首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 623 毫秒
1.
Abstract A Hercynian charnockite occurs within high-grade gneisses in the Agly Massif, French Pyrenees. Its thermal history has been evaluated using the Fe-Mg distribution coefticient ( K D) between garnet and biotite. These minerals have different origins but similar compositions in the charnockites and host gneisses. In the charnockite, the Bi–Ga pairs are the retrograde products of Opx alteration. This Opx reaction with feldspar can be written. Opx + PI + Fluid 1(H2O + Al + K + Fe + Ti) = Bi + Ga + Q + Fluid 2(H2O + Na). The garnets are relatively Ca poor (4–2.5% grossular); they are automorphic and zoned in the gneisses and poikiloblastic in the charnockites. Both types show a retrograde rim (of few hundred microns'width) across which Fe and Mn increase as Mg decreases. The biotites show a good correlation between the octahedral cations (Ti4++ Fe2+) and (Mg2++ Al3+VI); Ti and Fe both increase, whereas Mg and AlVI decrease. There is an inverse linear correlation between Fe2+ and Mg2+ and the Fe/Mg ratio increases as Ti increases. The relation between Ti and K Ga-BiDFe-Mg is less clear: it seems that K D slightly decreases as Ti increases. The equilibration temperatures of Ga–Bi pairs are discussed: the charnockite Ga-Bi pairs have equilibrated between 550°C and 600°C; whereas those of the gneisses have equilibrated between 550°C and 650°C. Two main thermal steps appear: one in the gneisses between 600-650°C and a second one in both the gneisses and the charnockites between 550°C and 600°C.  相似文献   

2.
Silica-deficient sapphirine-bearing rocks occur as an enclave within granulite facies Proterozoic gneisses and migmatites near Grimstad in the Bamble sector of south-east Norway (Hasleholmen locality). The rocks contain peraluminous sapphirine, orthopyroxene, gedrite, anthophyllite, sillimanite, sapphirine, corundum, cordierite, spinel, quartz and biotite in a variety of assemblages. Feldspar is absent.
Fe2+/(Fe2++ Mg) in the analysed minerals varies in the order: spinel > gedrite ≥ anthophyllite ≥ biotite > sapphirine>orthopyroxene > cordierite.
Characteristic pseudomorph textures indicate coexistence of orthopyroxene and sillimanite during early stages of the reaction history. Assemblages containing orthopyroxene-sillimanite-sapphirine-cordierite-corundum developed during a high-pressure phase of metamorphism and are consistent with equilibration pressures of about 9 kbar at temperatures of 750–800°C. Decompression towards medium-pressure granulite facies generated various sapphirine-bearing assemblages. The diagnostic assemblage of this stage is sapphirine-cordierite. Sapphirine occurs in characteristic symplectite textures. The major mineralogical changes can be described by the discontinuous FMAS reaction: orthopyroxene + sillimanite → sapphirine + cordierite + corundum.
The disequilibrium textures found in the Hasleholmen rocks are characteristic for reactions which have been in progress but then ceased before they run to completion. Textures such as reaction rims, symplectites, partial replacement, corrosion and dissolution of earlier minerals are characteristic of granulite facies rocks. They indicate that, despite relatively high temperatures (700–800° C), equilibrium domains were small and chemical communication and transport was hampered as a result of dry or H2O-poor conditions.  相似文献   

