首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The seasonal change in the relationship between El Nino and Indian Ocean dipole (IOD) is examined using the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40), and the twentieth century simulations (20c3m) from the Geophysical Fluid Dynamics Laboratory Coupled Model, version 2.1. It is found that, both in ERA-40 and the model simulations, the correlation between El Nino (Nino3 index) and the eastern part of the IOD (90?C110°E; 10°S-equator) is predominantly positive from January to June, and then changes to negative from July to December. Correlation maps of atmospheric and oceanic variables with respect to the Nino3 index are constructed for each season in order to examine the spatial structure of their seasonal response to El Nino. The occurrence of El Nino conditions during January to March induces low-level anti-cyclonic circulation anomalies over the southeastern Indian Ocean, which counteracts the climatological cyclonic circulation in that region. As a result, evaporation decreases and the southeastern Indian Ocean warms up as the El Nino proceeds, and weaken the development of a positive phase of an IOD. This warming of the southeastern Indian Ocean associated with the El Nino does not exist past June because the climatological winds there develop into the monsoon-type flow, enhancing the anomalous circulation over the region. Furthermore, the development of El Nino from July to September induces upwelling in the southeastern Indian Ocean, thereby contributing to further cooling of the region during the summer season. This results in the enhancement of a positive phase of an IOD. Once the climatological circulation shifts from the boreal summer to winter mode, the negative correlation between El Nino and SST of the southeastern Indian Ocean changes back to a positive one.  相似文献   

2.
Indices of El Nino and El Nino Modoki: An Improved El Nino Modoki Index   总被引:2,自引:0,他引:2  
In recent years, El Nino Modoki (pseudo-El Nino) has been distinguished as a unique large-scale ocean warming phenomenon happening in the central tropical Pacific that is quite different from the traditional El Nino. Empirical Orthogonal Function (EOF) analysis is used to successfully separate El Nino and El Nino Modoki. The abilities of the NINO3 index, NINO3.4 index, NINO1+2 index and NINO4 index in characterizing the El Nino are explored in detail. It is suggested that the NINO3 index is comparatively optimal to monitor the El Nino among the four NINO indices, since other NINO indices either cannot well distinguish El Nino and El Nino Modoki signals or are easily disturbed by El Nino Modoki signals. Further, an improved El Nino Modoki index (IEMI) is introduced to better represent the El Nino Modoki that is captured by the second leading EOF mode of monthly tropical Pacific sea surface temperature anomalies (SSTA). The IEMI is an improvement of the El Nino Modoki index (EMI) through adjusting the inappropriate weight coefficients of the three boxes of EMI, and it effectively overcomes the lack of EMI in monitoring the two historical El Nino Modoki events and also avoids the possible risk of EMI in excluding the interference of El Nino signal, indicating the realistic and potential advantages.  相似文献   

3.
Many climate models strongly underestimate the two most important atmospheric feedbacks operating in El Niño/Southern Oscillation (ENSO), the positive (amplifying) zonal surface wind feedback and negative (damping) surface-heat flux feedback (hereafter ENSO atmospheric feedbacks, EAF). This hampers a realistic representation of ENSO dynamics in these models. Here we show that the atmospheric components of climate models participating in the 5th phase of the Coupled Model Intercomparison Project (CMIP5) when forced by observed sea surface temperatures (SST), already underestimate EAF on average by 23%, but less than their coupled counterparts (on average by 54%). There is a pronounced tendency of atmosphere models to simulate stronger EAF, when they exhibit a stronger mean deep convection and enhanced cloud cover over the western equatorial Pacific (WEP), indicative of a stronger rising branch of the Pacific Walker Circulation (PWC). Further, differences in the mean deep convection over the WEP between the coupled and uncoupled models explain a large part of the differences in EAF, with the deep convection in the coupled models strongly depending on the equatorial Pacific SST bias. Experiments with a single atmosphere model support the relation between the equatorial Pacific atmospheric mean state, the SST bias and the EAF. An implemented cold SST bias in the observed SST forcing weakens deep convection and reduces cloud cover in the rising branch of the PWC, causing weaker EAF. A warm SST bias has the opposite effect. Our results elucidate how biases in the mean state of the PWC and equatorial SST hamper a realistic simulation of the EAF.  相似文献   

