首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We analysed isotopic compositions of metamorphic microdiamond secondary ion mass spectrometry. Typical microdiamonds in this dolomite marble show star-shaped morphologies (S-type) consisting of single-crystal cores and polycrystalline rims. Four S-type microdiamonds and two R-type microdiamonds (single crystals with rugged surfaces) were analysed using a 5 μm diameter ion beam. S-type microdiamonds have heterogeneous carbon isotopic compositions even in a single grain. Analysis of a typical S-type microdiamond (no. xx01-1-13) revealed clear difference in δ13C between core and rim. The rim shows lighter isotopic compositions ranging from??17.2‰ to??26.9‰, whereas the core is much heavier, with δ13C ranging from??9.3‰ to??13.0‰. The δ13C values of R-type microdiamonds fall into narrow ranges from??8.3‰ to??14.9‰ for no. xx01-1-10 and from??8.3‰ to??15.3‰ for no. xx01-1-16. These δ13C values are similar to those of the S-type microdiamond cores. The R-type probably formed at the same stage as the core of the S-type, whereas rim growth at a second stage did not occur or occurred very weakly in R-type microdiamonds. These carbon isotopic data support the two-stage growth of microdiamonds in the Kokchetav ultrahigh-pressure host rock. To explain the second stage growth of S-type microdiamonds, we postulate a simple fluid infiltration of light carbon from neighbouring gneisses into the dolomite marble.  相似文献   

2.
Microstructures in minerals from ultrahigh‐pressure metamorphic (UHPM) terranes are keys to understanding the rheological properties and the exhumation mechanisms of rocks from subduction zones. Kyanite‐bearing whiteschist, associated with eclogite lenses, is part of UHPM unit II located south‐west of Lake Zheltau in the Kulet region of the Kokchetav Massif. The equilibrium assemblage is kyanite + garnet + talc + phengite + coesite/quartz. Previously reported peak pressure–temperature (P–T) conditions are ~3.5 GPa at 750 °C. A strong foliation is defined by the talc and phengite, with a corresponding weak shape preferred alignment of kyanite. Crystallographic orientation maps and analysis of kyanite blades were performed using electron backscatter diffraction methods. The data are consistent with a (100)[001] slip system for the formation of undulose extinction and kink bands in kyanite. Rotations measured across individual kink bands are 10–50° about <010>, and rotations along kyanite with undulose extinction are up to 50° about <010> with variations between adjacent points typically <2°. The undulose extinction is interpreted to have developed through crystal plastic deformation by dislocation creep. Kink bands mark the development of high‐angle grain boundaries by dislocation climb. The deformation of kyanite occurred in the fault‐bounded terrane during the exhumation of the Kokchetav Massif.  相似文献   

3.
Representative diamond-bearing gneisses and dolomitic marble, eclogite and Ti-clinohumite-bearing garnet peridotite from Unit I at Kumdy Kol and whiteschist from Unit II at Kulet, eastern Kokchetav Massif, northern Kazakhstan, were studied. Diamond-bearing gneisses contain variable assemblages, including Grt+Bt+Qtz±Pl±Kfs±Zo±Chl±Tur±Cal and minor Ap, Rt and Zrn; abundant inclusions of diamond, graphite+chlorite (or calcite), phengite, clinopyroxene, K-feldspar, biotite, rutile, titanite, calcite and zircon occur in garnet. Diamond-bearing dolomitic marbles consist of Dol+Di±Grt+Phl; inclusions of diamond, dolomite±graphite, biotite, and clinopyroxene were identified in garnet. Whiteschists carry the assemblage Ky+Tlc+Grt+Rt; garnet shows compositional zoning, and contains abundant inclusions of talc, kyanite and rutile with minor phlogopite, chlorite, margarite and zoisite. Inclusions and zoning patterns of garnet delineate the prograde P–T path. Inclusions of quartz pseudomorphs after coesite were identified in garnet from both eclogite and gneiss. Other ultrahigh-pressure (UHP) indicators include Na-bearing garnet (up to 0.14 wt% Na2O) with omphacitic Cpx in eclogite, occurrence of high-K diopside (up to 1.56 wt% K2O) and phlogopite in diamond-bearing dolomitic marble, and Cr-bearing kyanite in whiteschist. These UHP rocks exhibit at least three stages of metamorphic recrystallization. The Fe-Mg partitioning between clinopyroxene and garnet yields a peak temperature of 800–1000 °C at P >40 kbar for diamond-bearing rocks, and about 740–780 °C at >28–35 kbar for eclogite, whiteschist and Ti-bearing garnet peridotite. The formation of symplectitic plagioclase+amphibole after clinopyroxene, and replacement of garnet by biotite, amphibole, or plagioclase mark retrograde amphibolite facies recrystallization at 650–680 °C and pressure less than about 10 kbar. The exsolution of calcite from dolomite, and development of matrix chlorite and actinolite imply an even lower grade greenschist facies overprint at c. 420 °C and 2–3 kbar. A clockwise P–T path suggests that supracrustal sediments together with basaltic and ultramafic lenses apparently were subjected to UHP subduction-zone metamorphism within the diamond stability field. Tectonic mixing may have occurred prior to UHP metamorphism at mantle depths. During subsequent exhumation and juxtaposition of many other tectonic units, intense deformation chaotically mixed and mylonitized these lithotectonic assemblages.  相似文献   