3.
Abstract The central sector of Mühlig-Hofmannfjellet (3°E/71°S) in western Dronning Maud Land (East Antarctic shield) is dominated by large intrusive bodies of predominantly orthopyroxene-bearing quartz syenites (charnockites). Metasedimentary rocks are rare; however, two distinct areas with banded gneiss–marble–quartzite sequences of sedimentary origin were found during the Norwegian Antarctic Research Expedition NARE 1989/90. Cordierite-bearing metapelitic gneisses from two different localities contain the characteristic mineral assemblage: cordierite + garnet + biotite + K-feldspar + plagioclase + quartz ± sillimanite ± spinel. Thermobarometry indicates equilibration conditions of about 650°C and 4 kbar. Associated orthopyroxene–garnet granulites, on the other hand, revealed pressures of about 8 kbar and temperatures of 750°C. The earlier granulite facies metamorphism is not well preserved in the cordierite gneisses as a result of excess K-feldspar combined with interaction with an H2O-rich fluid phase, probably released by the cooling intrusives. These two features allowed the original high-grade K-feldspar + garnet assemblages to recrystallize as cordierite–biotite–sillimanite gneisses, completely re-equilibrating them. Phase relationships indicate that the younger metamorphic event occurred in the presence of a fluid phase that varied in composition between the lithologies.  相似文献   

4.
Abstract Mineral assemblages in different samples of amphibolite facies pelitic schists collected from two separate outcrops in the Moosilauke area, NH, record differences in the chemical potential of water during metamorphism. Mineralogical, petrological, and field relations indicate that mineral assemblages at both outcrops equilibrated at 520°C and 3.5–4.0 kbar. Thermodynamic analysis of the mineral assemblages demonstrates that maximum chemical potential differences at each outcrop were of the order of 150 calories, over distances of 10–20 m.
The differences in the chemical potential of water recorded in both bed-to-bed and outcrop-to-outcrop relations are consistent with the following conclusions: (1) mineral assemblages on a specific outcrop did not equilibrate with an external reservoir of fluid of fixed composition, (2) the relatively small magnitude of the chemical potential differences suggests little or no infiltration of externally derived fluid, (3) these differences on the outcrop scale are probably related to initial compositional variations and the buffer capacity of the mineral assemblage, and (4) the different values of the chemical potential of water exhibited by the various mineral assemblages permits an understanding of the effects of variable μH2O for amphibolite facies pelitic schists.  相似文献   

5.
Abstract In metapelitic schists of the north-eastern Weekeroo Inliers, Olary Block, Willyama Supergroup, South Australia, syn-S1 and syn-S2 assemblages involving staurolite, garnet, biotite and another mineral, most probably cordierite, were overgrown by large syn-S3 andalusite porphyroblasts, owing to isobaric heating from metamorphic conditions that existed during the development of S2. Conditions during the development of S3 probably just reached the andalusite—sillimanite transition. During the development of S4, at somewhat lower temperatures than those that accompanied the development of S3, the following reaction occurred:
staurolite + chlorite + muscovite ± biotite + andalusite + quartz + H2O.
The amount of retrogression is controlled primarily by the amount of H2O added by infiltration. As the syn-S3 matrix assemblage was stable during the development of S4, but the andalusite porphyroblasts were no longer stable with the matrix when H2O was added, the retrogression is focused in and around the porphyroblasts. With enough H2O available, and if quartz was consumed before biotite in a porphyroblast, then the following reaction occurred:
staurolite + chlorite + muscovite + corundum ± biotite + andalusite + H2O.
This reaction allowed corundum inclusions in the andalusite to grow, regardless of the presence of quartz in the matrix assemblage.  相似文献   

6.
In north-central Wopmay Orogen, syntectonic low-P(Buchan-type) suites of mineral isograds outline regional metamorphic temperature culminations that are associated, at the higher structural levels, with emplacement of early Proterozoic plutons in the west part of a deformed and eastward transported continental margin prism. The mapped isograds mark the first occurrence of biotite, staurolite, andalusite, sillimanite, sillimanite-K feldspar and K feldspar-plagioclase-quartz ± muscovite (granitic) pods in metapelites, with increasing proximity to the plutons.
Microprobe analyses and field observations have resulted in the formulation of reactions for the 'ideal'pelitic system K2O-Na2O-FeO-MgO-Al2O3-SiO2-H2O-Al2O3-SiO2-H2O, to account for the various mineral assemblages of each metamorphic zone. A P-T petrogenetic grid showing erosion surface P-T curves for the northern Wopmay Orogen pelites, compiled on the basis of the mapped isograds and the inferred reaction(s) for each metamorphic zone, documents a variation in exposed metamorphic pressure ranging between 2 and 4 kbar.
The configuration of a new bathograd, based on the invariant model reaction sillimanite + K feldspar + plagioclase + biotite + quartz + vapor ± muscovite + liquid and interpolated across three metamorphic suites, is consistent with a major regional structure culmination and with independently determined pressures obtained from anorthite-grossular-quartz-Al2SiO5 geobarometry. The positive correlation between the configuration of the bathograd and the structural and pressure culmination points to the pressure-dependence of anatectic-granitic-pod mineral associations.  相似文献   

