首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A diagnostic leaching showed that partial oxidation of the sulphide minerals in a gold ore was beneficial for thiosulphate leaching of gold. A pre-treatment process with oxidative ammoniacal solution enhanced the thiosulphate leaching of the sulphide ore, while the thiosulphate consumption was substantially reduced. The sulphide minerals partially decomposed in the pre-treatment process, exposing gold to the leach solution. Oxygen input by air bubbling and a longer contact time enhanced the oxidative ammonia pre-treatment process and hence accelerated subsequent thiosulphate leaching of the sulphide ore. Gold extraction in 0.8 M ammonia and 0.1 M thiosulphate solution after 24 h increased from 69% without pre-treatment to 81%, 84%, 90% and 94% respectively after 1, 3, 7 and 22 h pre-treatment. The consumption of sodium thiosulphate was 2.37 kg/t after 24 h leaching without pre-treatment, but was negligible after over 1 h oxidative ammonia pre-treatment. A counter-current leaching process was conducted in the leaching of the sulphide ore. The fresh leachant still gave higher leaching rates in contact with the pre-leached ore, while the pre-used leachant had significantly lower leaching kinetics and overall gold extraction in contact with the fresh ore. This 2-step counter-current leaching process proved that the leachant, other than the passivation, was the determinant factor causing the gold leaching rates to decrease after a certain time of leaching. The findings enable the thiosulphate leaching of high sulphide containing gold ores to be more efficient at lower thiosulphate consumption following the oxidative ammoniacal pre-treatment.  相似文献   

2.
Gold paleoplacers become progressively more affected by diagenetic processes with age and burial. Mesozoic paleoplacer deposits in southern New Zealand display intermediate stages of diagenetic transformation compared to little-affected Late Cenozoic paleoplacers and strongly-affected Paleozoic and Precambrian paleoplacers. The Mesozoic (Cretaceous) diagenesis resulted in near-pervasive alteration, cementation and lithification of the paleoplacer. Lithic clasts and matrix have been extensively altered to illite, ferrous iron-bearing smectite-vermiculite, and kaolinite, and the cement consists mainly of clays and calcite. Diagenetic pyrite, marcasite, vivianite, and Mn oxide also contributed to cementation. Alteration occurred under near-surface (<500 m depth) conditions with groundwater that had circumneutral pH, high alkalinity, and elevated dissolved K, Mg and Ca. Detrital albite remained unaffected by alteration. Detrital gold has been variably dissolved and redeposited, with widespread formation of gold overgrowths on the 1–10 μm scales, with 1–3 wt% Ag. Gold mobility was driven by reduced sulphur complexes in the low redox, high pH diagenetic environment. The overgrowth gold locally contributed to cementation of fine clastic grains, and has intergrown with diagenetic clays and Mn oxide. Post-diagenetic oxidation of the paleoplacer deposit has transformed much of the pyrite to ferric oxyhydroxide and deposited some ferric oxyhydroxide coatings on gold. These oxidation processes have had only minor effects on gold mobility and textures. Hence, the low redox conditions of diagenetic gold mobility were distinctly different from those typically associated with oxidation-related supergene gold mobility. Diagenesis can affect economics of paleoplacer mining by hindering rock disaggregation during processing, coating gold particles with secondary minerals, and increasing the clay content of the deposit, all of which can lower the efficiency of gold recovery.  相似文献   

3.
The large scale Mesozoic magmatism and related metallogeny in the Taihang Mountains (TM) provide important clues for the lithospheric thinning of the North China Craton (NCC). Among the ore deposits, the vein gold mineralization of Shihu in the Fuping region and the skarn ore deposit of Xishimen in the Wu'an region represent typical Mesozoic metallogeny in the TM. In the Shihu gold mine, the Mapeng batholith is dominantly composed of monzogranite and granodiorite, whereas, the Wu'an pluton in the Xishimen iron mine mainly comprises monzonite and diorite. Here we present zircon LA–ICP-MS U–Pb data from 8 samples which reveal the timing of magmatism in the TM as ca. 130 Ma, which is contemporaneous with the large-scale metallogeny in the margins of the NCC. The δ34S values recorded in the sulfide minerals from the Shihu gold deposit and the Xishimen skarn iron deposit show a range of 2.2‰–5.0‰, and 11.6‰–18.7‰, respectively. Helium isotopic compositions of fluid inclusions in pyrite from the Shihu gold deposit vary from 0.12 to 1.98 Ra (where Ra is the 3He/4He ratio of air = 1.39 × 10? 6), with calculated mantle helium values of 1.4%–25%, whereas, those of the Xishimen skarn iron deposit range from 0.06 to 0.19 Ra, with calculated mantle helium of 0.7%–2.2%. The S–He–Ar isotopic data suggest a lower crustal origin for the ore-forming components, with variable inputs of mantle source. The large population of inherited zircons in our samples, with 207Pb/206Pb ages ranging between 2500 Ma and 1800 Ma, also supports crustal participation. Our data reveal that the Shihu gold deposit witnessed greater mantle input than the Xishimen skarn iron deposit, suggesting that the continental lithosphere is markedly thinner under the Fuping region than that under the Wu'an region. Our interpretation is also supported by published data from two ultra-broadband high-precision magnetotelluric sounding profiles across the TM region showing a variation in the lithosphere thickness from 155 km to 70 km while moving from the south (Wu'an region) to the north (Fuping region). Our study suggests that inhomogeneous lithospheric thinning in the central NCC occurred at least as early as ca. 130 Ma ago.  相似文献   

