首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A coincidence of the Beeswax galleon shipwreck (ca. A.D. 1650–1700) and the last Cascadia earthquake tsunami and coastal subsidence at ∼A.D. 1700 redistributed and buried wreck artifacts on the Nehalem Bay spit, Oregon, USA. Ground‐penetrating radar profiles (∼7 km total distance), sand auger probes, trenches, cutbank exposures (29 in number), and surface cobble counts (49 sites) were collected from the Nehalem spit (∼5 km2 area). The field data demonstrate (1) the latest prehistoric integrity of the spit, (2) tsunami spit overtopping, and (3) coseismic beach retreat since the A.D. 1700 great earthquake in the Cascadia subduction zone. Wreck debris was (1) initially scattered along the spit ocean beaches, (2) washed over the spit by nearfield tsunami (6–8 m elevation), and (3) remobilized in beach strandlines by catastrophic beach retreat. Historic recovery of the spit (150 m beach progradation) and modern foredune accretion (>5 m depth) have buried both the retreat scarp strandlines and associated wreck artifacts. The recent onshore sand transport might re‐expose heavy ship remains in the offshore area if the wreck grounded in shallow water (<20 m water depth of closure). © 2011 Wiley Periodicals, Inc.  相似文献   

2.
Coastal communities in the western United States face risks of inundation by distant tsunamis that propagate across the Pacific Ocean as well as local tsunamis produced by great (Mw?>?8) earthquakes on the Cascadia subduction zone. In 1964, the Mw 9.2 Alaska earthquake launched a Pacific-wide tsunami that flooded Cannon Beach, a small community (population 1640) in northwestern Oregon, causing over $230,000 in damages. However, since the giant 2004 Indian Ocean tsunami, the 2010 Chile tsunami and the recent 2011 Tohoku-Oki tsunami, renewed concern over potential impacts of a Cascadia tsunami on the western US has motivated closer examination of the local hazard. This study applies a simple sediment transport model to reconstruct the flow speed of the most recent Cascadia tsunami that flooded the region in 1700 using the thickness and grain size of sand layers deposited by the waves. Sedimentary properties of sand from the 1700 tsunami deposit provide model inputs. The sediment transport model calculates tsunami flow speed from the shear velocity required to suspend the quantity and grain size distribution of the observed sand layers. The model assumes a steady, spatially uniform tsunami flow and that sand settles out of suspension forming a deposit when the flow velocity decreases to zero. Using flow depths constrained by numerical tsunami simulations for Cannon Beach, the sediment transport model calculated flow speeds of 6.5?C7.6?m/s for sites within 0.6?km of the beach and higher flow speeds (~8.8?m/s) for sites 0.8?C1.2?km inland. Flow speed calculated for sites within 0.6?km of the beach compare well with maximum velocities estimated for the largest tsunami simulation. The higher flow speeds calculated for the two sites furthest landward contrast with much lower maximum velocities (<3.8?m/s) predicted by numerical simulations. Grain size distributions of sand layers from the most distal sites are inconsistent with deposition from sediment falling out of suspension. We infer that rapid deceleration in tsunami flow and convergences in sediment transport formed unusually thick deposits. Consequently, higher flow speeds calculated by the sediment model probably overestimate the actual wave speed at sites furthest inland.  相似文献   

3.
4.
In the 2008 Wenchuan earthquake in Sichuan Province, a large number of buildings, water conservancy facilities, and transportation facilities were severely damaged. The damage caused by liquefaction and earthquake-induced soil subsidence was widely distributed, diverse, and extensive. Typical liquefaction and earthquake-induced subsidence damage for this region has been described by investigations of soils and foundations in the earthquake-stricken area. Factors that influenced the liquefaction of soils in Dujiangyan County were analyzed, accounting for regional geological conditions. The results identify several factors that may affect the process of liquefaction and general damage to buildings, roads, levees, and dams. Such factors could serve as the basis for further research into mitigating the damage caused by earthquake-induced liquefaction and subsidence. The importance of detailed ground reconnaissance and the implementation of reasonable and effective measures to improve soft soil are proposed for earthquake hazard reduction in similar areas.  相似文献   