7.
Magnesian metapelites of probable Archaean age from Forefinger Point, SW Enderby Land, East Antarctica, contain very-high-temperature granulite facies mineral assemblages, which include orthopyroxene (8–9.5 wt% Al2O3)–sillimanite ± garnet ± quartz ± K-feldspar, that formed at 10 ± 1.5 kbar and 950 ± 50°C. These assemblages are overprinted by symplectite and corona reaction textures involving sapphirine, orthopyroxene (6–7 wt% Al2O3), cordierite and sometimes spinel at the expense of porphyroblastic garnet or earlier orthopyroxene–sillimanite. These textures mainly pre-date the development of coarse biotite at the expense of initial mesoperthite, and the subsequent formation of orthopyroxene (4–6 wt% Al2O3)–cordierite–plagioclase rinds on late biotite.
The early reaction textures indicate a period of near-isothermal decompression at temperatures above 900°C. Decompression from 10 ± 1.5 kbar to 7–8 kbar was succeeded by biotite formation at significantly lower temperatures (800–850°C) and further decompression to 4.5 ± 1 kbar at 700–800°C.
The later parts of this P–T evolution can be ascribed to the overprinting and reworking of the Forefinger Point granulites by the Late-Proterozoic ( c . 1000 Ma) Rayner Complex metamorphism, but the age and timing of the early high-temperature decompression is not known. It is speculated that this initial decompression is of Archaean age and therefore records thinning of the crust of the Napier Complex following crustal thickening by tectonic or magmatic mechanisms and preceding the generally wellpreserved post-deformational near-isobaric cooling history of this terrain.  相似文献   

8.
Abstract Microprobe analysis of the continuous chemical evolution of coexisting biotite-garnet and biotite-garnet-staurolite has been undertaken from interbedded micaschists of the volcanodetrital group of the Vilaine. A thermobarometric study using pertinent mineralogical equilibria reveals a complex P-T evolution, continuous throughout time, from high pressure, medium temperature (kyanite zone) to medium pressure, high temperature (sillimanite zone), then low pressure, medium temperature (andalusite zone). The T, P, fH2o and XH2o variations have been calculated from coexisting biotite-garnet pairs, and from the equilibria: paragonite (in white mica) + quartz ± albite (in plagioclase) + Al silicate + H2O; and, 3 anorthite ± grossular + 2 Alsilicate + quartz. The P-T evolution is correlated with the continuous change in composition of minerals (using P–XMg and T–XMg diagrams) and with the evolution of assemblages. This continuous P-T-time evolution, correlated with the successive formation of S1-S2 foliations, allows us to propose a P-T-time-deformation path for the micaschists and to relate the growth of its mineral components to tectonic processes.  相似文献   