4.
Chris D. Parkinson   《Lithos》2000,52(1-4):215-233
Coarse-grained whiteschist, containing the assemblage: garnet+kyanite+phengite+talc+quartz/coesite, is an abundant constituent of the ultrahigh-pressure metamorphic (UHPM) belt in the Kulet region of the Kokchetav massif of Kazakhstan.

Garnet displays prograde compositional zonation, with decreasing spessartine and increasing pyrope components, from core to rim. Cores were recrystallized at T=380°C (inner) to 580°C (outer) at P<10 kbar (garnet–ilmenite geothermometry, margarite+quartz stability), and mantles at T=720–760°C and PH20=34–36 kbar (coesite+graphite stability, phengite geobarometer, KFMASH system reaction equilibria). Textural evidence indicates that rims grew during decompression and cooling, within the Qtz-stability field.

Silica inclusions (quartz and/or coesite) of various textural types within garnets display a systematic zonal distribution. Cores contain abundant inclusions of euhedral quartz (type 1 inclusions). Inner mantle regions contain inclusions of polycrystalline quartz pseudomorphs after coesite (type 2), with minute dusty micro-inclusions of chlorite, and more rarely, talc and kyanite in their cores; intense radial and concentric fractures are well developed in the garnet. Intermediate mantle regions contain bimineralic inclusions with coesite cores and palisade quartz rims (type 3), which are also surrounded by radial fractures. Subhedral inclusions of pure coesite without quartz overgrowths or radial fractures (type 4) occur in the outer part of the mantle. Garnet rims are silica-inclusion-free.

Type 1 inclusions in garnet cores represent the low-P, low-T precursor stage to UHPM recrystallization, and attest to the persistence of low-P assemblages in the coesite-stability field. Coesites in inclusion types 2, 3, and 4 are interpreted to have sequentially crystallized by net transfer reaction (kyanite+talc=garnet+coesite+H2O), and were sequestered within the garnet with progressively decreasing amounts of intragranular aqueous fluid.

During the retrograde evolution of the rock, all three inclusion types diverged from the host garnet PT path at the coesite–quartz equilibrium, and followed a trajectory parallel to the equilibrium boundary resulting in inclusion overpressure. Coesite in type 2 inclusions suffered rapid intragranular H2O-catalysed transformation to quartz, and ruptured the host garnet at about 600°C (when inclusion P27 kbar, garnet host P9 kbar). Instantaneous decompression to the host garnet PT path, passed through the kyanite+talc=chlorite+quartz reaction equilibrium, resulting in the dusty micro-assemblage in inclusion cores. Type 3 inclusions suffered a lower volumetric proportion transformation to quartz at the coesite–quartz equilibrium, and finally underwent rupture and decompression when T<400°C, facilitating coesite preservation. Type 4 coesite inclusions are interpreted to have suffered minimal transformation to quartz and proceeded to surface temperature conditions along or near the coesite–quartz equilibrium boundary.  相似文献   