4.
Twenty-one-year hindcasts of sea surface temperature (SST) anomalies in the tropical Pacific were performed to validate the influence of ocean subsurface entrainment on SST prediction.A new hybrid coupled model was used that considered the entrainment of subsurface temperature anomalies into the sea surface.The results showed that predictions were improved significantly in the new coupled model.The predictive correlation skill increased by about 0.2 at a lead time of 9 months,and the root-mean-square (RMS) errors were decreased by nearly 0.2°C in general.A detailed analysis of the 1997-98 El Nio hindcast showed that the new model was able to predict the onset,peak (both time and amplitude),and decay of the 1997-98 strong El Nio event up to a lead time of one year,factors that are not represented well by many other forecast systems.This implies,in terms of prediction,that subsurface anomalies and their impact on the SST are one of the controlling factors in ENSO cycles.Improving the presentation of such effects in models would increase the forecast skill.  相似文献   

5.
Huang  Han  Huang  Yi  Hu  Yongyun 《Climate Dynamics》2021,56(1-2):139-153
Climate Dynamics - Energetic feedbacks play important roles during the El Niño-Southern Oscillation (ENSO). Here we conduct a thorough analysis of the radiative and non-radiative vertical...  相似文献   

6.
除正常的El Nio事件外,赤道中东太平洋存在一些类似但又显著不同的海水增暖事件。以1993年为例,海水增暖事件发生在3月,5月最强,但随后迅速衰减,在此称之为El Nio的夭折。通过与典型El Nio事件的对比分析,研究了1993年暖水事件的演变特征及其夭折原因。研究发现,1993年暖水事件是一种发生在热带中东太平洋的局地海气作用现象。由于1991~1992年发生了一次较强的El Nio事件,造成1992~1993年热带西太平洋暖池持续偏冷,使得1993年缺乏发生正常El Nio事件所需要的热力条件。在此背景下,虽然在春季出现赤道西风异常自西太平洋向东太平洋扩展,满足了El Nio事件发生的动力条件,但由于暖池偏冷,不能引发海盆尺度的Bjerknes型正反馈,使得赤道中东太平洋的海水增暖只是一种短期现象,并迅速衰减,造成ElNio事件的夭折。  相似文献   

7.
Much research focuses on how the terrestrial biosphere influences climate through changes in surface albedo (reflectivity), stomatal conductance and leaf area index (LAI). By using a fully-coupled GCM (HadCM3LC), our research objective was to induce an increase in the growth of global vegetation to isolate the effect of increased LAI on atmospheric exchange of heat and moisture. Our Control simulation had a mean global net primary production (NPP) of 56.3 GtCyr?1 which is half that of our scenario value of 115.1 GtCyr?1. LAI and latent energy (Q E) were simulated to increase globally, except in areas around Antarctica. A highly productive biosphere promotes mid-latitude mean surface cooling of ~2.5°C in the summer, and surface warming of ~1.0°C in the winter. The former response is primarily the result of reduced Bowen ratio (i.e. increased production of Q E) in combination with small increases in planetary albedo. Response in winter temperature is likely due to decreased planetary albedo that in turn permits a greater amount of solar radiation to reach the Earth’s surface. Energy balance calculations show that between 75° and 90°N latitude, an additional 2.4 Wm?2 of surface heat must be advected into the region to maintain energy balance, and ultimately causes high northern latitudes to warm by up to 3°C. We postulate that large increases in Q E promoted by increased growth of terrestrial vegetation could contribute to greater surface-to-atmosphere exchange and convection. Our high growth simulation shows that convective rainfall substantially increases across three latitudinal bands relative to Control; in the tropics, across the monsoonal belt, and in mid-latitude temperate regions. Our theoretical research has implications for applied climatology; in the modeling of past “hot-house” climates, in explaining the greening of northern latitudes in modern-day times, and for predicting future changes in surface temperature with continued increases in atmospheric CO2.  相似文献   