5.
The Central Valley in California (USA) covers about 52,000 km2 and is one of the most productive agricultural regions in the world. This agriculture relies heavily on surface-water diversions and groundwater pumpage to meet irrigation water demand. Because the valley is semi-arid and surface-water availability varies substantially, agriculture relies heavily on local groundwater. In the southern two thirds of the valley, the San Joaquin Valley, historic and recent groundwater pumpage has caused significant and extensive drawdowns, aquifer-system compaction and subsidence. During recent drought periods (2007–2009 and 2012-present), groundwater pumping has increased owing to a combination of decreased surface-water availability and land-use changes. Declining groundwater levels, approaching or surpassing historical low levels, have caused accelerated and renewed compaction and subsidence that likely is mostly permanent. The subsidence has caused operational, maintenance, and construction-design problems for water-delivery and flood-control canals in the San Joaquin Valley. Planning for the effects of continued subsidence in the area is important for water agencies. As land use, managed aquifer recharge, and surface-water availability continue to vary, long-term groundwater-level and subsidence monitoring and modelling are critical to understanding the dynamics of historical and continued groundwater use resulting in additional water-level and groundwater storage declines, and associated subsidence. Modeling tools such as the Central Valley Hydrologic Model, can be used in the evaluation of management strategies to mitigate adverse impacts due to subsidence while also optimizing water availability. This knowledge will be critical for successful implementation of recent legislation aimed toward sustainable groundwater use.  相似文献   

6.
This investigation was undertaken to assess the sensitivity of the Hazus-MH (v2.0) earthquake model to model parameters and to guide the selection of these parameters for realistic earthquake-loss assessment in the central USA. To accomplish these goals, we performed several sensitivity analyses and a validation assessment using earthquake damage surveys from the 2008 M5.2 Mt. Carmel, Illinois earthquake. We evaluated the sensitivity of the Hazus-MH earthquake model to the selection of seismic hazard data, attenuation function, soils data, liquefaction data, and structural fragility curves. These sensitivity analyses revealed that earthquake damage, loss, and casualty estimates are most sensitive to the seismic hazard data and selection of the attenuation function. The selection of the seismic hazard data and attenuation function varied earthquake damages and capital-stock losses by ±68?% and casualty estimates by ±84?%. The validation assessment revealed that Hazus-MH overpredicted observed damages by 68?C221?% depending on the model parameters employed. The model run using region-specific soils, liquefaction, and structure fragility curves produced the most realistic damage estimate (within 68?% of actual damages). Damage estimates using default Hazus-MH parameters were overpredicted by 155?%. The uncertainties identified here are similar to uncertainties recognized in other Hazus-MH validation assessments. Despite uncertainties in Hazus-MH earthquake-loss estimates, such estimates are still useful for planning and response so long as the limitations of the results are properly conveyed to planners, decision makers, emergency responders, and the public.  相似文献   

7.
The forests of the Siskiyou Mountains are among the most diverse in North America, yet the long-term relationship among climate, diversity, and natural disturbance is not well known. Pollen, plant macrofossils, and high-resolution charcoal data from Bolan Lake, Oregon, were analyzed to reconstruct a 17,000-yr-long environmental history of high-elevation forests in the region. In the late-glacial period, the presence of a subalpine parkland of Artemisia, Poaceae, Pinus, and Tsuga with infrequent fires suggests cool dry conditions. After 14,500 cal yr B.P., a closed forest of Abies, Pseudotsuga, Tsuga, and Alnus rubra with more frequent fires developed which indicates more mesic conditions than before. An open woodland of Pinus, Quercus, and Cupressaceae, with higher fire activity than before, characterized the early Holocene and implies warmer and drier conditions than at present. In the late Holocene, Abies and Picea were more prevalent in the forest, suggesting a return to cool wet conditions, although fire-episode frequency remained relatively high. The modern forest of Abies and Pseudotsuga and the present-day fire regime developed ca. 2100 cal yr B.P. and indicates that conditions had become slightly drier than before. Sub-millennial-scale fluctuations in vegetation and fire activity suggest climatic variations during the Younger Dryas interval and within the early Holocene period. The timing of vegetation changes in the Bolan Lake record is similar to that of other sites in the Pacific Northwest and Klamath region, and indicates that local vegetation communities were responding to regional-scale climate changes. The record implies that climate-driven millennial- to centennial-scale vegetation and fire change should be considered when explaining the high floristic diversity observed at present in the Siskiyou Mountains.  相似文献   