9.
Abstract Andalusite-bearing veins formed during contact metamorphism in the aureole of the Vedrette di Ries tonalite. In the veins, quartz crystals that are completely armoured by andalusite or that occur in strain shadow areas contain three generations of fluid inclusions: low-salinity H2O-CO2-CH4 mixtures with CH4/(CO2+ CH4) ± 0.35 (type A); low-salinity aqueous fluids (type B); H2O-free, CO2-CH4 fluids with the same carbonic speciation as A (type C). Carbonic types A and C typically have a dark appearance, which is attributed to graphite coatings on inclusion walls. Microstructural analysis of the host quartz and calculated densities indicate that type A inclusions were likely trapped during vein formation. These inclusions underwent strain-assisted re-equilibration during cooling that resulted in density increases without change of composition. After the rocks had cooled below about 350 ° C, type C inclusions appear to have formed from one of the immiscible fractions after unmixing of the H2O-CO2-CH4 fluid mixtures. Aqueous type B inclusions, apparently trapped between 225 and 350 ° C, could represent an independent fluid, or could be the H2O-rich fraction of unmixed type A fluids. Taking account of the uncertainties, the composition and density of the complex type A inclusion fluids are in good agreement with the properties of primary fluids calculated from the petrological data. The fluid inclusion data support the model of vein formation by hydrofracturing as a result of dehydration of graphitic metapelites. These new results also demonstrate the importance of considering strain in the interpretation of metamorphic fluid inclusions.  相似文献   

10.
Calc-silicate granulites from the Bolingen Islands, Prydz Bay, East Antarctica, exhibit a sequence of reaction textures that have been used to elucidate their retrograde P–T path. The highest temperature recorded in the calc-silicates is represented by the wollastonite- and scapolite-bearing assemblages which yield at least 760°C at 6 kbar based on experimental results. The calc-silicates have partially re-equilibrated at lower temperatures (down to 450°C) as evidenced by the successive reactions: (1) wollastonite + scapolite + calcite = garnet + CO2, (2) wollastonite + CO2= calcite + quartz, (3) wollastonite + plagioclase = garnet + quartz, (4) scapolite = plagioclase + calcite + quartz, (5) garnet + CO2+ H2O = epidote + calcite + quartz, and (6) clinopyroxene + CO2+ H2O = tremolite + calcite + quartz.
The reaction sequence observed indicates that a CO2 was relatively low in the wollastonite-bearing rocks during peak metamorphic conditions, and may have been further lowered by local infiltration of H2O from the surrounding migmatitic gneisses on cooling. Fluid activities in the Bolingen calc-silicates were probably locally variable during the granulite facies metamorphism, and large-scale CO2 advection did not occur.
A retrograde P–T path, from the sillimanite stability field ( c. 760°C at 6 kbar) into the andalusite stability field ( c. 450°C at <3 kbar), is suggested by the occurrence of secondary andalusite in an adjacent cordierite–sillimanite gneiss in which sillimanite occurs as inclusions in cordierite.  相似文献   

11.
The pressure-sensitive equilibrium among anorthite, quartz and the Ca-tschermak component in clinopyroxene (CaAl2SiO6; CaTs), CaAl2SiOCpx6+SiOQtz2=CaAl2Si2OPl8 (SCAn) ,can be used as a geobarometer in granulites with the proper assemblage, and has been calibrated using mineral composition data from partial melting experiments of natural assemblages and from phase equilibrium experiments on the end-member CMAS system. The experimental data cover the P – T  range 4–32  kbar and 900–1400  °C. Linear least-squares regression analysis of the experimental data resulted in the following empirical expressions for pressure in terms of composition and temperature: P = 5.066 [±0.760]+ 1300 [±800] T  −ln K 276 [±16] · T  [±2.5  kbar]or P = 6.330 [±0.116]−ln K 301 [±9]· T  [±1.0  kbar] ,where K = a PlAn a CpxCaTs  .The first equation incorporates an enthalpy term, but is less accurate than the second equation, in which the enthalpy of reaction is ignored. Application of these expressions to natural and experimental equilibrium mineral assemblages demonstrates that the empirical barometers are applicable over a wide range of pressures (≥4  kbar), temperatures (≥700  °C) and bulk compositions (Mg#≥32.5).  相似文献   

