首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ALOS PALSAR双极化数据水稻制图   总被引:1,自引:0,他引:1  
以江苏省海安县为研究区,使用2008年获取的日本ALOS卫星PALSAR双极化模式数据,分析水稻在L波段SAR图像上的后向散射特征,并提出相应的水稻制图方法。水稻在L波段上表现出了和C波段相同的时相变化特征。HH极化后向散射依赖于水稻植株的空间分布结构,某些机械插秧区域的布拉格共振现象引起水稻后向散射严重增强,给利用PALSAR数据水稻制图带来了困难。而HV极化不存在布拉格共振现象。在考虑布拉格共振影响的条件下,提出了联合PALSAR双极化模式HH和HV极化数据、基于时相变化特征进行水稻制图的方法,获得了88.4%的制图精度。  相似文献   

2.
Woody canopy cover (CC) is the simplest two dimensional metric for assessing the presence of the woody component in savannahs, but detailed validated maps are not currently available in southern African savannahs. A number of international EO programs (including in savannah landscapes) advocate and use optical LandSAT imagery for regional to country-wide mapping of woody canopy cover. However, previous research has shown that L-band Synthetic Aperture Radar (SAR) provides good performance at retrieving woody canopy cover in southern African savannahs. This study’s objective was to evaluate, compare and use in combination L-band ALOS PALSAR and LandSAT-5 TM, in a Random Forest environment, to assess the benefits of using LandSAT compared to ALOS PALSAR. Additional objectives saw the testing of LandSAT-5 image seasonality, spectral vegetation indices and image textures for improved CC modelling. Results showed that LandSAT-5 imagery acquired in the summer and autumn seasons yielded the highest single season modelling accuracies (R2 between 0.47 and 0.65), depending on the year but the combination of multi-seasonal images yielded higher accuracies (R2 between 0.57 and 0.72). The derivation of spectral vegetation indices and image textures and their combinations with optical reflectance bands provided minimal improvement with no optical-only result exceeding the winter SAR L-band backscatter alone results (R2 of ∼0.8). The integration of seasonally appropriate LandSAT-5 image reflectance and L-band HH and HV backscatter data does provide a significant improvement for CC modelling at the higher end of the model performance (R2 between 0.83 and 0.88), but we conclude that L-band only based CC modelling be recommended for South African regions.  相似文献   

3.
This study examines the relative utility of quad-polarization spaceborne radar and derived texture measures for classification of specific land cover categories at a site in east-central Sudan near the city of Wad Madani. Japanese Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) quad-polarization spaceborne radar data at 12.5 m spatial resolution were obtained for this study. Measures of variance texture were applied to the original PALSAR data over varied window sizes. Transformed divergence (TD) measures of separability were calculated in order to evaluate the best bands from the original and texture measures for classification. Results show that quad-polarization radar data and derived texture measures have high separability between different land cover classes, and therefore hold potential to attain high levels of classification accuracy. Specifically, when used individually the cross-polarization bands showed the highest separability, but when used in combination some mix of cross- and like-polarization bands had the highest separability.  相似文献   

4.
Spatial and temporal information on plant and soil conditions is needed urgently for monitoring of crop productivity. Remote sensing has been considered as an effective means for crop growth monitoring due to its timely updating and complete coverage. In this paper, we explored the potential of L-band fully-polarimetric Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data for crop monitoring and classification. The study site was located in the Sacramento Valley, in California where the cropping system is relatively diverse. Full season polarimetric signatures, as well as scattering mechanisms, for several crops, including almond, walnut, alfalfa, winter wheat, corn, sunflower, and tomato, were analyzed with linear polarizations (HH, HV, and VV) and polarimetric decomposition (Cloude–Pottier and Freeman–Durden) parameters, respectively. The separability amongst crop types was assessed across a full calendar year based on both linear polarizations and decomposition parameters. The unique structure-related polarimetric signature of each crop was provided by multitemporal UAVSAR data with a fine temporal resolution. Permanent tree crops (almond and walnut) and alfalfa demonstrated stable radar backscattering values across the growing season, whereas winter wheat and summer crops (corn, sunflower, and tomato) presented drastically different patterns, with rapid increase from the emergence stage to the peak biomass stage, followed by a significant decrease during the senescence stage. In general, the polarimetric signature was heterogeneous during June and October, while homogeneous during March-to-May and July-to-August. The scattering mechanisms depend heavily upon crop type and phenological stage. The primary scattering mechanism for tree crops was volume scattering (>40%), while surface scattering (>40%) dominated for alfalfa and winter wheat, although double-bounce scattering (>30%) was notable for alfalfa during March-to-September. Surface scattering was also dominant (>40%) for summer crops across the growing season except for sunflower and tomato during June and corn during July-to-October when volume scattering (>40%) was the primary scattering mechanism. Crops were better discriminated with decomposition parameters than with linear polarizations, and the greatest separability occurred during the peak biomass stage (July-August). All crop types were completely separable from the others when simultaneously using UAVSAR data spanning the whole growing season. The results demonstrate the feasibility of L-band SAR for crop monitoring and classification, without the need for optical data, and should serve as a guideline for future research.  相似文献   