4.
The Ediacaran BISF at Hormuz Island is a newly identified glaciogenic iron-salt deposit in the Tethyan margin of Gondwana. The BISF was formed by synchronous riftogenic A-type submarine felsic volcanism and evaporate deposition. The mineralization occurs in a proximal felsic tuff cone and jaspilitic distal zones and contains 1 million tonne of hematite-rich ore with an average grade of 58% Fe. The ore structure shows cyclicity of macrobandings, mesobandings and microbandings of anhydrite, halite, hematite and chert, which marks a new record in BIFs geohistory. The alteration minerals in the proximal and distal zones are actinolite, ripidolite, epidote, sericite, tourmaline, clinochlore, anhydrite and clay minerals. The occurrence of metamorphosed polygenetic bullet-shape dropstones in BISF attests that there was probably a continuous process of ice melting, episodic submarine volcanism and exhalative hydrothermal banded iron salt formation during the Late Ediacaran time. The non-metamorphosed Neoproterozoic stratigraphy, the presence of genus Collenia, U-Pb dating (558 ± 7 Ma) and the marked negative δ13C excursion in cap carbonates are representative of Late Ediacaran glaciation, which has been identified worldwide. The REE+Y display light REE enrichment, unusually strong Tb-Tm anomaly, a weak positive Y anomaly, but no distinguished Eu and Ce anomalies, reflecting the glaciogenic nature of the BISF. The contents of Zr, Hf, Nb, Ta, Th, La, Ce and Y in BISF, dropstones, halite and cap carbonates are similar to those of the Neoproterozoic glaciogenic BIFs. Also, the Ni/Fe, P/Fe ratios and Fe/Ti – Al/Al + Fe + Mn + Ca + Na + K diagram suggest an exhalative hydrothermal Ediacaran-type BISF. The absence of brecciated magnetite in the ore association and the low contents of copper (9–493 ppm) and gold (<5–8 ppb) are not in favor of the IOCG – Kiruna-type iron oxide ores. The co-paragenesis of hematite with several alteration minerals, in particular actinolite, tourmaline and anhydrite, indicates that the exhalative hydrothermal fluids were generated by the interaction of seawater with the felsic rocks and sediments at about 200–500 °C. The interaction of seawater with felsic magma and sediments led to the formation of Mg-rich alteration minerals, leaching Si, Fe, Mn and other elements and forming the potential ore fluids. It is highlighted that the A-type alkaline submarine felsic volcanism could be considered as an exploration target for BISF.  相似文献   

5.
The Yunnan–Guizhou–Guangxi “golden triangle” is considered to be one of the regions hosting Carlin-like gold deposits in China. Gold deposits in this region can be grouped into lode type that are controlled by faults and layer-like type controlled by stratigraphy. Arsenopyrite is one of the major gold-bearing minerals in these deposits. Rhenium–Os isotopic dating of arsenopyrite from the lode type Lannigou and Jinya and the layer-like type Shuiyindong gold deposits yields isochron ages of 204 ± 19 Ma, 206 ± 22 Ma, and 235 ± 33 Ma, respectively. The data suggest that the Carlin-like gold deposits formed in Late Triassic to Early Jurassic, which is clearly earlier than the ca. 100–80 Ma acid to ultra-basic magmatism in this part of southwestern China. The ages are consistent with ore formation during a period of post-collisional lateral transpression, which is similar to that of the Carlin-like gold deposits in western Qinling of China, but quite different from Carlin-type gold deposits in Nevada, U.S.A.  相似文献   