8.
基于1951—2012年逐月海洋和大气多种要素的再分析资料,分析了与两类El Nino相伴的IOD(Indian Ocean Dipole,印度洋偶极子)事件盛期的海洋和大气异常特征,并进一步对比了与不同类型El Nino相伴的IOD事件的季节演变及对应的海气耦合过程。结果表明:两类IOD事件盛期时,暖海温强度和位置有显著差异。发生在东部型El Nino期间的IOD事件(简称EP-IOD)盛期,正(负)SSTA中心出现在热带西北(赤道东南)印度洋,强度相当,对应的热带印度洋—海洋大陆异常Walker环流强度较强、范围较大;与中部型CP El Nino相伴的IOD事件(简称CP-IOD)的正SSTA相对较弱,且偏于南印度洋,异常Walker环流较弱、较窄。在季节演变中,两类IOD事件期间的局地海气过程差异显著,伴随着西印度洋西南季风减弱和东印度洋异常东风加强,EP-IOD事件的发展以西正东负的偶极型异常海温的出现及加强为主要特征;而CP-IOD事件的发生发展则与西北印度洋异常冷海温的生消及南印度洋暖水的堆积相伴,表现为"-+-"三极型SSTA的出现并转为西正东负偶极型的过程,夏季时出现在东印度洋的异常东风以及赤道中印度洋低层负涡度异常水平环流对其发展具有重要作用。  相似文献   

9.
Interannual variations of the monsoon onset over Kerala (MOK) have been studied using data from over 60?years (1948?C2009) of NCEP/NCAR reanalysis and outgoing long-wave radiation. The sea surface temperature fields over the North Indian Ocean associated with the MOK have been examined in association with El Nino and Indian Ocean Dipole (IOD) events which originate in the Pacific and Indian Ocean, respectively. An analysis of the tropical convective maximum showed significant differences in its strength and location during the El Nino, IOD, early, normal, and delayed MOK composites. Further, we also looked into the role of the convective systems formed over the Arabian Sea and Bay of Bengal on MOK. The most significant features during early (delayed) MOK years is the abnormal persistence of westerlies (easterlies) several days prior to MOK and enhanced (suppressed) deep convection over the southeastern Arabian Sea and the southern Bay of Bengal. Moisture builds up over peninsular India several pentads prior to MOK during La Nina, negative IOD, and concurrent La Nina and negative IOD years as compared to the El Nino, positive IOD, and concurrent El Nino and positive IOD years, indicating its significant role on MOK. The monsoon Hadley cell and Walker circulations are weaker (stronger) during a delayed (early) MOK. Further, the sea surface temperature anomalies in the western Pacific are negative (positive) during delayed (early) MOK.  相似文献   

10.
赤道太平洋海域海温异常事件包括厄尔尼诺 (EL- Nino)和拉尼娜 (L a- Nina)现象。通过对赤道东中太平洋特定区域海温指数的统计分析 ,确定厄尔尼诺和拉尼娜出现的诊断指标 ,分析了厄尔尼诺和拉尼娜的出现周期 ,在此基础上分析了厄尔尼诺与拉尼娜对广西气候变化的一些主要影响  相似文献   