5.
Many data fusion methods are available, but it is poorly understood which fusion method is suitable for integrating Landsat Thematic Mapper (TM) and radar data for land cover classification. This research explores the integration of Landsat TM and radar images (i.e., ALOS PALSAR L-band and RADARSAT-2 C-band) for land cover classification in a moist tropical region of the Brazilian Amazon. Different data fusion methods—principal component analysis (PCA), wavelet-merging technique (Wavelet), high-pass filter resolution-merging (HPF), and normalized multiplication (NMM)—were explored. Land cover classification was conducted with maximum likelihood classification based on different scenarios. This research indicates that individual radar data yield much poorer land cover classifications than TM data, and PALSAR L-band data perform relatively better than RADARSAT-2 C-band data. Compared to the TM data, the Wavelet multisensor fusion improved overall classification by 3.3%-5.7%, HPF performed similarly, but PCA and NMM reduced overall classification accuracy by 5.1%-6.1% and 7.6%-12.7%, respectively. Different polarization options, such as HH and HV, work similarly when used in data fusion. This research underscores the importance of selecting a suitable data fusion method that can preserve spectral fidelity while improving spatial resolution.  相似文献   

6.
Single, interferometric dual, and quad-polarization mode data were evaluated for the characterization and classification of seven land use classes in an area with shifting cultivation practices located in the Eastern Amazon (Brazil). The Advanced Land-Observing Satellite (ALOS) Phased Array L-band Synthetic Aperture Radar (PALSAR) data were acquired during a six month interval. A clear-sky Landsat-5/TM image acquired at the same period was used as additional ground reference and as ancillary input data in the classification scheme. We evaluated backscattering intensity, polarimetric features, interferometric coherence and texture parameters for classification purposes using support vector machines (SVM) and feature selection. Results showed that the forest classes were characterized by low temporal backscattering intensity variability, low coherence and high entropy. Quad polarization mode performed better than dual and single polarizations but overall accuracies remain low and were affected by precipitation events on the date and prior SAR date acquisition. Misclassifications were reduced by integrating Landsat data and an overall accuracy of 85% was attained. The integration of Landsat to both quad and dual polarization modes showed similarity at the 5% significance level. SVM was not affected by SAR dimensionality and feature selection technique reveals that co-polarized channels as well as SAR derived parameters such as Alpha-Entropy decomposition were important ranked features after Landsat’ near-infrared and green bands. We show that in absence of Landsat data, polarimetric features extracted from quad-polarization L-band increase classification accuracies when compared to single and dual polarization alone. We argue that the joint analysis of SAR and their derived parameters with optical data performs even better and thus encourage the further development of joint techniques under the Reducing Emissions from Deforestation and Degradation (REDD) mechanism.  相似文献   

7.
多时相双极化合成孔径雷达干涉测量土地覆盖分类方法   总被引:5,自引:1,他引:4  
综合采用时相、极化和干涉3种维度的SAR数据进行土地覆盖分类。以黑龙江省逊克县多时相ALOS PALSAR数据覆盖区为研究区,利用不同时相极化SAR、干涉SAR信号对地物特征的敏感性,结合后向散射强度和干涉相干的时变特征进行地物解译,发展了基于多时相、多极化、干涉SAR数据的SVM土地覆盖分类方法。研究结果表明,引入双极化SAR中不同极化(HH-HV)间的相干系数,并结合所选择的时相特征、极化特征以及干涉相干特征进行分类,可解决双极化SAR影像中林地与城市及建设用地的混分问题,得到更高精度的土地覆盖分类结果。  相似文献   