6.
The junction of the southeastern Guizhou, the southwestern Hunan, and the northern Guangxi regions is located within the southwestern Jiangnan orogen and forms a NE-trending ∼250 km gold belt containing more than 100 gold deposits and occurrences. The Pingqiu gold deposit is one of the numerous lode gold deposits in the southeastern Guizhou district. Gold mineralization is hosted in Neoproterozoic lower greenschist facies metamorphic rocks and controlled by fold-related structures. Vein types present at Pingqiu include bedding-parallel and discordant types, with saddle-reefs and their down limb extensions dominating but with lesser discordant types. The major sulfide minerals are arsenopyrite and pyrite, with minor sphalerite, galena, chalcopyrite, and rare pyrrhotite, marcasite, and tetrahedrite. Much of the gold is μm- to mm-sized grains, and occurs as fracture-controlled isolated grains or filaments in quartz, galena, sphalerite, pyrite, and wallrock.Three types of fluid inclusions are distinguished in hydrothermal minerals. Type 1 aqueous inclusions have homogenization temperatures of 171–396 °C and salinities of 1.4–9.8 wt% NaCl equiv. Type 2 aqueous-carbonic inclusions yield final homogenization temperatures of 187–350 °C, with salinities of 0.2–7.7 wt% NaCl equiv. Type 3 inclusions are carbonic inclusions with variable relative content of CO2 and CH4, and minor amounts of N2 and H2O. The close association of CO2-rich inclusions and H2O-rich inclusions in groups and along the same trail suggests the presence of fluid immiscibility. The calculated δ18OH2O values range from 4.3‰ to 8.3‰ and δDH2O values of fluid inclusions vary from −55.8‰ to −46.9‰. A metamorphic origin is preferred on the basis of geological background and analogies with other similar deposit types.Two ore-related sericite samples yield well-defined 40Ar/39Ar plateau ages of 425.7 ± 1.7 Ma and 425.2 ± 1.3 Ma, respectively. These data overlap the duration of the Caledonian gold mineralization along the Jiangnan orogen, and suggest that gold mineralization was post-peak regional metamorphism and occurred during the later stages of the Caledonian orogeny.Overall, the Pingqiu gold deposit displays many of the principal characteristics of the Bendigo gold mines in the western Lachlan Orogen (SE Australia) and the Dufferin gold deposit in the Meguma Terrane (Nova Scotia, Canada) but also some important differences, which may lead to the disparity in gold endowment. However, the structural make-up at deposit scale, and the shallow mining depth at present indicate that the Pingqiu gold deposit may have considerable gold potential at depth.  相似文献   

7.
The Tasiast gold deposits are hosted within Mesoarchean rocks of the Aouéouat greenstone belt, Mauritania. The Tasiast Mine consists of two deposits hosted within distinctly different rock types, both situated within the hanging wall of the west-vergent Tasiast thrust. The Piment deposits are hosted within metasedimentary rocks including metaturbidites and banded iron formation where the main mineral association consists of magnetite-quartz-pyrrhotite ± actinolite ± garnet ± biotite. Gold is associated with silica flooding and sulphide replacement of magnetite in the turbidites and in the banded iron formation units. The West Branch deposit is hosted within meta-igneous rocks, mainly diorites and quartz diorites that lie stratigraphically below host rocks of the Piment deposits. Most of the gold mineralisation at West Branch is hosted by quartz–carbonate veins within the sheared and hydrothermally altered meta-diorites that constitute the Greenschist Zone. At Tasiast, gold mineralisation has been defined over a strike length > 10 km and to vertical depths of 740 m. All of the significant mineralised bodies defined to date dip moderately to steeply (45° to 70°) to the east and have a south–southeasterly plunge. Gold deposits on the Tasiast trend are associated with second order shear zones that are splays cutting the hanging wall block of the Tasiast thrust. An age of 2839 ± 36 Ma obtained from the hydrothermal overgrowth on zircons from a quartz vein is interpreted to represent the age of mineralisation.  相似文献   

8.
The Upper Paleozoic section contains a tight gas sandstone reservoir (of 2.75 × 1012 m3) in the Ordos Basin, central China. The measured porosities (< 10%) and permeabilities (generally < 1 mD) are the result of significant mechanical and chemical compaction and precipitation of carbonate, quartz and authigenic clay cements. Fluid inclusion geochemistry and kinetic modeling (generation of gaseous components and δ13C1) were integrated to constrain the timing of gas charge into the tight reservoir. The modeling results indicate that the natural gases in the present reservoir are similar to gases liberated from quartz inclusions in both composition and stable carbon isotope values and also similar to gas generated from Upper Paleozoic coal. The similar geochemistry suggests that an important phase of quartz cementation must have occurred after gas emplacement in the reservoirs during regional uplift at the end of the Cretaceous. The latest carbonate cement, postdating quartz cementation, consumed most of the late CO2 generated from coal at high maturity (RO > 1.7%) and reduced the reservoir quality dramatically. On the contrary, tight sandstones from non-producing areas have fluid inclusions that were trapped in quartz cements much earlier. These data indicate that natural gas migrated into the Upper Paleozoic reservoir when it still retained high porosity and permeability. The reservoir continued to experience porosity and permeability reduction from continued quartz and carbonate cementation after gas charging due to low gas saturation. Comparison of the relative timing of gas charging with that of sandstone cementation can help to predict areas of risk during tight gas exploration and development.  相似文献   