11.
Summary In order to improve our understanding of the interannual variability of the 30–50 day oscillations of the northern summer monsoon, we have performed numerical experiments using a 5-level global spectral model (GSM). By intercomparing the GSM simulations of a control summer experiment (E1) and a warm ENSO experiment (E2) we have examined the sensitivity of the low frequency intraseasonal monsoonal modes to changes in the planetary scale component of the monsoon induced by anomalous heating in the equatorial eastern Pacific during a warm ENSO phase.It is found that the anomalous heating in the equatorial eastern Pacific induces circulation changes which correspond to weakening of the time-mean divergent planetary scale circulation in the equatorial western Pacific, weakening of the east-west Walker cell over the western Pacific ocean, weakening of the time-mean Reverse Hadley circulation (RHC) over the summer monsoon region and strengthening of the time-mean divergent circulation and the subtropical jet stream over the eastern Pacific and Atlantic oceans. These changes in the large scale basic flow induced by the anomalous heat source are found to significantly affect the propagation characteristics of the 30–50 day oscillations. It is noticed that the reduction (increase) in the intensity of the time-mean divergent circulation in the equatorial western (eastern) Pacific sectors produces weaker (stronger) low-level convergence as a result of which the amplitude of the eastward propagating 30–50 day divergent wave decreases (increases) in the western (eastern) Pacific sectors in E2. One of the striking aspects is that the eastward propagating equatorial wave arrives over the Indian longitudes more regularly in the warm ENSO experiment (E2). The GSM simulations reveal several small scale east-west cells in the longitudinal belt between 0–130°E in the E1 experiment. On the other hand the intraseasonal oscillations in E2 show fewer east-west cells having longer zonal scales. The stronger suppression of small scale east-west cells in E2 probably accounts for the greater regularity of the 30–50 day oscillations over the Indian longitudes in this case.The interaction between the monsoon RHC and the equatorial 30–50 day waves leads to excitation of northward propagating modes over the Indian subcontinent in both cases. It is found that the zonal wind perturbations migrate northward at a rate of about 0.8° latitude per day in E1 while they have a slightly faster propagation speed of about 1° latitude per day in E2. The low frequency monsoonal modes have smaller amplitude but possess greater regularity in E2 relative to E1. As the wavelet trains of low latitude anomalies progress northward it is found that the giant meridional monsoonal circulation (RHC) undergoes well-defined intraseasonal oscillations. The amplitude of the monsoon RHC oscillations are significantly weaker in E2 as compared to E1. But what is more important is that the RHC is found to oscillate rapidly with a period of 40 days in E1 while it executes slower oscillations of 55 days period in E2. These results support the observational findings of Yasunari (1980) who showed that the cloudiness fluctuations on the 30–60 day time scale over the Indian summer monsoon region are associated with longer periods during El Nino years. The oscillations of the monsoon RHC show an enhancement of the larger scale meridional cells and also a stronger suppression of the smaller scale cells in E2 relative to E1 which seems to account for the slower fluctuations of the monsoon RHC in the warm ENSO experiment. It is also proposed that the periodic arrival of the eastward propagating equatorial wave over the Indian longitudes followed by a stronger inhibition of the smaller meridional scales happen to be the two primary mechanisms that favour steady and regular northward propagation of intraseasonal transients over the Indian subcontinent in the warm ENSO experiment (E2). This study clearly demonstrates that the presence of E1 Nino related summertime SST anomalies and associated convection anomalies in the tropical central and eastern Pacific are favourable criteria for the detection and prediction of low frequency monsoonal modes over India.With 11 Figures  相似文献   

12.
13.
通过对乐山本站有历史资料以来所发生的厄尔尼诺/拉尼娜与乐山年度和各季降水的概率统计和相关分析发现,厄尔尼诺/拉尼娜与乐山年度和季度的降水以及早涝趋势存在一定的关系.厄尔尼诺年内乐山年度降水属于少降水年份,集中体现在夏季,夏旱和伏旱较其他年份明显,洪涝相对较弱;拉尼娜年,乐山出现春旱的概率较小.  相似文献   

14.
陈贝  王小勇 《四川气象》2003,23(3):7-9,35
通过对乐山本站有历史资料以来所发生的厄尔尼诺/拉尼娜与乐山年度和各季降水的概率统计和相关分析发现,厄尔尼诺/拉尼娜与乐山年度和季度的降水以及早涝趋势存在一定的关系。厄尔尼诺年内乐山年度降水属于少降水年份,集中体现在夏季,夏旱和伏旱较其他年份明显,洪涝相对较弱;拉尼娜年,乐山出现春旱的概率较小。  相似文献   