8.
In remote sensing–based forest aboveground biomass (AGB) estimation research, data saturation in Landsat and radar data is well known, but how to reduce this problem for improving AGB estimation has not been fully examined. Different vegetation types have their own species composition and stand structure, thus they have different data saturation values in Landsat or radar data. Optical and radar data also have different characteristics in representing forest stand structures, thus effective use of their features may improve AGB estimation. This research examines the effects of Landsat Thematic Mapper (TM) and ALOS PALSAR L-band data and their integrations in forest AGB estimation of Zhejiang Province, China, and the roles of textural images from both datasets. The linear regression models of AGB were conducted by using (1) Landsat TM alone, (2) ALOS PALSAR data alone, (3) their combination as extra bands, and (4) their data fusion, based on non-stratification and stratification of vegetation types, respectively. The results show that (1) overall, Landsat TM data perform better than PALSAR data, but the latter can produce more accurate estimates for bamboo and shrub, and for forests with AGB values less than 60 Mg/ha; (2) the combination of TM and PALSAR data as extra bands can greatly improve AGB estimation performance, but their fusion using the modified high-pass filter resolution-merging technique cannot; (3) textures are indeed valuable in AGB estimation, especially for forests with complex stand structures such as mixed forests and pine forests with understories of broadleaf species; (4) stratification of vegetation types can improve AGB estimation performance; and (5) the results from the linear regression models are characterized by overestimation and underestimation for the smaller and larger AGB values, respectively, and thus, selecting non-linear models or non-parametric algorithms may be needed in future research.  相似文献   

9.
Reliable and accurate estimates of tropical forest above ground biomass (AGB) are important to reduce uncertainties in carbon budgeting. In the present study we estimated AGB of central Indian deciduous forests of Madhya Pradesh (M.P.) state, India, using Advanced Land Observing Satellite – Phased Array type L-band Synthetic Aperture Radar (ALOS-PALSAR) L-band data of year 2010 in conjunction with field based AGB estimates using empirical models. Digital numbers of gridded 1?×?1° dual polarization (HH & HV) PALSAR mosaics for the study area were converted to normalized radar cross section (sigma naught - σ0). A total of 415 sampling plots (0.1 ha) data collected over the study area during 2009–10 was used in the present study. Plot-level AGB estimates using volume equations representative to the study area were computed using field inventory data. The plot-level AGB estimates were empirically modeled with the PALSAR backscatter information in HH, HV and their ratios from different forest types of the study area. The HV backscatter information showed better relation with field based AGB estimates with a coefficient of determination (R2) of 0.509 which was used to estimate spatial AGB of the study area. Results suggested a total AGB of 367.4 Mt for forests of M.P. state. Further, validation of the model was carried out using observed vs. predicted AGB estimates, which suggested a root mean square error (RMSE) of ±19.32 t/ha. The model reported robust and defensible relation for observed vs. predicted AGB values of the study area.  相似文献   

10.
Image classification from remote sensing is becoming increasingly urgent for monitoring environmental changes. Exploring effective algorithms to increase classification accuracy is critical. This paper explores the use of multispectral HJ1B and ALOS (Advanced Land Observing Satellite) PALSAR L-band (Phased Array type L-band Synthetic Aperture Radar) for land cover classification using learning-based algorithms. Pixel-based and object-based image analysis approaches for classifying HJ1B data and the HJ1B and ALOS/PALSAR fused-images were compared using two machine learning algorithms, support vector machine (SVM) and random forest (RF), to test which algorithm can achieve the best classification accuracy in arid and semiarid regions. The overall accuracies of the pixel-based (Fused data: 79.0%; HJ1B data: 81.46%) and object-based classifications (Fused data: 80.0%; HJ1B data: 76.9%) were relatively close when using the SVM classifier. The pixel-based classification achieved a high overall accuracy (85.5%) using the RF algorithm for classifying the fused data, whereas the RF classifier using the object-based image analysis produced a lower overall accuracy (70.2%). The study demonstrates that the pixel-based classification utilized fewer variables and performed relatively better than the object-based classification using HJ1B imagery and the fused data. Generally, the integration of the HJ1B and ALOS/PALSAR imagery can improve the overall accuracy of 5.7% using the pixel-based image analysis and RF classifier.  相似文献   