9.
The Guelb Moghrein copper–gold deposit in the Islamic Republic of Mauritania reopened in 2006 and has produced copper concentrate and gold since then. The deposit is hosted in Neoarchaean–Palaeoproterozoic Fe–Mg carbonate-dominated metamorphic rocks interpreted as carbonate-facies iron formation. It forms tabular orebodies controlled by shear zones in the hanging wall and footwall of this meta-iron formation. Copper and gold are hosted in a complex sulfide ore in tectonic breccia replacing Fe–Mg carbonate and magnetite. Hydrothermal monazite dates the mineralization at 2492 ± 9 Ma. Two types of aqueous fluid inclusions suggest fluid mixing at 0.75–1.80 kbar and ~ 410 °C as the mineralization and precipitation mechanism, which is temporally coincident with regional retrograde metamorphism at 410 ± 30 °C (garnet-biotite). Distal alteration zones are enriched in K, Rb and Cu, whereas orebodies are depleted in K, Rb, Sr and Ba. The copper–gold mineralization at Guelb Moghrein formed during retrograde shearing in metamorphic rocks and contemporaneous hydrothermal alteration. The stable isotope signature of alteration and ore minerals suggest an external crustal fluid source. Fluids were focused in the reactive and competent meta-iron formation. Potassium alteration, magnetite and copper–gold mineralization suggest an IOCG mineral system akin similar deposits in Australia and Brazil.  相似文献   

10.
The Han-Xing region is located in the south Taihang Mountains (TM) in the central part of the North China Craton, and is an important iron producing area. The iron deposits in this region are of skarn type, related to an Early Cretaceous high-Mg diorite complex, including gabbro diorite, hornblende diorite, diorite, diorite porphyrite, and monzonite. In this study we report the detailed mineral chemistry of the high-Mg diorites and skarn rocks. The olivine in the gabbro diorite shows chemical composition similar to that in mantle peridotite xenoliths. Clinopyroxene in the gabbro diorite is dominantly augite, with only minor diopside, whereas the clinopyroxenes in the diorite and monzonite are diopside. Amphiboles in the high-Mg diorites show compositional range from magnesiohornblende to magnesiohastingsite, with minor pargasite and tschermakite. Most plagioclase in the high-Mg diorite is andesine and oligoclase. The magnesio-biotite in gabbro diorites shows chemical characteristics of re-equilibrated primary biotites and those in calc-alkaline rocks. In the diorite and diorite porphyrite, plagioclase shows complex chemical zoning. Clinopyroxene and garnet in skarn rocks show varying FeO contents, the former containing low FeO (< 9 wt.%) and occurring as the major skarn mineral in large-scale iron deposits, and the latter within small-scale iron deposits with high FeO (mostly > 25 wt.%) content. We computed the pressure, temperature, oxygen fugacity and water contents based on the mineral chemistry of amphibole and biotite. Based on the results, the magma crystallization can be divided into two stages, one within the deep magma chamber, forming clinopyroxene, amphibole and plagioclase phenocrysts; the other after emplacement, forming the rim of phenocrysts and matrix minerals. The magma during the early stage shows high temperature (~ 900 °C–950 °C), pressure (~ 300 MPa–500 MPa), relatively high logfO2 (NNO–NNO + 2), and H2O content in melt (4%–8%). During the late stage, the magma temperature dropped to about 750 °C, and pressure came down to less than 100 MPa, with the logfO2 rising to NNO + 1–NNO + 2.The zoning of amphibole and plagioclase records the process of magma mixing and crystallization, with injection of mafic magma into the felsic magma chamber. The relatively high logfO2 and H2O content inhibited partitioning of iron into mafic minerals and favored concentration of Fe in the melt. Iron ore precipitation occurred when the magma was emplaced at shallow level, and was principally controlled by the chemical composition of carbonate wall rocks. The high logfO2, Fe3 + rich ore-forming fluid generated andradite and clinopyroxene when it reacted with limestone and dolomitic limestone respectively.  相似文献   

11.
The Turmalina gold deposit comprises three epigenetic domains whose development is related to the propagation/reactivation events of the NW–SE Pitangui Shear Zone (PSZ). The lodes are hosted in a Late Archaean sedimentary sequence on top of a strongly deformed (mafic-dominated) metavolcanic pile metamorphosed under 3.5–4 kbar and 540–610 °C; the association forms the upper part of a lithostratigraphic succession (Pitangui Group) that overlies an older TTG gneissic basement. According to field evidence and petrographic observations, the ore-forming process is polyphasic, starting at the time when the PSZ crossed the metamorphic quartz + staurolite + biotite + almadine + hornblende isograde; the main evolving stages, however, mostly took place throughout the metamorphic retrogression path. Fluid inclusion microthermometry also shows that metamorphogenic aqueous–carbonic solutions (initially with ≈ 16–20 eq. wt.% NaCl and circulating at approximately 4 kbar and 550 °C) were subjected to repeated boiling and mixing with cooler aqueous solutions at approximately 1–2 kb and 300–350 °C. These boiling events, which were triggered by depressurization, were contemporaneous with gold (and later sulfide) deposition, preceding a late stage of hydrothermal activity under lower PT conditions (< 1 kbar and ≈ 130–230 °C). To constrain both the mineralization age and the source/pathways of the ore-forming fluids in the Turmalina deposit, a multi-system isotope (Pb–Pb, Rb–Sr and Sm–Nd) study was carried out using various whole-rock and mineral samples. The main results are as follows: (i) the onset of the ore-forming process took place at ca. 2.2–2.1 Ga; (ii) the critical timing for gold formation was confined to ca. 2–1.9 Ga; and (iii) the late hydrothermal influxes occurred after 1.75 Ga. Therefore, the ore-forming process can be envisaged as a result of successive physical–chemical processes that took place during two major, long-lasting (≈ 250 Ma) periods under initial cooling rates of approximately 1 °C/Ma and, after ca. 2–1.9 Ga, approximately 2.5 °C/Ma. Moreover, the rejuvenation episodes at ca. 2–1.9 Ga and ca. 1.75 Ga probably indicate reactivation events in the PSZ, which triggered new fluid inflows into the system and revitalized the ore-forming process. That was the case for fluids that circulated deeply through both the older basement rocks and the mafic volcanic pile, allowing either metal enrichment from multistage leaching processes of various reservoirs or possible U/Th decoupling during ore remobilization. The Turmalina ore-system lifetime is consequently confined to the Rhyacian period (Paleoproterozoic), which is compatible with the age constraints presented by other studies regarding the fold-thrust belt's development (ca. 2.125 Ga) and orogenic collapse (ca. 2.095 Ga).  相似文献   