12.
A sequence of regional metamorphic isograds indicating a range from prehnite-pumpellyite to lower amphibolite facies was mapped in metabasites near Flin Flon, Manitoba. The lowest grade rocks contain prehnite + pumpellyite and are cut by younger brittle faults containing epidote + chlorite + calcite. Isobaric temperature- X CO2 and pressure-temperature (constant X CO2) diagrams were calculated to quantify the effects of CO2 in the metamorphic fluid on the stability of prehnite-pumpellyite facies minerals in metabasites containing excess quartz and chlorite. Prehnite and, to a lesser extent, pumpellyite are stable only in fluids with X co2 <0.002. For X co2>0.002, epidote + chlorite + calcite assemblages are stable. Our calculated phase relations are consistent with regional metamorphism in the Flin Flon area in the presence of an H2O-rich fluid and a more CO2-rich fluid in the later fault zones. We believe that the potential effects of small amounts of CO2 in the metamorphic fluid should be assessed when considering the pressure-temperature implications of mineral assemblages in low-grade metabasites.  相似文献   

13.
Hydration of eclogite, Pam Peninsula, New Caledonia   总被引:2,自引:0,他引:2  
Garnet glaucophanite and greenschist facies assemblages were formed by the recrystallization of barroisite-bearing eclogite facies metabasites in northern New Caledonia. The mineralogical evolution can be modelled by calculated P–T and P–X H2O diagrams for appropriate bulk rock compositions in the model system CaO–Na2O–FeO–MgO–Al2O3–SiO2–H2O. The eclogites, having developed in a clockwise P–T path that reached P ≈19 kbar and T  ≈590 °C, underwent decompression with the consumption of free H2O as the volume of hydrous minerals increased. Eclogite is preserved in domains that experienced no fluid influx following the loss of this fluid. Garnet glaucophanite formed at P ≈16 kbar during semi-pervasive fluid influx. Fluid influx, after further isothermal decompression, was focused in shear zones, and resulted in chlorite–albite-bearing greenschist facies mineral assemblages that reflect P ≈9 kbar.  相似文献   

14.
Abstract Spinel-quartz-cordierite and spinel-quartz are found as relic prograde assemblages in Fe-rich granulites from the Araku area, Eastern Ghats belt, India. Subsequent reactions produced orthopyroxene + sillimanite in the former association and garnet + sillimanite in the latter. The first reaction is univariant in the FMAS system, but is trivariant in the present case because of the presence of Zn and Fe3+ in spinel. The second reaction also has high variance because of Zn and Fe3+, but also because of the presence of Ca in garnet. Thermobarometry shows that the metamorphic conditions were approximately 950° C and 8.5 kbar and the fo 2 was near the NNO buffer. In Fe-rich bulk compositions and low- P -high- T conditions of metamorphism, two of the univariant reactions around the invariant point [Sa], namely (Sa, Hy) and (Sa, Cd), change topology due to reverse partitioning of Fe-Mg between coexisting garnet and spinel. An alternative partial petrogenetic grid in the system FMAS is constructed for such conditions and is applied satisfactorily to several sapphirine-free spinel granulites. It is shown that bulk composition ( X Fe and Zn) exerts greater control on the stability of spinel + quartz than fo 2. The effect of the presence of Zn and Fe3+ in spinel on the proposed grid is evaluated. Reaction textures in the Araku spinel granulites can be explained from the petrogenetic grid as due to near-isobaric cooling.  相似文献   

15.
ABSTRACT
The mineralogy and isotope geochemistry of carbonate minerals in the Coorong area are determined by the water chemistry of different depositional environments ranging from seawater to evaporitically modified continental water. The different isotopic compositions of coexisting calcite and dolomite suggest that each of the above two minerals was formed from water of composition and origin unique to that specific mineral. In addition, the dolomite was not formed by simple solid state cation exchange.
The occurrence of two types of dolomite was shown by isotope analysis and SEM observations. The dolomite, which is isotopically light (δ13C = -1 to -2% 0 ; δ18O=+3 to +5%0) and of fine grain size (˜ 0·5 μm) probably precipitated under the influence of evaporitically modified continental water. Coarser grained dolomite (up to 4 μm) is isotopically heavier (δ13C=+3 to +4%0; δ18O=+5 to + 6%0) contains Mg in excess of Ca and was formed in or close to equilibrium with atmospheric CO2 probably by the dolomitization of aragonite.  相似文献   