5.
Exhumation of high-pressure rocks of the Kokchetav massif: facts and models   总被引:1,自引:0,他引:1  
The exhumation of ultrahigh-pressure (UHP) metamorphic units from depths more than 100-120 km is one of the most intriguing questions in modern petrology and geodynamics. We use the diamondiferous Kumdy-Kol domain in the Kokchetav Massif to show that exhumation models should take into consideration initially high uplift velocities (from 20 down to 6 cm/year) and the absence of the deformation of UHP assemblages. The high rate of exhumation are indicated by ion microprobe (SHRIMP) dating of zircons from diamondiferous rocks and supported by the low degree of nitrogen aggregation in metamorphic diamonds.Diamondiferous rocks in the Kumdy-Kol domain occur as steeply dipping (60°-80°) thin slices (few hundred metres) within granite-gneiss. Using geological, petrological and isotopic-geochemical data, we show that partial melting of diamondiferous metamorphic rocks occurred; a very important factor which has not been taken into account in previous models.Deformation of diamondiferous rocks at Kumdy-Kol is insignificant; diamond inclusions in garnet are often intergrown with mica crystals carrying no traces of deformation. All these facts could be explained by partial melting of metapelites and granitic rocks in the Kumdy-Kol domain. The presence of melt is responsible for an essential reduction of viscosity and a density difference (Δρ) between crustal rocks and mantle material and reduced friction between the upwelling crustal block, the subducting and overriding plates. Besides Δρ, the exhumation rate seems to depend on internal pressure in the subducting continental crustal block which can be regarded as a viscous layer between subducting continental lithosphere and surrounding mantle.We construct different models for the three stages of exhumation: a model similar to “corner flow” for the first superfast exhumation stage, an intermediate stage of extension (most important from structural point of view) and a very low rate of exhumation in final diapir+erosional uplift.  相似文献   

6.
The Kulet eclogite in the Kokchetav Massif, northern Kazakhstan, is identified as recording a prograde transformation from the amphibolite facies through transitional coronal eclogite to fully recrystallized eclogite (normal eclogite). In addition to minor bodies of normal eclogite with an assemblage of Grt + Omp + Qz + Rt ± Ph and fine‐grained granoblastic texture (type A), most are pale greyish green bodies consisting of both coronal and normal eclogites (type B). The coronal eclogite is characterized by coarse‐grained amphibole and zoisite of amphibolite facies, and the growth of garnet corona along phase boundaries between amphibole and other minerals as well as the presence of eclogitic domains. The Kulet eclogites experienced a four‐stage metamorphic evolution: (I) pre‐eclogite stage, (II) transition from amphibolite to eclogite, (III) a peak eclogite stage with prograde transformation from coronal eclogite to UHP eclogite and (IV) retrograde metamorphism. Previous studies made no mention of the presence of amphibole or zoisite in either the pre‐eclogite stage or coronal eclogite, and so did not identify the four‐stage evolution recognized here. P–T estimates using thermobarometry and Xprp and Xgrs isopleths of eclogitic garnet yield a clockwise P–T path and peak conditions of 27–33 kbar and 610–720 °C, and 27–35 kbar and 560–720 °C, respectively. P–T pseudosection calculations indicate that the coexistence of coronal and normal eclogites in a single body is chiefly due to different bulk compositions of eclogite. All eclogites have tholeiitic composition, and show flat or slightly LREE‐enriched patterns [(La/Lu)N = 1.1–9.6] and negative Ba, Sr and Sc and positive Th, U and Ti anomalies. However, normal eclogite has higher TiO2 (1.35–2.65 wt%) and FeO (12.11–16.72 wt%) and REE contents than those of coronal eclogite (TiO2 < 0.9 wt% and FeO < 12.11 wt%) with one exception. Most Kulet eclogites plot in the MORB and IAB fields in the 2Nb–Zr/4–Y and TiO2–FeO/MgO diagrams, although displacement from the MORB–OIB array indicates some degree of crustal involvement. All available data suggest that the protoliths of the Kulet eclogites were formed at a passive continent marginal basin setting. A schematic model involving subduction to 180–200 km at 537–527 Ma, followed by slab breakoff at 526–507 Ma, exhumation and recrystallization at crustal depths is applied to explain the four‐stage evolution of the Kulet eclogite.  相似文献   