11.
Detailed and enhanced land use land cover (LULC) feature extraction is possible by merging the information extracted from two different sensors of different capability. In this study different pixel level image fusion algorithms (PCA, Brovey, Multiplicative, Wavelet and combination of PCA & IHS) are used for integrating the derived information like texture, roughness, polarization from microwave data and high spectral information from hyperspectral data. Span image which is total intensity image generated from Advanced Land observing Satellite-Phase array L-band SAR (ALOS-PALSAR) quad polarization data and EO-1 Hyperion data (242 spectral bands) were used for fusion. Overall PCA fused images had shown better result than other fusion techniques used in this study. However, Brovey fusion method was found good for differentiating urban features. Classification using support vector machines was conducted for classifying Hyperion, ALOS PALSAR and fused images. It was observed that overall classification accuracy and kappa coefficient with PCA fused images was relatively better than other fusion techniques as it was able to discriminate various LULC features more clearly.  相似文献   

12.
Radarsat ScanSAR Narrow (SN2) data acquired on July 24 and August 17, 1997 were used to analyse the signature of rice crop in West Bengal, India. The analysis showed that the lowland practice of cultivation gives a distinct signature to rice due to the initial water background. The relatively stable backscatter from water bodies in temporal data enhanced the separability of rice fields from water using two date data. Around 94 per cent classification accuracy was achieved for rice crop using two date data. It was feasible to discriminate rice sub-classes based on their planting period like early and late crop. The analysis indicates the suitability of ScanSAR data for large area rice crop monitoring as it has a wide swath of 300 km.  相似文献   

13.
介绍X波段散射计辐射计组合系统的研制,利用这一组合系统可进行同时同地相继观测,得到VV,HH,VH,HV多极化的后向散射系σ^0pq,V和H极化的辐射亮度温度TBq和地面热发射率ep。给出了树木地面背景以及有多种金属目标的σ^0pq-TBq观测结果,并用一层面介质散射辐射的主被动遥感理论进行了分析,为地面主被动联合遥感和背景杂波中目标识别提供了一个实例研究。  相似文献   

14.
Advanced Land Observing Satellite Phased Array L-band Synthetic Aperture Radar (ALOS PALSAR) data from different observation modes were analysed to determine (1) which observation mode most accurately retrieves tropical forest biomass information and (2) whether different modes, when considered together, yield improved results in comparison to identical data-sets analysed independently. We performed regression analysis to estimate above-ground forest biomass using PALSAR backscatter data for natural and planted forests in south-eastern Bangladesh. The coefficient of determination (r 2) was lower or equal to 0.499 (n = 70) when PALSAR data from different observation modes were separately considered, but increased sharply when one class (rubber) is dropped and average backscatter of fine beam single (FBS) and polrimetric (PLR) modes are used in the analysis. The results presented in this article are useful for both regional and global forest biomass inventories and fixing acquisition modes for planned L-band SAR missions.  相似文献   

15.
Polarimetric data is an additional source of information in PSI technique to improve its performance in land subsidence estimation. The combination of polarimetric data and radar interferometry can lead to an increase in coherence and the number of PS pixels. In this paper, we evaluated and compared the dual polarized Sentinel-1A (S1A) and TerraSAR-X (TSX) data to improve the PSInSAR algorithm. The improvement of this research is based on minimizing Amplitude Dispersion Index (ADI) by finding the optimum scattering mechanism to increase the number of PSC and PS pixels. The proposed method was tested using a dataset of 40 dual-pol SAR data (VV/VH) acquired by S1A and 20 dual-pol SAR data (HH/VV) acquired by TSX. The results revealed that using the TSX data, the number of PS pixels increased about 3 times in ESPO method than using the conventional channels, e.g., HH, and VV. This increase in S1A data was about 1.7 times in ESPO method. In addition, we investigated the efficiency of the three polarimetric optimization methods i.e. ESPO, BGSM, and Best for the dual polarized S1A and TSX data. Results showed that the PS density increased about 1.9 times in BGSM and about 1.5 times in Best method in TSX data. However, in S1A data, PS density increased about 1.1 times in BGSM. The Best method was not successful in increasing the PS density using the S1A data. Also, the effectiveness of the method was evaluated in urban and non-urban regions. The experimental results showed that the method was successful in significantly increasing the number of final PS pixels in both regions.  相似文献   