12.
《Gondwana Research》2014,25(1):270-283
The morphology of natural mid-ocean ridges changes significantly with the rate of extension. Full spreading rate on Earth varies over more than one order of magnitude, ranging from less than 10 mm/yr at the Gakkel Ridge in the Arctic Ocean to 170 mm/yr at the East Pacific Rise. The goal of this study is to reproduce and investigate the spreading patterns as they vary with extension rate using 3-D thermomechanical numerical models. The applied finite difference marker-in-cell code incorporates visco-plastic rheology of the lithosphere and a crustal growth algorithm. The evolution of mid-ocean ridges from nucleation to a steady-state is modelled for a wide range of spreading rates. With increasing spreading rate, four different regimes are obtained: (a) stable alternating magmatic and amagmatic sections (≈ 10 mm/yr), (b) transient features in asymmetrically spreading systems (≈ 20 mm/yr), (c) stable orthogonal ridge-transform fault patterns (≈ 40 mm/yr) and (d) stable curved ridges (≥ 60 mm/yr). Modelled ultraslow and slow mid-ocean ridges share key features with natural systems. Abyssal hills and oceanic core complexes are the dominant features on the flanks of natural slow-spreading ridges. Numerically, very similar features are produced, both generated by localised asymmetric plate growth controlled by a spontaneous development of large-offset normal faults (detachment faults). Asymmetric accretion in our models implies a lateral migration of the ridge segment, which might help explaining the very large offsets observed at certain transform faults in nature.  相似文献   

13.
The North China craton hosts numerous iron skarn deposits containing more than 2600 Mt of iron ores, mostly with an average grade of >45 wt% Fe, which have been among the most important source of high-grade iron ores for the last three decades in China. These deposits typically form clusters and can be roughly divided into the western and eastern belts, which are located in the middle of Trans-North China orogen and to the west of the Tan-Lu fault zone in the eastern part of North China craton, respectively. The western belt mainly consists of the southern Taihang district, as well as the Linfen and Taiyuan ore fields, whereas the eastern belt comprises the Luxi and Xu-Huai districts. The Zhangjiawa deposit in the Luxi district has proven reserves of 290 Mt at an average of 46% Fe (up to >65%). The iron mineralization occurs mainly along contact zones between the Kuangshan dioritic intrusion and middle Ordovician marine carbonate rocks that host numerous evaporite intercalations. Titanite grains from the mineralized skarn are closely intergrown with magnetite and retrograde skarn minerals including chlorite, phlogopite and minor epidote, indicating a hydrothermal origin. The titanite grains have extremely low REE contents and low Th/U ratios, consistent with their precipitation directly from hydrothermal fluids responsible for the iron mineralization. Ten hydrothermal titanite grains yield a weighted mean 206Pb/238U age of 131.0 ± 3.9 Ma (MSWD = 0.1, 1σ), which is in excellent agreement with a zircon U-Pb age (130 ± 1 Ma) of the ore-related diorite. This age consistency confirms that the iron skarn mineralization is temporally and likely genetically related to the Kuangshan intrusion. Results from this study, when combined with existing isotopic age data, suggest that iron skarn mineralization and associated magmatism throughout both the eastern and western belts took place coevally between 135 and 125 Ma, with a peak at ca. 130 Ma. As such, those deposits may represent the world's only major Phanerozoic iron skarn concentration hosted in Precambrian cratons. The magmatism and associated iron skarn mineralization coincide temporally with the culmination of lithospheric thinning and destruction of the North China craton, implying a causal link between the two.  相似文献   