7.
Nanometric solid inclusions in diamond incorporated in garnet and zircon from felsic gneiss of the Kokchetav massif, Kazakhstan, have been examined utilizing electron microscopy and focused ion beam techniques. Host garnet and zircon contain numerous pockets of multiple inclusions, which consist of 1–3 diamond crystals intergrown with quartz, phengite, phlogopite, albite, K‐feldspar, rutile, apatite, titanite, biotite, chlorite and graphite in various combinations. Recalculation of the average chemical composition of the entrapped fluid represented by multiple inclusion pockets indicates that such fluid contained a low wt% of SiO2, suggesting a relatively low‐temperature fluid rather than a melt. Transmission electron microscopy revealed that the diamond contains abundant nanocrystalline inclusions of oxides, rare carbonates and silicates. Within the 15 diamond crystals studied, abundant inclusions were found of SiO2, TiO2, FexOy, Cr2O3, ZrSiO4, and single grains of ThxOy, BaSO4, MgCO3, FeCr2O4 and a stoichiometric Fe‐rich pyroxene. The diversity of trace elements within inclusions of essentially the same stoichiometry suggests that the Kokchetav diamond crystallized from a fluid containing variable amounts of Si, Fe, Ti, Cr, Zr, Ba, Mg and Th and other minor components such as K, Na, P, S, Pb, Zn, Nb, Al, Ca, Cl. Most of the components in crystals included in diamond appear to have their origin in the subducted metasediments, but some of them probably originate from the mantle. It is concluded that Kokchetav diamond most likely crystallized from a COH‐rich multicomponent supercritical fluid at a relatively low temperature (hence the apparently low content of rock‐forming elements), and that the diversity of major and minor components suggests interactions between subducted metasediments and mantle components.  相似文献   

8.
Clinopyroxene phenocrysts in the Kokchetav trachybasalts are variable in composition and textures. Two distinctive cores are recognized: diopside cores and green salite cores. The diopside cores with Mg# of 80–90 are mantled by colorless salite rims with Mg# of 70–80. The green salite cores have especially low Mg# (<70) but high Al and Ti contents. A Mg-rich band (Mg#=82–90) usually occurs between a green salite core and its rim, and/or between a colorless salite mantle and its rim. Dissolution surfaces are observed on all textural variants. Two magma chambers are needed to explain the observed clinopyroxene phenocrysts. A deep chamber at about 120 km in the upper mantle in which diopside cores crystallized, and a shallow chamber at depths of less than 40 km in which diopside cores were resorbed and overgrown by salite rims or mantles. Magma mixing in the shallow chamber is responsible for the formation of dissolution surfaces between the diopside bands and the colorless salite mantles. The dissolution surfaces on the diopside cores formed in the shallow chamber as a result of pressure decrease. This magma evolution scenario is complicated by the occurrence of the crustal-origin green salite cores in diopsides. These green cores likely represent the relics of continental materials, which were captured in the deep chamber and partially re-melted. Our observations indicate that subducted continental materials were returned to the Earth's surface as a result of magmatism. This study therefore provides direct evidence of a link between subducted continental materials (slab) and magmatism in this orogenic belt.  相似文献   

9.
Two impure ultrahigh-pressure (UHP) marbles, a calcite marble with the peak assemblage Grt + Phe + Cpx + Rt + (Arg) and a dolomite marble with the peak assemblage Crn + Chl + Rt + Dol (±Arg), from the same lens from the polymetamorphic complex of the Brossasco-Isasca Unit (BIU) (southern Dora-Maira Massif) have been petrologically investigated and modelled by calculating P – T phase-diagram projections for H2O–CO2 mixed-volatile systems. Thermobarometric data obtained from the calcite marble suggest Alpine peak conditions in the diamond stability field (4.0 GPa at 730 °C), and allow reconstruction of the earlier portion of the Alpine retrograde P – T path, which is characterized by a significant decompression coupled with a moderate and continuous cooling to 650 °C at 2.50 GPa. The modelled fluid compositions at peak conditions point to 0.025 ≤  X (CO2) ≤ 0.10 and X (CO2) ≤ 0.0012 in the calcite marble and dolomite marble, respectively, suggesting fluid heterogeneity at the local scale and an internally buffered fluid evolution of the studied impure marbles. The lack of micro-diamond in the BIU marbles is explained by the very-low X (CO2) values, which favoured relatively high f O2-conditions, preventing the formation of diamond at the UHP peak metamorphic conditions.  相似文献   

