首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
《Quaternary Science Reviews》2003,22(15-17):1597-1629
The SPECMAP models of orbital-scale climate change (Imbrie et al., Paleoceanography 7 (1992) 701, Paleoceanography 8 (1993) 699) are the most comprehensive to date: all major climatic observations were analyzed within the framework of the three orbital signals. Subsequently, tuning of signals in Vostok ice to insolation forcing has fixed the timing of greenhouse-gas changes closely enough to permit an assessment of their orbital-scale climatic role. In addition, evidence from several sources has suggested changes in the SPECMAP δ18O time scale. This new information indicates that the timing of CO2 changes at the periods of precession and obliquity does not fit the 1992 SPECMAP model of a “train” of responses initiated in the north, propagated to the south, and later returning north to force the ice sheets. In addition, analysis of the effects of rectification on 100,000-year climatic signals reveals that all have a phase on or near that of eccentricity. This close clustering of phases rules out the long time constants for 100,000-year ice sheets required by the 1993 SPECMAP model.A new hypotheses presented here revives elements of an earlier CLIMAP view (Hays et al., Science 194 (1976a) 1121) but adds a new assessment of the role of greenhouse gases.As proposed by Milankovitch, summer (mid-July) insolation forces northern hemisphere ice sheets at the obliquity and precession periods, with an ice time constant derived here of 10,000 years. Changes in ice volume at 41,000 years drive ice-proximal signals (SST, NADW, dust) that produce a strong positive CO2 feedback and further amplify ice-volume changes. At the precession period, July insolation forces ice sheets but it also drives fast and early responses in CH4 through changes in tropical monsoons and boreal wetlands, and variations in CO2 through southern hemisphere processes. These CH4 and CO2 responses enhance insolation forcing of ice volume.Climatic responses at 100,000 years result from eccentricity pacing of forced processes embedded in obliquity and precession cycles. Increased modulation of precession by eccentricity every 100,000 years produces 23,000-year CO2 and CH4 maxima that enhance ablation caused by summer insolation and drive climate deeper into an interglacial state. When eccentricity modulation decreases at the 100,000-year cycle, ice sheets grow larger in response to obliquity forcing and activate a 41,000-year CO2 feedback that drives climate deeper into a glacial state. Alternation of these forced processes because of eccentricity pacing produces the 100,000-year cycle. The 100,000-year cycle began 0.9 Myr ago because gradual global cooling allowed ice sheets to survive during weak precession insolation maxima and grow large enough during 41,000-year ice-volume maxima to generate strong positive CO2 feedback.The natural orbital-scale timing of these processes indicates that ice sheets should have appeared 6000–3500 years ago and that CO2 and CH4 concentrations should have fallen steadily from 11,000 years ago until now. But new ice did not appear, and CO2 and CH4 began anomalous increases at 8000 and 5000 years ago, respectively. Human generation of CO2 and CH4 is implicated in these anomalous trends and in the failure of ice sheets to appear in Canada.  相似文献   

2.
Widespread empirical evidence suggests that extraterrestrial forcing influences the Earth’s climate, but how this could occur remains unclear. Here we describe a new approach to this problem that unifies orbital, solar and lunar forcing based on their common control of the Earth’s latitudinal insolation gradient (LIG). The LIG influences the climate system through differential solar heating between the tropics and the poles that gives rise to the latitudinal temperature gradient (LTG), which drives the Earth’s atmospheric and (wind driven) ocean circulation. We use spectral analysis of recent changes in the Earth’s LTG to support earlier work on orbital timescales (Davis and Brewer, 2009) that suggests the climate system may be unusually sensitive to changes in the LIG. Identification of LIG forcing of the LTG is possible because the LIG varies according to seasonally specific periodicities based on obliquity in summer (41 kyr orbital and 18.6 yr lunar cycle), and precession (21 kyr orbital cycle) and total solar irradiance (11 yr solar cycle) in winter. We analyse changes in the Northern Hemisphere LTG over the last 120 years and find significant (99%) peaks in spectral frequencies corresponding to 11 years in winter and 18.6 years in summer, consistent with LIG forcing. The cross-seasonal and multi-frequency nature of the LIG signal, and the diffuse effect of the LTG driver on the climate system may account for the complexity of the response to extraterrestrial forcing as seen throughout the climatic record. This hypersensitivity of the LTG to the LIG appears poorly reproduced in climate models, but would be consistent with the controversial theory that the LTG is finely balanced to maximise entropy.  相似文献   