16.
The Smartville Complex is a late Jurassic, rifted volcanic arc in the northern Sierra Nevada, California. Near Auburn, California, it consists of a lower volcanic unit, dominated by basaltic flows, and an upper volcanic unit of andesitic volcaniclastic rocks, both of which have been intruded by dykes and irregular bodies of diabase. These rocks contain relict igneous minerals, and the metamorphic minerals albite, chlorite, quartz, pumpellyite, prehnite, epidote, amphibole, titanite, garnet, biotite, K-feldspar, white mica, calcite, and sulphide and oxide minerals.
Prehnite–pumpellyite (PrP), prehnite–actinolite (PrA), and greenschist (GS) zones have been identified. The pumpellyite-out isograd separates the PrP and PrA zones, and the prehnite-out isograd separates the PrA and GS zones. The minerals Ab + Qtz + Mt + Tn are common to most assemblages in all three zones. The MgO/(MgO + FeO) ratio of the effective bulk composition has an important and systematic effect on the observed mineral assemblages in the PrP zone. Prehnite-bearing assemblages contain the additional minerals, Pmp + Amp + Ep + Chl in MgO-rich rocks, and either Pmp + Ep + Chl or Amp + Ep + Chl in less magnesian rocks. Subcalcic to calcic amphibole is common in the PrP zone. The mineral assemblage Prh + Act + Ep + Chl, without Pmp, characterizes the PrA zone, and the mineral assemblage Act + Ep + Chl, without Prh or Pmp, characterizes the GS zone. The disappearance of pumpellyite and prehnite occurred by continuous reactions.
The sequence of mineral assemblages was produced by burial metamorphism at P–T conditions of 300° 50°C at approximately 2.5 ± 0.5 kbar. During metamorphism, the composition of the fluid phase was nearly 100% H2O and the oxygen fugacity was between the hematite–magnetite and quartz–fayalite–magnetite buffers.  相似文献   

17.
Abstract The orthopyroxene-clinopyroxene, garnet-orthopyroxene and garnet-clinopyroxene geothermometers, and the garnet-orthopyroxene-plagioclase, garnet-clinopyroxene-plagioclase and anorthite-ferrosilite-grossular-almandine-quartz geobarometers are applied to metabasites and the garnetplagioclase-sillimanite-quartz geobarometer is applied to a metapelite from the Proterozoic Arendal granulite terrain, Bamble sector, Norway. P–T conditions of metamorphism were 7.3 ± 0.5 kbar and 800 ± 60°C.
This terrain shows a regional gradation from the amphibolite facies, into normal LILE content granulite facies rocks and finally strongly LILE deficient granulite facies gneisses. Neither P nor T vary significantly across the entire transition zone. The change in 'grade'parallels the increasing dominance of CO2 over H2O in the fluid phase.
LILE-depletion is not a pre-condition of granulite facies metamorphism: granulites may have either 'depleted'or 'normal'chemistries. The results presented herein show that LILE-deficiency in granulite facies orthogneisses is not necessarily related to variations in either P or T . The important mechanisms in the Arendal terrain were (a) direct synmetamorphic crystallization from magma, with primary LILE-poor mineralogies imposed by the prevailing fluid regime, and (b) metamorphic depletion, involving scavenging of LILEs during flushing by mantle-derived CO2-rich fluids. The latter process is constrained by U–Pb and Rb–Sr isotopic work to have occurred no later than 50 Ma after intrusion of the acid-intermediate gneisses, and was probably associated with contemporary basic magmatism in a tectonic environment similar to a present day cordilleran continental margin.  相似文献   