10.
论述了大陆俯冲碰撞带中地幔橄榄岩的基本特征和成岩类型,并重点讨论柴北缘超高压变质带中不同性质的橄榄岩及其成因。根据岩石学特征,我们确定柴北缘超高压带中发育有两种类型的橄榄岩:(1)石榴橄榄岩,岩石类型包括石榴二辉橄榄岩、石榴方辉橄榄岩、纯橄岩和石榴辉石岩,是大陆型俯冲带的标志性岩石。金刚石包裹体、石榴石和橄榄石的出溶结构、温压计算等均反映其来源深度大于200km。地球化学特征表明该橄榄岩的原岩是岛弧环境下高镁岩浆在地幔环境下堆晶的产物。(2)大洋蛇绿岩型地幔橄榄岩,与变质的堆晶杂岩(包括石榴辉石岩、蓝晶石榴辉岩)和具有大洋玄武岩特征的榴辉岩构成典型的蛇绿岩剖面,代表大洋岩石圈残片。这两类橄榄岩的确定对了解柴北缘超高压变质带的性质和构造演化过程有重要意义。  相似文献   

11.
In the southern Grenville Province of the Canadian Shield (Otter Lake area), high-grade marble, gneiss and amphibolite have been folded about north- to north-east-trending axes; mylonite zones, parallel to layering and 0.1–10  cm wide, are locally present in marble.
In nonmylonitic marble, graphite occurs as c . 1–mm hexagonal prisms, which are commonly accompanied by a relatively few crystals that have been deformed, resulting in cleavage separation and the formation of folds and kink bands. Fracture-filled calcite contains less Mg and Fe than surrounding calcite (e.g. <0.30 compared with 1.8–2.7  wt% MgO, and 0.02–0.12 compared with 0.13–0.18  wt% FeO); the composition of fracture-filled dolomite is similar to that of the surrounding dolomite. In semimylonite, graphite forms elongate streaks of fragmented crystals and, in mylonite, further fragmentation has occurred to produce extremely small particles. The fragmentation has not destroyed the atomic structure (hexagonal modification) of graphite.
The behaviour of biotite was similar to that of graphite, but extreme fragmentation did not occur. Dolomite was more rigid than calcite, and in mylonite it occurs more commonly as relics. Amphibole and pyroxene crystals remained undeformed but are locally replaced by calcite.
The numerous microprocesses that have evidently occurred in marble and mylonitic marble of the study area are: coarsening (calcite, graphite), twinning (calcite, dolomite), slip (calcite, dolomite, graphite, biotite), strain-induced recrystallization (calcite), microfolding and kink-band formation (graphite, biotite), fragmentation (graphite) and the pressure-induced transport of calcite and dolomite to voids in graphite and biotite.  相似文献   