3.
Milankovitch theory posits that Earth's orbital cycles were the primary forcing of Pleistocene ice-age cycles through their strong influence on summer insolation at high latitudes. Accordingly, Milankovitch theory predicts ice volume should vary at both obliquity and precessional periods. However, early Pleistocene global ice volume varied mainly at the obliquity period with weak variability at the precessional period suggesting that Milankovitch theory is not sufficient to explain the ice-age cycles. Here we describe the results from a series of coupled ocean-atmosphere general circulation model experiments, using the Fast Ocean Atmosphere Model, that systematically investigate the influence of precession and obliquity on continental snowfall and potential ablation.Our model results identify three factors that magnify the influence of obliquity forcing on the global ice volume: First, high-latitude snowfall variability is dominated by changes in Earth's axial tilt. Second, hemispheric changes in net snowfall due to Earth's precession are out-of-phase, and largely cancel to produce a very small global snowfall change. Third, snowmelt variability over Antarctica responds greatly to changes in obliquity that intensify accumulation over obliquity cycle. We discuss the implications of these factors for existing hypotheses that account for the variability in the ice volume record.  相似文献   

4.
Sensitivity of the Australian summer monsoon to tilt and precession forcing   总被引:1,自引:0,他引:1  
The response of the Australian summer monsoon to orbital forcing is studied using a coupled General Circulation Model (GCM) with the focus on the relative roles of tilt and precession on the forcing of the northern Australian summer monsoon. It was found that unlike the Northern Hemisphere monsoons, which are dominated by precession forcing, the Australian monsoon can be enhanced significantly not only by precession forcing, but also by tilt forcing coupled to oceanic feedback. The new insights obtained from a series of experiments with differing tilt-precession configurations allow an interpretation of the Australian Late Quaternary monsoon record in which insolation forcing plays a significant role.  相似文献   

5.
At the 41,000-period of orbital tilt, summer insolation forces a lagged response in northern ice sheets. This delayed ice signal is rapidly transferred to nearby northern oceans and landmasses by atmospheric dynamics. These ice-driven responses lead to late-phased changes in atmospheric CO2 that provide positive feedback to the ice sheets and also project ‘late’ 41-K forcing across the tropics and the Southern Hemisphere. Responses in austral regions are also influenced by a fast response to summer insolation forcing at high southern latitudes.At the 22,000-year precession period, northern summer insolation again forces a lagged ice-sheet response, but with muted transfers to proximal regions and no subsequent effect on atmospheric CO2. Most 22,000-year greenhouse-gas responses have the ‘early’ phase of July insolation. July forcing of monsoonal and boreal wetlands explains the early CH4 response. The slightly later 22-K CO2 response originates in the southern hemisphere. The early 22-K CH4 and CO2 responses add to insolation forcing of the ice sheets.The dominant 100,000-year response of ice sheets is not externally forced, nor does it result from internal resonance. Internal forcing appears to play at most a minor role. The origin of this signal lies mainly in internal feedbacks (CO2 and ice albedo) that drive the gradual build-up of large ice sheets and then their rapid destruction. Ice melting during terminations is initiated by uniquely coincident forcing from insolation and greenhouse gases at the periods of tilt and precession.  相似文献   