14.
The genetic evolution of three types of reworked manganese ore bodies namely: Detrital, Concretionary (Mangcrete) and Wad in the Precambrian Iron Ore Group occurring in Bonai-Keonjahr belt, Singhbhum Craton, India are reported. All the reworked Mn-ore bodies are developed in a restricted area and have a limited resource. Mangcrete and wad are commonly exposed at the surface and extend to a maximum depth of 10 m while detrital ores are observed below 10–20 m from the surface.Detrital ore bodies occur as large boulders and are buried under a thick zone of laterite. Mangcrete is concretionary in nature; oolitic, spherulitic and nodular in shape. Broken fragmented of ooloids and pisoloids, often observed in mangcrete, are indications of reworking. Wad exposures are noticed above low to medium-grade bedded manganese ore bodies. Among three reworked ore types, the detrital is of low to medium-grade having Mn:Fe ratio > 5, while wad and mangcrete are of sub-grade (Mn:Fe ~ 1) and off-grade type (Mn:Fe < 1) respectively.Detrital ore bodies are of allochthonous nature and developed through several stages such as fragmentation of pre-existing ore, leaching and cementation followed by transportation and deep burial. Mangcrete represent chemogenic precipitates at several stages of contemporary Mn-Fe-Al rich fluid under supergene environment. Wad is of bio-chemogenic origin and developed in a swampy region under marine environment due to slow chemical precipitation of Mn-Fe enriched fluid, in several stages nucleating quartz/hematite/cryptomelane detritals.  相似文献   

15.
The Yindongpo gold deposit is located in the Weishancheng Au–Ag-dominated polymetallic ore belt in Tongbai Mountains, central China. The ore bodies are stratabound within carbonaceous quartz–sericite schists of the Neoproterozoic Waitoushan Group. The ore-forming process can be divided into three stages, represented by early barren quartz veins, middle polymetallic sulfide veinlets and late quartz–carbonate stockworks, with most ore minerals, such as pyrite, galena, native gold and electrum being formed in the middle stage. The average δ18Owater values changed from 9.7‰ in the early stage, through 4.9‰ in the middle stage, to − 5.9‰ in the late stage, with the δD values ranging between − 65‰ and − 84‰. The δ13CCO2 values of ore fluids are between − 3.7‰ and + 6.7‰, with an average of 1.1‰. The H–O–C isotope systematics indicate that the ore fluids forming the Yindongpo gold deposit were probably initially sourced from a process of metamorphic devolatilization, and with time gradually mixed with meteoric water. The δ34S values range from − 0.3‰ to + 5.2‰, with peaks ranging from + 1‰ to + 4‰. Fourteen sulfide samples yield 206Pb/204Pb values of 16.990–17.216, 207Pb/204Pb of 15.419–15.612 and208Pb/204Pb of 38.251–38.861. Both S and Pb isotope ratios are similar to those of the main lithologies of the Waitoushan Group, but differ from other lithologic units and granitic batholiths in the Tongbai area, which suggest that the ore metals and fluids originated from the Waitoushan Group. The available K–Ar and 40Ar/39Ar ages indicate that the ore-forming process mainly took place in the period of 176–140 Ma, during the transition from collisional compression to extension and after the closure of the oceanic seaway in the Qinling Orogen. The Yindongpo gold deposit is interpreted as a stratabound orogenic-style gold system formed during the transition phase from collisional compression to extension.The ore metals in the Waitoushan Group were extracted, transported and then accumulated in the carbonaceous sericite schist layer. The carbonaceous sericite schist layer, especially at the junction of collapsed anticline axis and fault structures, became the most favorable locus for the ore bodies.  相似文献   

16.
The historical (1932–1971) Bralorne mine produced over 87 million grams of Au from an archetypal orogenic lode gold deposit in southwest British Columbia. High concentrations of As in mine drainage, however, represent an on-going environmental concern prompting a detailed study of effluent chemistry. The discharge rate at the mine portal was monitored continuously over a fourteen-month period during which effluent samples were collected on a quasi-weekly basis. Water samples were also collected on synoptic surveys of the adit between the portal and the main source of flow in the flooded workings. Total concentrations of As in the mildly alkaline (pH = 8.7) portal drainage average 3034 μg/L whereas at the source they average 5898 μg/L. As emergent waters from the flooded workings flow toward the portal, their dissolved oxygen content and pH increase from 0 to 10 mg/L and from 7.7 to 9, respectively. Near the emergence point, dissolved Fe precipitates rapidly, sorbing both As(III) and As(V). With increasing distance from the emergence point, dissolved As(III) concentrations drop to detection limits through sorption on hydrous ferric oxide and through oxidation to As(V). Concentrations of dissolved As(V), on the other hand, increase and stabilize, reflecting lower sorption at higher pH and the lack of available sorbent. Nonetheless, based on synoptic surveys, approximately 35% of the source As load is sequestered in the adit resulting in As sediment concentrations averaging 8.5 wt%. The remaining average As load of 1.34 kg/d is discharged from the portal. Partitioning of As(V) between dissolved and particulate phases in portal effluent is characterized by a sorption density of 0.37 mol As (mol Fe)−1 and by a distribution coefficient (Kd) of 130 L/g HFO. The relatively high sorption density may reflect co-precipitation of As with Fe oxyhydroxides rather than a purely adsorption-controlled process. Results of this study show that the As self-mitigating capacity of drainage from orogenic lode gold deposits may be poor in high-pH and Fe-limited settings.  相似文献   