15.
This study examines the PNA associated atmospheric diabatic heating by linearly isolating the influence of ENSO. The analysis is based on the NCEP–NCAR and ERA-40 reanalyses and a 1,000-year-long integration of the CCCma coupled climate model. Both the vertically integrated and three-dimensional diabatic heating are examined. The Rossby wave sources in association with the PNA are also diagnosed. The PNA-related heating is confined outside the tropics and is dominated by anomalies in the eastern Pacific, with a north–south dipole structure in mid-latitudes and the northern subtropics. The heating anomalies change sign with height in mid-latitudes but have the same sign throughout the troposphere in the northern subtropics. Relatively weak heating anomalies also appear in mid-latitudes, downstream of the heating dipole over North America and the western North Atlantic. The heating anomalies are largely supported by the advections related to the mean state throughout the troposphere, and partially damped by the advections related to the eddy effect, particularly at the upper troposphere over the North Pacific. Broadly similar patterns are seen from the NCEP–NCAR and ERA-40 reanalyses. Yet anomalous heating centers are generally located at relatively lower troposphere for the ERA-40 with respect to the NCEP–NCAR. The tropical heating anomalies are rather weak, remarkably different from those related to ENSO variability. In addition, the Rossby wave source collocates with the atmospheric diabatic forcing in the mid-high latitudes over the PNA sector, and shows no forcing source in the tropics. The results demonstrate possible forcing in the mid-high latitudes, regardless of tropical heating for the PNA teleconnection. The modeled heating and wave forcing anomalies in association with the modeled PNA compare reasonably well with the reanalysis-based estimates, increasing confidence in the observational results. The analysis provides further evidence of the independence of the PNA on ENSO from the diabatic heating point of view.  相似文献   

16.
17.
R. A. Colman 《Climate Dynamics》2001,17(5-6):391-405
This study addresses the question: what vertical regions contribute the most to water vapor, surface temperature, lapse rate and cloud fraction feedback strengths in a general circulation model? Multi-level offline radiation perturbation calculations are used to diagnose the feedback contribution from each model level. As a first step, to locate regions of maximum radiative sensitivity to climate changes, the top of atmosphere radiative impact for each feedback is explored for each process by means of idealized parameter perturbations on top of a control (1?×?CO2) model climate. As a second step, the actual feedbacks themselves are calculated using the changes modelled from a 2?×?CO2 experiment. The impact of clouds on water vapor and lapse rate feedbacks is also isolated using `clear sky' calculations. Considering the idealized changes, it is found that the radiative sensitivity to water vapor changes is a maximum in the tropical lower troposphere. The sensitivity to temperature changes has both upper and lower tropospheric maxima. The sensitivity to idealized cloud changes is positive (warming) for upper level cloud increases but negative (cooling) for lower level increases, due to competing long and shortwave effects. Considering the actual feedbacks, it is found that water vapor feedback is a maximum in the tropical upper troposphere, due to the large relative increases in specific humidity which occur there. The actual lapse rate feedback changes sign with latitude and is a maximum (negative) again in the tropical upper troposphere. Cloud feedbacks reflect the general decrease in low- to mid-level low-latitude cloud, with an increase in the very highest cloud. This produces a net positive (negative) shortwave (longwave) cloud feedback. The role of clouds in the strength of the water vapor and lapse rate feedbacks is also discussed.  相似文献   