8.
The Mt. Angel Fault is likely one of the most active faults near the Portland metropolitan area, and was probably associated with the 1993 Scotts Mills earthquake. SH-wave seismic techniques used to image the Mt. Angel Fault suggest that the fault offsets late Pleistocene gravel (22 to 34 ka) at several locations. Within the study area, displacement of the late Pleistocene gravel along the strike of the Mt. Angel Fault increases from no obvious displacement on the northwest to approximately 18 m on the southeast. This trend of increasing offset along the strike of the fault is paralleled by topographic and geomorphic trends. A reconnaissance geologic investigation at an anomalous bend in the Pudding River near the projected trace of the Mt. Angel Fault revealed potential tectonic deformation in sediments younger than the late Pleistocene gravel imaged by SH-wave data. The results of this study have contributed to the paleoseismic record of the Mt. Angel Fault, laid the groundwork for future geologic investigations along the Pudding River, and determined potential sites for future paleoseismic trenching investigations.  相似文献   

9.
Land subsidence due to groundwater overdraft has been an ongoing problem in south-central and southern Arizona (USA) since the 1940s. The first earth fissure attributed to excessive groundwater withdrawal was discovered in the early 1950s near Picacho. In some areas of the state, groundwater-level declines of more than 150 m have resulted in extensive land subsidence and earth fissuring. Land subsidence in excess of 5.7 m has been documented in both western metropolitan Phoenix and Eloy. The Arizona Department of Water Resources (ADWR) has been monitoring land subsidence since 2002 using interferometric synthetic aperture radar (InSAR) and since 1998 using a global navigation satellite system (GNSS). The ADWR InSAR program has identified more than 25 individual land subsidence features that cover an area of more than 7,300 km2. Using InSAR data in conjunction with groundwater-level datasets, ADWR is able to monitor land subsidence areas as well as identify areas that may require additional monitoring. One area of particular concern is the Willcox groundwater basin in southeastern Arizona, which is the focus of this paper. The area is experiencing rapid groundwater declines, as much as 32.1 m during 2005–2014 (the largest land subsidence rate in Arizona State—up to 12 cm/year), and a large number of earth fissures. The declining groundwater levels in Arizona are a challenge for both future groundwater availability and mitigating land subsidence associated with these declines. ADWR’s InSAR program will continue to be a critical tool for monitoring land subsidence due to excessive groundwater withdrawal.  相似文献   

10.
The role of fire in shaping steep, forested landscapes depends on a suite of hydrologic, biologic, and geological characteristics, including the propensity for hydrophobic soil layers to promote runoff erosion during subsequent rainfall events. In the Oregon Coast Range, several studies postulate that fire primarily modulates sediment production via root reinforcement and shallow landslide susceptibility, although few studies have documented post-fire geomorphic response. Here, we describe field observations and topographic analyses for three sites in the central Oregon Coast Range that burned in 1999, 2002, and 2003. The fires generated strongly hydrophobic soil layers that did not promote runoff erosion because the continuity of the layers was interrupted by pervasive discontinuities that facilitated rapid infiltration. At each of our sites, fire generated significant colluvial transport via dry ravel, consistent with other field-based studies in the western United States. Fire-driven dry ravel accumulation in low-order valleys of our Sulphur Creek site equated to a slope-averaged landscape lowering of 2.5 mm. Given Holocene estimates of fire frequency, these results suggest that fire may contribute 10–20% of total denudation across steep, dissected portions of the Oregon Coast Range. In addition, we documented more rapid decline of root strength at our sites than has been observed after timber harvest, suggesting that root strength was compromised prior to fire or that intense heat damaged roots in the shallow subsurface. Given that fire frequencies in the Pacific Northwest are predicted to increase with continued climate change, our findings highlight the importance of fire-induced dry ravel and post-fire debris flow activity in controlling sediment delivery to channels.  相似文献   