17.
The Hattu schist belt is located in the western part of the Archaean Karelian domain of the Fennoscandian Shield. The orogenic gold deposits with Au–Bi–Te geochemical signatures are hosted by NE–SW, N–S and NW–SE oriented shear zones that deform 2.76–2.73 Ga volcanic and sedimentary sequences, as well as 2.75–2.72 Ga tonalite–granodiorite intrusions and diverse felsic porphyry dykes. Mo–W mineralization is also present in some tonalite intrusions, both separate from, and associated with Au mineralization. Somewhat younger, unmineralized leucogranite intrusions (2.70 Ga) also intrude the belt. Lower amphibolite facies peak metamorphism at 3–5 kbar pressures and at 500–600 °C temperatures affected the belt at around 2.70 Ga and post-date hydrothermal alteration and ore formation. In this study, we investigated the potential influence of magmatic-hydrothermal processes on the formation of orogenic gold deposits on the basis of multiple stable isotope (B, S, Cu) studies of tourmaline and sulphide minerals by application of in situ SIMS and LA ICP MS analytical techniques.Crystal chemistry of tourmaline from a Mo–W mineralization hosted by a tonalite intrusion in the Hattu schist belt is characterized by Fe3 +–Al3 +-substitution indicating relatively oxidizing conditions of hydrothermal processes. The range of δ11B data for this kind of tourmaline is from − 17.2‰ to − 12.2‰. The hydrothermal tourmaline from felsic porphyry dyke swith gold mineralization has similar crystal chemistry (e.g. dravite–povondraite compositional trend with Fe3 +–Al3 + substitution) and δ11B values between − 19.0‰ and − 9.6‰. The uvite–foitite compositional trend and δ11B ‰ values between − 24.1% and − 13.6% characterize metasomatic–hydrothermal tourmaline from the metasediment-hosted gold deposits. Composition of hydrothermal vein-filling and disseminated tourmaline from the gold-bearing shear zones in metavolcanic rocks is transitional between the felsic intrusion and metasedimentary rock hosted hydrothermal tourmaline but the range of average boron isotope data is essentially identical with that of the metasediment-hosted tourmaline. Rock-forming (magmatic) tourmaline from leucogranite has δ11B values between − 14.5‰ and − 10.8‰ and the major element composition is similar to that of the metasediment-hosted tourmaline.The range of δ34SVCDT values measured in pyrite, chalcopyrite and pyrrhotite is from − 9.1 to + 8.5‰, which falls within the typical range of sulphur isotope data for Archaean orogenic gold deposits. In the Hattu schist belt, positive δ34SVCDT values characterize metasediment-hosted gold ores with sulphide parageneses dominated by pyrrhotite and arsenopyrite. The δ34SVCDT values are both positive and negative in ore mineral parageneses within felsic intrusive rocks in which variable amounts of pyrrhotite are associated with pyrite. Purely negative values were only recorded from the pyrite-dominated gold mineralization within metavolcanic units. Therefore the shift of δ34SVCDT values to the negative values reflects precipitation of sulphide minerals from relatively oxidizing fluids. The range of measured δ65CuNBS978 values from chalcopyrite is from − 1.11 to 1.19‰. Positive values are common for mineralization in felsic intrusive rocks and negative values are more typical for deposits confined to metasedimentary rocks. Positive and negative δ65CuNBS978 values occur in the ores hosted by metavolcanic rocks. There is no correlation between sulphur and copper isotope data obtained in the same chalcopyrite grains.Evaluation of sulphur and boron isotope data together and comparisons with other Archaean orogenic gold provinces supports the hypothesis that the metasedimentary rocks were the major sources of sulphur and boron in the orogenic gold deposits in the Hattu schist belt. Variations in major element and boron isotope compositions in tourmaline, as well as in the δ34SVCDT values in sulphide minerals are attributed to localized involvement of magmatic fluids in the hydrothermal processes. The results of copper isotope studies indicate that local sources of copper in orogenic gold deposits may potentially be recognized if the original, distinct signatures of the sources have not been homogenized by widespread interaction of fluids with a large variety of rocks and provided that local chemical variations have been too small to trigger changes in the oxidation state of copper during hydrothermal processes.  相似文献   