18.
利用1981-2017年云南125个站逐日降水观测资料和NCEP再分析资料,对比分析了两类El Nino事件期间云南冬季的降水差异,发现东部型El Nino有利于冬季云南大部地区降水显著偏多,而中部型El Nino的影响却不明显。进一步从两类事件相应的大气环流等方面分析了造成降水差异的物理原因。研究表明:(1)东部型El Nino年,Walker环流在西太平洋为异常强的下沉气流,西太平洋副热带高压偏强偏西,Hadley环流在20°N为异常上升气流,造成云南水汽输送和辐合加强,中高纬度巴尔喀什湖和贝加尔湖脊发展,冷空气沿高原东侧南下影响云南,冷暖空气在云南频繁交汇,导致云南冬季降水日数明显偏多,相应降水偏多;(2)中部型El Nino年,Walker环流在西太平洋下沉支强度较东部型弱,相应的西太平洋副热带高压较东部型偏弱偏东,Hadley环流在20°N为下沉气流,对云南区域水汽输送影响较弱,同时中高纬度环流不利于冷空气南下影响云南,除对应冬季云南东部降水日数偏少外,对其他地区降水的影响不明显。  相似文献   

19.
The monthly mean sea surface temperature data of 6 areas are used to study the El Nino/Southern Oscillation signals in the global tropical ocean. These areas are in the 5oN-5oS latitude zone at 1) eastern Pacific (110o-l40oW), 2) western Atlantic (30o-50oW), 3) eastern Atlantic (10oW-10oE), 4) western Indian Ocean (30o-50oE), 5) central Indian Ocean (70o-90oE) and 6) far western Pacific (120o-140oE), and the data cover the 120-month period of December 1968 to November 1978.A power spectrum analysts shows that the characteristic time of the El Nino/Southern Oscillation (about 3-4 years) appears not only in the eastern Pacific but also in other areas of the tropics except for the western Pa-cific, where the spectrum is of white noise. The amplitude of oscillation in the eastern Pacific is about 4 times larger than the others, making the El Nino/Southern Oscillation signal the strongest in this area. According to a cross-spectrum analysis, there is no time lag between the variation in the central Indian Ocean and that in the eastern Pacific. These two areas oscillate simultaneously and comprise the main feature of the El Nino/ Southern Oscillation. Other tropical areas are related with time lags, as shown by correlation and coherence calculations.It should be noted that the sea surface temperature in the eastern Pacific oscillates in phase with that in the Indian Ocean, while the pressure oscillations in these two areas are out of phase with each other, according to the Southern Oscillation definition. It is suggested that the Southern Oscillation cannot be explained simply by the sea surface temperature anomalies.Variations in the far western equatorial Pacific do not have the time scale of the El Nino/Southern Oscilla-tion, perhaps because it is a buffer zone between the monsoon system and the trade wind system.  相似文献   

20.
利用全球海表温度(SST)资料、ONI(Oceanic Nino Index)序列以及中国160站逐月降水资料,研究了不同类型El Nino事件的主要特征及其对东亚大气环流及中国东部次年夏季逐月及季节降水的影响。结果表明:1)据El Nino事件期间SST最大正异常所在区域,将El Nino事件分为Nino3、Nino4和Nino3.4型。2)El Nino事件次年6月,Nino3型时降水显著正异常区主要位于鄱阳湖和洞庭湖流域,Nino4型时位于鄱阳湖流域、桂粤湘三省交界及广西西部,Nino3.4型时位于洞庭湖流域。7月Nino3型降水显著正异常区北移至长江流域,8月则呈西多东少反相分布。从次年6月至8月,Nino4型降水显著正异常区逐渐北移,Nino3.4型降水显著正异常区则从南到北再移向东北。3)在整个次年夏季,Nino3、Nino4和Nino3.4型降水显著正异常区在中国东部呈自南向北分布。无论逐月或季节降水,均是Nino4型降水正异常最强、Nino3.4型最弱。4)不同类型事件次年夏季和各月环流特征存在一定差异,总体而言,对于南亚高压,Nino3型、Nino4型事件后呈偏强、东伸和北抬的特点,且后者较前者时更强;Nino3.4型事件后主要呈减弱、西退特征。对于西太平洋副热带高压,Nino3型、Nino4型事件后主要呈偏强、西伸、北抬特征,后者较前者更强,西伸、北抬也更明显;Nino3.4型后,副高以东撤、北抬特征为主。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号