12.
A large mass of dolomitic marble including many eclogite blocks occurs in orthogneisses of the Rongcheng area of the Su-Lu province, eastern China. The marble consists mainly of dolomite, calcite (formerly aragonite), graphite, forsterite, diopside, talc, tremolite and phlogopite. Aggregates of talc and calcite occur at the boundary between dolomite and diopside. Tremolite is a reaction product between talc and calcite. Eclogite blocks are rimmed by dark green amphibolite. The primary mineral assemblage in the core of eclogite is Na-bearing garnet (up to 0.2  wt% Na2O), omphacitic pyroxene, clintonite and rutile. Secondary minerals are pargasitic/edenitic amphibole, plagioclase, sodic diopside, chlorite, zoisite and titanite. The peak metamorphic conditions, based on stability of the dolomite+forsterite+aragonite (now calcite)+graphite assemblage, under conditions where tremolite is unstable, are estimated at T  =610–660 °C and P =2.5–3.5  GPa (for X CO=0.001). A reaction between dolomite and diopside to form talc under tremolite-unstable conditions indicates a temperature decrease under ultra-high-pressure conditions ( P >2.4  GPa, X CO<0.0013). The formation of secondary tremolite is consistent with a nearly adiabatic pressure decrease post-dating the ultra-high-pressure metamorphism. The temperature decrease under ultra-high-pressure conditions preceding decompression may reflect the underplating of a cold slab, and the rapid decompression probably corresponds to the upwelling stage promoted by the delamination of a downwelling lithospheric root. The P – T  conditions of the amphibolitization stage are estimated at <0.9  GPa and <460 °C, and are similar to conditions recorded by the surrounding orthogneisses.  相似文献   

13.
Oxygen isotopic compositions of silicates in eclogites and whiteschists from the Kokchetav massif were analyzed by whole‐grain CO2‐laser fluorination methods. Systematic analyses yield extremely low δ18O for eclogites, as low as ?3.9‰ for garnet; these values are comparable with those reported for the Dabie‐Sulu UHP eclogites. Oxygen isotopic compositions are heterogeneous in samples of eclogite, even on an outcrop scale. Schists have rather uniform oxygen isotope values compared to eclogites, and low δ18O is not observed. Isotope thermometry indicates that both eclogites and schists achieved high‐temperature isotopic equilibration at 500–800 °C. This implies that retrograde metamorphic recrystallization barely modified the peak‐metamorphic oxygen isotopic signatures. A possible geological environment to account for the low‐δ18O basaltic protolith is a continental rift, most likely subjected to the conditions of a cold climate. After the basalt interacted with low δ18O meteoric water, it was tectonically inserted into the surrounding sedimentary units prior to, or during subduction and UHP metamorphism.  相似文献   

14.
This paper presents a regional scale observation of metamorphic geology and mineral assemblage variations of Kontum Massif, central Vietnam, supplemented by pressure–temperature estimates and reconnaissance geochronological results. The mineral assemblage variations and thermobarometric results classify the massif into a low- to medium-temperature and relatively high-pressure northern part characterised by kyanite-bearing rocks (570–700 °C at 0.79–0.86 GPa) and a more complex southern part. The southern part can be subdivided into western and eastern regions. The western region shows very high-temperature (> 900 °C) and -pressure conditions characterised by the presence of garnet and orthopyroxene in both mafic and pelitic granulites (900–980 °C at 1.0–1.5 GPa). The eastern region contains widespread medium- to high-temperature and low-pressure rocks, with metamorphic grade increasing from north to south; epidote- or muscovite-bearing gneisses in the north (< 700–740 °C at < 0.50 GPa) to garnet-free mafic and orthopyroxene-free pelitic granulites in the south (790–920 °C at 0.63–0.84 GPa). The Permo-Triassic Sm–Nd ages (247–240 Ma) from high-temperature and -pressure granulites and recent geochronological studies suggest that the south-eastern part of Kontum Massif is composed of a Siluro-Ordovician continental fragment probably showing a low-pressure/temperature continental geothermal gradient derived from the Gondwana era with subsequent Permo-Triassic collision-related high-pressure reactivation zones.  相似文献   

15.
大别山地区榴辉岩全岩的3He/4 He值分布在0 .0 13×10 - 6 ~0 .76 0×10 - 6 之间,平均0 .2 0 0×10 - 6 ,榴辉岩中石榴子石单矿物的3He/4 He值与其全岩的3He/4 He值基本一致。在3He—4 He分布图上榴辉岩的氦同位素数据点远离地幔氦的分布范围,而位于大气氦与地壳氦的过渡部位。采用真空压碎方法对榴辉岩中石榴子石和绿辉石的氦同位素组成进行了分析,也未找到地幔氦的明显踪迹。结合大别—苏鲁地区榴辉岩中极低的δ1 8O值、εNd(0 )值等地球化学特征,提出大别—苏鲁地区超高压变质榴辉岩可能是在地壳中形成的,并未曾俯冲至10 0多千米的地幔深度。榴辉岩的3He/4 He值与围岩类型密切相关,榴辉岩的δ1 8O值与围岩的δ1 8O值同步变化,以及含柯石英大理岩、片麻岩和硬玉石英岩等非基性超高压变质岩和脉状榴辉岩的发现,均证明榴辉岩与其围岩一起经历了超高压变质过程,榴辉岩及其围岩在变质过程中未发生明显的位移,即榴辉岩是原地成因的。  相似文献   

