m,无明显日变化。两种降雨产生的低能见度事件有明显的空间分布差异,且雨雾低能见度发生时偏北风占主导,短强低能见度发生时则偏东风占主导。  相似文献   

15.
Summary This study examined the rainfall onset and retreat dates between 1962 and 1996 in Nigeria, and generated models for their prediction. The study used the composite of rainfall-promoting factors namely, sea surface temperature of the tropical Atlantic Ocean, land/sea thermal contrast between some selected locations in Nigeria and the tropical Atlantic Ocean, surface location of the Inter-tropical Discontinuity and the land surface temperature in the selected locations in Nigeria. Rainfall and temperature data were collected from Ikeja, Benin, Ibadan, Ilorin, Kaduna and Kano, in Nigeria. Cumulative percentage mean rainfall was employed to generate the rainfall onset and retreat dates series, while the method of stepwise multiple regression analysis was used to construct the required prediction models.The results obtained showed that the hypothesized rainfall-promoting factors are efficient in predicting rainfall onset and retreat dates in Nigeria. The correlation coefficients (R2) obtained are in most cases (>75%) higher than 0.50 (with several of them approaching 0.90). Sea surface temperature and land/sea thermal contrast are the most significant predictor variables. The results also indicated that all the areas of the tropical Atlantic Ocean, from the Gulf of Guinea, through St Helena and Ascension Island, up to the Benguela Current region, influence the inter-annual variability in the rainfall onset and retreat dates of Nigeria.  相似文献   

16.
17.
This paper addresses two fundamental questions on climate change and variability: to what extent has climate changed and/or varied over years in two districts of different agro-ecological regions or zones and how do any changes differ between the zones or districts? Given the rural-rural migration pattern observed between the districts, understanding climate change risk to rural livelihoods cannot be overemphasised. To assess change and variability, we utilise rainfall data-records over a 36-year period from 1980 to 2016. Results show that there are wide variations and differences within and between the districts. Evidence suggests a general reduction in both annual rainfall and wet days. There is also ground to suggest that the rainy season duration is becoming shorter, given that rainfall onset is increasingly starting late, while cessation is increasingly coming early. Dry spells frequency and duration trends within rainy season show an increase over the period examined. We conclude that local climate in both areas has changed over the period investigated. However, while Livingstone seems to have experienced more droughts and unreliable rainfall, Kabwe experienced a bigger change in both rainfall and rainy season duration. We further conclude that migrants into Kabwe and other inhabitants are not any safer from climate change risk.  相似文献   

18.
19.
本文基于RSMC台风最佳路径资料以及TRMM逐日降水资料,对1998—2013年间中国区域热带气旋(TC)直接降水的时空分布特征进行了统计研究。结果表明:约54.2%的西北太平洋TC在中国陆地上产生了直接降水。TC直接降水对中国的影响范围较广,未变性TC的降水决定了全部TC降水的西界,而潜在变性TC的降水决定了全部TC降水的北界。自每年的4月开始,TC直接降水开始影响中国,以8月最为频繁,潜在变性TC的影响以9月为最。降水首日,全体TC以台风及以上强度为主,中心主要分布在30°N以南。未变性的TC强度较弱,降水面积大、降水强度强;而潜在变性TC则以台风(TY)及以上强度为主,其单个TC的平均降水面积和降水强度以热带低压(TD)及以下强度TC为最大。本文工作为TC在中国直接降水的气候特征以及TC变性前期降水分布特征提供了一些有意义的结论。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号