11.
Grain-size distributions of gravels transported as bedload in Oak Creek, Oregon, show systematic variations with changing flow discharges. At low discharges the gravel distributions are nearly symmetrical and Gaussian. As discharges increase, the distributions become more skewed and follow the ideal Rosin distribution. The patterns of variations are established by goodness-of-fit comparisons between the measured and theoretical distributions, and by Q-mode factor analysis. Two end members are obtained in the factor analysis, having (respectively) almost perfect Gaussian and Rosin distributions, and the percentages of the two end members within individual samples vary systematically with discharge. Transformation from Gaussian to Rosin distribution with increasing discharge may be explained by processes of selective entrainment of grains from a bed of mixed sizes. Samples of bed material in Oak Creek follow the Rosin distribution. At high discharges, the transported bedload approaches the grain sizes of that bed-material source and mimics its Rosin distribution. Random-selection processes must be more important to grain entrainment at lower discharges, so that the resulting Gaussian distributions of transported bedload reflect similar distributions of bed stresses exerted by the stream flow. The results from Oak Creek demonstrate that the competence of the flow is reflected in the entire distribution of transported gravel sizes. A sequence of layers of fluvial gravels, modern or ancient, might show systematic variations between coarse Rosin and finer-grained Gaussian distributions, and these could be used to infer frequencies of various discharges and to establish a relationship to the source sediment. With further study, analyses of changing bedload grain-size distributions and their transport rates will lead to a better understanding of downstream variations in grain sizes of bed sediments and how their distributions reflect the progressive development of textural maturity.  相似文献   

12.
A well-dated δ18O record in a stalagmite from a cave in the Klamath Mountains, Oregon, with a sampling interval of 50 yr, indicates that the climate of this region cooled essentially synchronously with Younger Dryas climate change elsewhere in the Northern Hemisphere. The δ18O record also indicates significant century-scale temperature variability during the early Holocene. The δ13C record suggests increasing biomass over the cave through the last deglaciation, with century-scale variability but with little detectable response of vegetation to Younger Dryas cooling.  相似文献   

13.
14.
Open spaces in epithermal veins of the Bohemia mining district, Oregon, USA, filled with sediments during hydrothermal activity. These sediments consist mainly of chalcedony, rock fragments, and vein quartz fragments. In addition, hematite is deposited during stage three of the vein development. Observed sedimentary features include draping laminae, erosion surfaces, slumping, and graded bedding. Such sediments can be used for reconstruction of the original orientation of vein systems, because the sediment laminae are initially deposited horizontally. Vein sediments record variations in fluid flow due to self-sealing, fracturing, and cessation of hydrothermal activity. Investigation of vein sediments therefore provides an additional tool to unravel the geologic history of epithermal systems. The chalcedonic vein sediments record large temperature drops and highly silica supersaturated waters, probably due to fracturing and pressure release. Hematitic vein sediments indicate sulfide deficient hydrothermal fluids.  相似文献   

15.
16.
Priest  George R.  Gabel  Laura L.  Wood  Nathan J.  Madin  Ian P.  Watzig  Rudie J. 《Natural Hazards》2018,92(3):1509-1522
Natural Hazards - Due to a procedural error in construction of Figs.&;nbsp;8 and 9, listed minimum speeds to beat the tsunami wave in areas of Seaside seaward of Neawanna Creek are too high. The...  相似文献   