16.
Abstract The Erzgebirge Crystalline Complex (ECC) is a rare example where both‘crustal’eclogites and mantle-derived garnet-bearing ultramafic rocks (GBUs) occur in the same tectonic unit. Thus, the ECC represents a key complex for studying tectonic processes such as crustal thickening or incorporation of mantle-derived material into the continental crust. This study provides the first evidence that high-pressure metamorphism in the ECC is of Variscan age. Sm-Nd isochrons define ages of 333 ± 6 (Grt-WR), 337± 5 (Grt-WR), 360± 7 (Grt-Cpx-WR) (eclogites) and 353 ± 7 Ma (Grt-WR) (garnet-pyroxenite). 40Ar/39Ar spectra of phengite from two eclogite samples give plateau ages of 348 ± 2 and 355 ± 2 Ma. The overlap of ages from isotopic systems with blocking temperatures that differ by about 300 ° C indicates extremely fast tectonic uplift rates. Minimum cooling rates were about 50° C Myr-1. As a consequence, the closure temperature of the specific isotopic system is of minor importance, and the ages correspond to the time of high-pressure metamorphism. Despite textural equilibrium and metamorphic temperatures in excess of 800° C, clinopyroxene, garnet and whole rock do not define a three-point isochron in three of four samples. The metamorphic clinopyroxenes seem to have inherited their isotopic signature from magmatic precursors. Rapid tectonic burial and uplift within only a few million years might be the reason for the observed Sm-Nd disequilibrium. The εNd values of the eclogites (+4.4 to +6.9) suggest the protoliths were derived from a long-term depleted mantle, probably a MORB source, whereas the isotopically enriched garnet-pyroxenite (εNd–2.9) might represent subcontinental mantle material, emplaced into the crust prior to or during collision. The similarity of ages of the two different rock types suggests a shared metamorphic history.  相似文献   

17.
The Variscan orogenic belt, of which the Bohemian Massif is a part, is typically recognized for its characteristic low pressure, high temperature metamorphism and a large volume of granites. However, there are also bodies of high pressure rocks (eclogites, garnet peridotites and high pressure granulites) which are small in size but widely distributed throughtout the Massif. Initially the high pressure rocks were considered to be relicts of a much older orogenic event, but the increasing data derived from isotopic and geochronological investigations show that many of these rocks have Palaeozoic protoliths. Metamorphic ages from the high pressure rocks define no single event. Instead, a number of discrete clusters of ages are found between about 430 Ma and the time of the dominant low pressure event at around 320–330 Ma.Most of the eclogite and granulite facies rocks are assigned to allochthonous nappes that arrived close to the end of the low pressure event, but before final granite intrusion. The nappes contain a mixture of different units and the relationship between rocks with high pressure relicts and host gneisses with no apparent signs of deep burial is still problematic. Some of the high pressure rocks retain evidence of multiple stages of partial re-equilibration during uplift. Moreover, it can be shown in certain instances that host gneisses also endured a multistage metamorphic development but with a peak event convergent with one of the breakdown stages in the enclosed rocks with high pressure relicts. It thus appears that the nappe units are composite bodies probably formed during episodic intracrustal thrusting. Fluids derived from prograde dehydration reactions in the newly under thrusting slab are taken to be the catalysts that drove the partial re-equilibrations.On the scale of the whole Massif it can be seen within the units with high pressure relicts that the temperature at the peak recorded pressure and that during the breakdown are variable in different locations. It is interpreted that regional metamorphic gradients are preserved for given stages in the history and thus the present day dismembered nappe relicts are not too far removed from their original spatial distribution in an original coherent unit. From the temperature information alone it is highly probable that the refrigerating underthrusting slab was situated in the north-west. However, this north-west to south-east underthrusting probably represents the major 380–370 Ma event and is no guide to the final thrusting that emplaced the much thinned nappe pile with high pressure relicts.Granite genesis is attributed to the late stage stacking, during the final Himalayan-type collision stage, of thinned crust covered by young, water-rich, sediments — erosion products of the earlier orogenic stages. Regional metamorphism at shallow depths above the voluminous granites was followed by final nappe emplacement which rejuvenated the granite ascent in places. Correspondence to: P. J. O'Brien  相似文献   