18.
Abstract Two Archaean synvolcanic stocks with contact aureoles occur in the Wawa greenstone belt near Wawa, Ontario, Canada. The Gutcher Lake and Jubilee stocks consist mainly of granitoid trondhjemite with feldspar laths mottled by white mica + calcite + epidote and rimmed by clear albite. Biotite is partly or wholly pseudomorphosed by chlorite + sphene; some epidote is partly altered to calcite + chlorite. The granitoid phase grades into a foliated phase of quartz + albite + white mica + calcite + chlorite near fracture zones traversing the stocks.
The alteration of the Gutcher Lake stock along its foliated margin involved addition of K2O, H2O + CO2, MnO, plus Rb; loss of CaO plus Sr; and a shift in Fe+2/Fet from 0.66 to 0.81. The alteration of the Jubilee stock along the Darwin Shear involved addition of H2O + CO2; loss of Sr; and no significant shift in Fe+2/Fet. The greenschist alteration also modified the contact aureoles bordering both stocks.
One interpretation is that regional metamorphism in the Archaean overprinted a greenschist assemblage on both stocks. The alteration was intense near fracture zones and sporadic remote from fractures. Lower integrated water to rock ratios along the Darwin Shear compared to the margin of the Gutcher Lake stock may explain the comparatively lower perturbation of the element abundances and redox state of iron.  相似文献   

19.
The proposed geothermobarometer is based on an empirical calibration which takes account of two equilibria involving the tremolite, edenite, pargasite and hastingsite components in amphiboles. It has applications to assemblages found in metabasic rocks of widely different chemical compositions (magnesian to Fe-rich metabasalts), and for metamorphism ranging from lower greenschist to highest amphibolite facies. Knowing the Si(T1), Aliv, Alvi, Fe3+, Fe2+, Mg, Ca, NaM4, NaA and A vacancy in an amphibole, and the Al3+ and X Mg in coexisting epidote and chlorite, it is possible to calculate two values of In K d for this assemblage. These equilibria involve edenite-tremolite and (pargasite/hastingsite)-tremolite end-members in amphibole (the calculation program is given). For these equilibria, the isopleths (iso-values of K d) have been calculated for 0.27 < X Mg < 0.75 and 0 < X Fe3+= Fe3+/(Fe3++ Alvi) < 0.8. It is then possible to determine pressure and temperature directly when X Mg, X Fe3+, In K d for tremoliteedenite and In K d for (pargasite/hastingsite)-tremolite are known. Application of this geothermobarometer is limited to Ca-free plagioclase assemblages, and complete P–T paths can be drawn only if all the minerals are considered together. Phase relations at successive stages of crystallization can be constrained by studying the relationships between the coexisting minerals, their zoning and the metamorphic fabrics.  相似文献   

20.
Results of electron microprobe and microthermometric studies of samples collected from the Bouvet Triple Junction Region (BTJR) during a joint Russian-Italian geological expedition on the R/V Academician Nikolaj Strakhov (1994) have revealed new data on the composition of basaltic magmas and oceanic hydrothermal fluids connected with magmatic processes. Detailed analysis of basaltic glasses shows that the modem Mid-Atlantic Ridge (MAR) rift valley is composed of normal mid-ocean ridge basalts with low concentrations of K2 O and TiOz (N-MORB), while its flanks are more enriched with these components approaching E-MORB. A marked influence of the Bouvet hot spot volcanism on magma generation on the South-West Indian Ridge (SWIR) near Bouvet Island is observed. Basaltic melts in this area belong to alkalic and transitional series and have maximum contents of K2O, TiO2, H2O.
Microthermometric analyses of fluid inclusions in the samples from the BTJR have revealed major differences in the oceanic hydrothermal fluid systems on the MAR and near SWIR, which depends on the peculiarities of magma. In the area of the MAR (with dry melts) only H2O solution inclusions in quartz were found; thus, seawater is probably the only primary source of hydrothermal fluids (NaCl + MgCl2+ H2O; T = 170–200°C). In the SWIR area (with the high content of water in melts) syngenetic liquid CO2 and H2O solution inclusions in quartz indicate the influence of the magmatic fluid component on the ore-forming water/carbon dioxide solutions (NaCl + CaC12+ H2O + CO2; T = 200–310 °C; P = 900–1700 bar).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号