17.
Tillamook Bay, Oregon, is a drowned river estuary that receives freshwater input from 5 rivers and exchanges ocean water through a single channel. Similar to other western United States estuaries, the bay exhibits a strong seasonal change in river discharge in which there is a pronounced winter maximum and summer minimum in precipitation and runoff. The behavior of major inorganic nutrients (phosphorus, nitrogen, and silica) within the watershed is examined over seasonal cycles and under a range of river discharge conditions for October 1997–December 1999. Monthly and seasonal sampling stations include transects extending from the mouth of each river to the mouth of the estuary as well as 6–10 sites upstream along each of the 5 major rivers. Few studies have examined nutrient cycling in Pacific Northwest estuaries. This study evaluates the distributions of inorganic nutrients to understand the net processes occurring within this estuary. Based upon this approach, we hypothesize that nutrient behavior in the Tillamook Bay estuary can be explained by two dominant factors: freshwater flushing time and biological uptake and regeneration. Superimposed on these two processes is seasonal variability in nutrient concentrations of coastal waters via upwelling. Freshwater flushing time determines the amount of time for the uptake of nutrients by phytoplankton, for exchange with suspended particles, and for interaction with the sediments. Seasonal coastal upwelling controls the timing and extent of oceanic delivery of nutrients to the estuary. We suggest that benthic regeneration of nutrients is also an important process within the estuary occurring seasonally according to the flushing characteristics of the estuary. Silicic acid, nitrate, and NH4 + supply to the bay appears to be dominated by riverine input. PO4 −3 supply is dominated by river input during periods of high river flow (winter months) with oceanic input via upwelling and tidal exchange important during other times (spring, summer, and fall months). Departures from conservative mixing indicate that internal estuarine sources of dissolved inorganic phosphorus and nitrogen are also significant over an annual cycle.  相似文献   

18.
Subsidence of organic soils in the Sacramento-San Joaquin Delta threatens sustainability of the California (USA) water supply system and agriculture. Land-surface elevation data were collected to assess present-day subsidence rates and evaluate rice as a land use for subsidence mitigation. To depict Delta-wide present-day rates of subsidence, the previously developed SUBCALC model was refined and calibrated using recent data for CO2 emissions and land-surface elevation changes measured at extensometers. Land-surface elevation change data were evaluated relative to indirect estimates of subsidence and accretion using carbon and nitrogen flux data for rice cultivation. Extensometer and leveling data demonstrate seasonal variations in land-surface elevations associated with groundwater-level fluctuations and inelastic subsidence rates of 0.5–0.8 cm yr–1. Calibration of the SUBCALC model indicated accuracy of ±0.10 cm yr–1 where depth to groundwater, soil organic matter content and temperature are known. Regional estimates of subsidence range from <0.3 to >1.8 cm yr–1. The primary uncertainty is the distribution of soil organic matter content which results in spatial averaging in the mapping of subsidence rates. Analysis of leveling and extensometer data in rice fields resulted in an estimated accretion rate of 0.02–0.8 cm yr–1. These values generally agreed with indirect estimates based on carbon fluxes and nitrogen mineralization, thus preliminarily demonstrating that rice will stop or greatly reduce subsidence. Areas below elevations of –2 m are candidate areas for implementation of mitigation measures such as rice because there is active subsidence occurring at rates greater than 0.4 cm yr–1.  相似文献   

19.
 Land subsidence due to groundwater withdrawal combined with a global sea level rise creates a serious environmental problem in the coastal region. Groundwater withdrawal results in fluid pressure change in the layers. The pressure change in the layers induces both elastic and inelastic land compaction. The elastic compaction can be recovered if the water level rises again and inelastic compaction becomes permanent. Groundwater response to barometric pressure change is used to estimate the elastic compaction in this study. The storativity, specific storage and other layer and hydrological information are used to estimate the inelastic compaction of the layers due to fluid withdrawal. The discussed methods are applied to estimate and predict the subsidence potentials resulting from overdrafting of the groundwater in the southern New Jersey. The estimated subsidence is about 2–3 cm near the location of monitoring wells in Atlantic, Camden, Cumberland and Cape May Counties over the past 20 years. If the current trend of water-level drop continues, the average subsidence in southern New Jersey in the vicinity of some monitoring wells will be about 3 cm in the next 20 years. The rise of global sea level is about 2 mm/year on average. Because of the very gentle slope in southern NJ, the combination of subsidence and sea level rise will translate into a potentially substantial amount of land loss in the coastal region in each 20 year period. This combination will also accelerate the coastal flooding frequency and the erosion rate of the New Jersey coastal plain, and pose a serious threat to the coastal economy. Received: 15 December 1997 · Accepted: 30 June 1998  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号