16.
2L-IHP目标检测算法及其在AIRSAR数据中的应用   总被引:1,自引:0,他引:1  
简要介绍了2L—IHP(Two-Looks Internal Hermitian Product)算法,并针对实际情况对其作了相应的调整和改进。主要是突破算法对数据源的限制,使得它可以应用到幅度图像中。对于极化SAR图像,使用PWF(Polarimetric Whitening Filter)方云将3个通道的图像合成为一幅检测图,再进行目标检测。利用ADTS(Advanced Detection Technology Sensor)数据,对以上各种算法的检测效果进行了分析比较。应用C、L、P波段的AIRSAR极化数据进行试验,发现3个波段中,L和C波段的检测效果最好;4种极化方式中,HH极化取得最佳的检测效果;并且得出全极化数据的检测结果优于单极化数据的结论。但以上结论还有待进一步验证。  相似文献   

17.
This research letter presents preliminary results of mapping rice crop growth using ENVISAT advanced synthetic aperture radar (ASAR) alternating polarization HH/HV data. Four ASAR HH/HV images were collected in the early rice-growth cycle in the test site in 2006, and the temporal response of ASAR data to the rice field was analyzed. The height and biomass of rice were measured during acquisition of ASAR data, and empirical relationships were established between the backscattering coefficient and these two parameters. Based on the temporal variation of the radar response, a method for mapping a rice growth area was developed using the combination of ASAR HH and HV polarization data between two acquisition dates. The results confirm that C-band SAR data have great potential in the development of an operational system for monitoring rice crop growth in Southern China.  相似文献   

18.
多频率InSAR提取沼泽湿地DEM精度对比分析   总被引:1,自引:1,他引:0  
选取3种波长的干涉SAR数据对提取沼泽湿地区域的DEM,并随机从1:10 000地形图中选取111个点数据进行精度验证,最后对比分析了沼泽湿地植被对于不同SAR波长的干涉相干性差异。结果表明:L-band ALOS-1 PALSAR精细模式的HH单视复数数据与1:10 000地形图数据吻合度较好,76.58%的高程值差异在3 m以内,其相干系数比C-band Sentinel-1A IW模式的VV单视复数数据和X-band TerraSAR HH单视复数数据要高;更适合利用雷达干涉测量技术提取沼泽湿地的DEM;不同湿地植被类型的相干系数有较大差异,岛状林和灌草结合的湿地植被分布区相干系数值较大,而浅水沼泽植被区和深水沼泽植被区相对较低。  相似文献   

19.
Synthetic aperture radar (SAR) is an important alternative to optical remote sensing due to its ability to acquire data regardless of weather conditions and day/night cycle. The Phased Array type L-band SAR (PALSAR) onboard the Advanced Land Observing Satellite (ALOS) provided new opportunities for vegetation and land cover mapping. Most previous studies employing PALSAR investigated the use of one or two feature types (e.g. intensity, coherence); however, little effort has been devoted to assessing the simultaneous integration of multiple types of features. In this study, we bridged this gap by evaluating the potential of using numerous metrics expressing four feature types: intensity, polarimetric scattering, interferometric coherence and spatial texture. Our case study was conducted in Central New York State, USA using multitemporal PALSAR imagery from 2010. The land cover classification implemented an ensemble learning algorithm, namely random forest. Accuracies of each classified map produced from different combinations of features were assessed on a pixel-by-pixel basis using validation data obtained from a stratified random sample. Among the different combinations of feature types evaluated, intensity was the most indispensable because intensity was included in all of the highest accuracy scenarios. However, relative to using only intensity metrics, combining all four feature types increased overall accuracy by 7%. Producer’s and user’s accuracies of the four vegetation classes improved considerably for the best performing combination of features when compared to classifications using only a single feature type.  相似文献   

20.
针对PALSAR Level 1.1数据,研究使用NASA/JPL提供的开源干涉软件包ROI_PAC Version 3.0提取DEM.ROI_PAC的目前版本只能处理Level 1.0数据,因此,文章在分析了ROI_PAC软件包处理流程的基础上,提出处理Level 1.1数据的方法,并用PALSAR Level 1.1数据对该方法做了验证.干涉重建DEM与参考DEM的对比结果表明,二者的差异均值为0.27 m,标准差为±9.24 m,80%像元点的高程误差在±10 m以内.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号