18.
都兰榴辉岩地体位于柴北缘—南阿尔金超高压变质带的东端,是唯一确定含柯石英的超高压变质地体,约700 km,其特点是含有两个特征不同的变质亚带,并经历了不同的折返过程。柯石英假像和温压计算表明两带榴辉岩峰期变质的压力都在柯石英的稳定域(2.8~3.3 GPa),但它们退化变质的p–T 轨迹具有明显不同的特征。北带榴辉岩经历了两个阶段的折返:早期从地幔深度快速折返到中部地壳层次,伴随岩石的等温降压,并发生角闪岩相退化变质;晚期抬升到地壳浅部。都兰南带榴辉岩折返过程中经历了高压麻粒岩相变质的改造,高压麻粒岩阶段的p–T条件为p=1.9~2.0 GPa,T=873~948℃, 并进一步经历了角闪岩相退化变质,说明都兰南带榴辉岩折返速率较慢,发生了壳幔过渡带(或加厚的深部地壳)层次的强烈热松弛。这种热松弛发生在许多大陆俯冲带的超高压岩石的折返过程中,并且是榴辉岩发生深熔作用的主要机制。都兰两个变质带不同的变质演化轨迹反映了俯冲的大陆地壳具有差异折返的特征。  相似文献   

19.
Chert nodules in dolostones in the aureole of the Tertiary Beinn an Dubhaich granite, Skye, have developed  mm-scale concentric monomineralic bands of alternating calcite and olivine during breakdown of a diopside core by the reaction 3 Dol+Di=4 Cal+2Fo+2 CO2. A simple textural progression from thin (<1 cm) homogeneous olivine-calcite rims close to the olivine-in isograd, to total replacement of the diopside core by a ≤10 cm thick well-banded rim close to the carbonate-granite contact demonstrates the developmental stages of the patterning. Correlation of olivine grain size with band spacing, and a greater olivine grain size in banded compared with homogeneous rims support pattern development by post-nucleation geochemical self-organization.  相似文献   

20.
M Ohta  T Mock  Y Ogasawara  D Rumble   《Lithos》2003,70(3-4):77-90
Diamond-bearing carbonate rocks from Kumdy-Kol, Kokchetav massif, Kazakhstan, were strongly altered by fluids flowing through fractures and infiltrating along grain boundaries during exhumation. Alteration includes retrogradation of high-grade silicate assemblages by hydrous minerals, replacement of diamond by graphite and of dolomite by calcite. Diamond-bearing carbonate rocks are among the most intensely altered isotopically with δ18OVSMOW values as low as +9‰, δ13CVPDB=−9‰, and 87Sr/86Sr as high as 0.8050. Evidence of isotopic equilibration between coexisting dolomite and high-Mg calcite during ultrahigh-pressure metamorphism (UHPM) is preserved only rarely in samples isolated from infiltrating fluids by distance from fractures. Isotopic heterogeneity and isotopic disequilibrium are widespread on a hand-specimen scale. Because of this lack of homogeneity, bulk analyses cannot provide definitive measurements of 13C/12C fractionation between coexisting diamond and carbonate. Our study adequately documents alteration on a scale commensurate with observed vein structures. But, testing the hypothesis of metamorphic origin of microdiamonds has not fully succeeded because our analytical spatial resolution, limited to 0.5 mm, is not small enough to measure individual dolomite inclusions or individual diamond crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号