18.
Epithermal gold (Au) deposits result from the combination of a sustained flux of metal-rich fluids and an efficient precipitation mechanism. Earthquakes may trigger gold precipitation by rapid loss of fluid pressure but their efficiency and time-integrated contribution to gold endowment are poorly constrained. In order to quantify the feedbacks between earthquake-driven fracturing and gold precipitation in the shallow crust, we studied the gold-rich fluids in the active Tolhuaca geothermal system, located in the highly seismic Southern Andes of Chile. We combined temperature measurements in the deep wells with fluid inclusion data, geochemical analyses of borehole fluids and numerical simulations of coupled heat and fluid flow to reconstruct the physical and chemical evolution of the hydrothermal reservoir. The effect of seismic perturbations on fluid parameters was constrained using a thermo-mechanical piston model that simulates the suction pump mechanism occurring in dilational jogs. Furthermore, we evaluated the impact of fluid parameters on gold precipitation by calculating the solubility of gold in pressure (P)–enthalpy (H) space. The reconstructed fluid conditions at Tolhuaca indicate that single-phase convective fluids feeding the hydrothermal reservoir reach the two-phase boundary with a high gold budget (~ 1–5 ppb) at saturated liquid pressures between 20 and 100 bar (210 °C < Tsat < 310 °C). We show that if hydrothermal fluids reach this optimal threshold for gold precipitation at a temperature near 250 °C, small adiabatic pressure drops (~ 10 bar) triggered by transient fault-rupture can produce precipitation of 95% of the dissolved gold. Our results at the active Tolhuaca geothermal system indicate that subtle, externally-forced perturbations – equivalent to low magnitude earthquakes (Mw < 2) of a hydrothermal reservoir under optimal conditions – may significantly enhance gold precipitation rates in the shallow crust and lead to overall increases in metal endowment over time.  相似文献   

19.
A typical Algoma-type banded iron formation (BIF) occurs in Orvilliers, Montgolfier, and Aloigny townships in the Abitibi Greenstone belt, Quebec, Canada. The BIF is composed of millimeter to decimeter thick beds of alternating fine-grained, dark gray to black, well laminated, magnetite-rich (and/or hematite) beds and quartz–feldspar metasedimentary (graywacke) beds. The BIF is well defined by magnetic anomalies. These BIF layers are commonly associated with decimeter to meter thick horizons of metasedimentary rocks and mafic to intermediate volcanic rocks, which are locally crosscut by dikes of felsic or mafic intrusive rocks and, as well, narrow dikes of lamprophyre. The upper and lower contacts of the BIF are gradational with the adjacent graywacke. All geological units in the area are metamorphosed to the greenschist facies of regional metamorphism. Magnetite is mainly associated with subordinate amounts of hematite, quartz, Na-rich plagioclase, and muscovite. The fine-grained magnetite content is composed of 77% to 89% of the principal iron oxide minerals present. The magnetite occurs as disseminated idiomorphic to sub-idiomorphic small crystals, which average 20 μm ± 5 μm in size. Hematite is the second most abundant iron oxide mineral. Although less abundant, red jasper occurs in cherty horizons with strongly folded fragments and within fault zones. This particular Algoma-type iron formation stratigraphically extends more than 36 km along strike. It dips sub-vertically with a true width from 120 m to 600 m. The origin of the BIF is closely linked to regionally extensive submarine hydrothermal activity associated with the emplacement of volcanic and related subvolcanic rocks in an Archean greenstone belt.  相似文献   

20.
Vein-type gold deposits in the Atud area are related to the metagabbro–diorite complex that occurred in Gabal Atud in the Central Eastern Desert of Egypt. This gold mineralization is located within quartz veins and intense hydrothermal alteration haloes along the NW–SE brittle–ductile shear zone, as well as along the contacts between them. By using the mass balance calculations, this work is to determine the mass/volume gains and losses of the chemical components during the hydrothermal alteration processes in the studied deposits. In addition, we report new data on the mineral chemistry of the alteration minerals to define the condition of the gold deposition and the mineralizing fluid based on the convenient geothermometers. Two generations of quartz veins include the mineralized grayish-to-white old vein (trending NW–SE), and the younger, non-mineralized milky white vein (trending NE–SW). The ore minerals associated with gold are essentially arsenopyrite and pyrite, with chalcopyrite, sphalerite, enargite, and goethite forming during three phases of mineralization; first, second (main ore), and third (supergene) phases. Three main hydrothermal alteration zones of mineral assemblages were identified (zones 1–3), placed around mineralized and non-mineralized quartz veins in the underground levels. The concentrations of Au, Ag, and Cu are different from zone to zone having 25–790 ppb, 0.7–69.6 ppm, and 6–93.8 ppm; 48.6–176.1 ppb, 0.9–12.3 ppm, and 39.6–118.2 ppm; and 53.9–155.4 ppb, 0.7–3.4 ppm, and 0.2–79 ppm for zones 1, 2, and 3, respectively.The mass balance calculations and isocon diagrams (calculated using the GEOISO-Windows program) revealed the gold to be highly associated with the main mineralized zone as well as sericitization/kaolinitization and muscovitization in zone 1 more than in zones 2 and 3. The sericite had a higher muscovite component in all analyzed flakes (average XMs = 0.89), with 0.10%–0.55% phengite content in wall rocks and 0.13%–0.29% phengite content in mineralized quartz veins. Wall rocks had higher calcite (CaCO3) contents and lower MgCO3 and FeCO3 contents than the quartz veins. The chlorite flakes in the altered wall rocks were composed of pycnochlorite and ripidolite, with estimated formation temperatures of 289–295 °C and 301–312 °C, respectively. Albite has higher albite content (95.08%–99.20%) which occurs with chlorite in zone 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号