6.
石正国  刘晓东 《第四纪研究》2009,29(6):1025-1032
亚洲季风演化受到地球轨道参数强迫,尤其是岁差所引起日射变化的显著影响,但关于其驱动机制的争议仍然存在,且集中在“零相位”和“南半球潜热”两种假说上。两个假说都得到了部分地质证据的支持,因此亟需相应的数值模拟,尤其是长期瞬变试验的检验。长期瞬变模拟试验可以对气候的连续演变进行模拟,并能与地质证据进行对比,有助于深入认识亚洲季风系统演化的内在物理机制。但由于计算能力的匮乏,过去的古季风数值模拟多为“时间片”模拟,这使得季风变迁机理研究受到限制。文章通过一个海-气耦合模式的长期瞬变试验,讨论了轨道日射的变化特征,证明过去280ka亚洲夏季风降水对日射有十分显著的响应,且与北半球初夏日射变化相位接近,部分支持了“零相位”假说。同时,模拟结果还揭示了随意选取日射参考标尺会导致缺乏内在物理机制的位相关系,合理选择日射参考以及明确地质记录的气候学意义在古季风强迫-响应机制研究中十分重要。  相似文献   

7.
《Quaternary Science Reviews》2007,26(17-18):2042-2066
A review of seven outstanding issues on Mediterranean palaeoenvironments is presented. These are related to the dominant orbital pacing of climate variability, the length of the interglacial vegetation succession, the influence of the African summer monsoon, the seasonality of precipitation during boreal insolation maxima, the moisture balance during glacial maxima and the appearance of the mediterranean-type climate rhythm and evolution of mediterranean sclerophyllous plants. What emerges is that (1) marine δ18Oplanktonic and SST records show that precession has been a fundamental tempo of Mediterranean climate change, representing both a low-latitude signal (runoff from North Africa) and the direct influence of insolation at Mediterranean latitudes, but high-latitude glacial effects (41-kyr and 100-kyr cycles) became superimposed after 2.8 Ma. Sapropel and dust deposition patterns in marine cores reveal that obliquity also has an effect on Mediterranean climate through dry–wet oscillations, which are independent of glacial–interglacial variability. (2) The temperate part of interglacial vegetation succession has a duration of approximately half a precession cycle. This persisted during the interval of obliquity-dominated glacial cycles (∼2.8–1 Ma), with distinct forest successions following the precessional cycles. However, these are not always separated by an open vegetation phase because of minimal ice growth, producing an impression of a prolonged interglacial forest interval. (3) The effect of an enhanced African monsoon during summer insolation maxima has been mainly indirect, in terms of Nile discharge and runoff along the North African coast, leading to increased freshwater input into the Mediterranean Sea, reduced deep-water ventilation and sapropel deposition. (4) The notion of an accentuated summer rain regime in the northern Mediterranean borderlands also contributing to a freshening of the Mediterranean Sea during boreal insolation maxima is not supported by the available evidence, which suggests increased summer aridity. (5) Recent improvements in chronological precision and data resolution point to an increase in aridity and decreased temperatures during the Last Glacial Maximum (21±2 ka), but suggest an increase in effective moisture during the immediately preceding interval of 24–27 ka. (6) The mediterranean-type climate is not exclusively a post-3.6 Ma phenomenon, but may have appeared intermittently during the course of the Tertiary (or before). (7) If that is the case, then the paradigm that the sclerophyllous evergreen habit represents a pre-adaptation to summer drought may need re-evaluation.  相似文献   

8.
马文涛  田军  李前裕 《地球科学》2011,36(4):621-634
全球大洋深海有孔虫碳同位素(δ13C)记录中广泛发现40万年周期,这一周期可能与偏心率长周期的轨道驱动有关.1.6 Ma以来,δ13C的这一长周期拉长到50万年,且重值期不再与偏心率低值对应.目前对δ13C 40万年周期的成因及其周期拉长的机制还不明确.这里使用了包含9个箱体的箱式模型,用于研究热带过程与冰盖相互作用及其对大洋碳循环的影响.模拟结果显示当北半球高纬海区海冰迅速增大时冰盖迅速融化,进入冰消期,而当海冰快速消失后,冰盖则重新缓慢增长.冰盖变化具有冰期长,间冰期短的非对称形态.在季节性太阳辐射量的驱动下冰盖变化具有10万年冰期-间冰期旋回.当冰盖融化速率受北半球高纬夏季太阳辐射量控制时,冰盖变化的岁差周期明显加强,相位与地质记录一致,说明轨道驱动可以通过非线性相位锁定机制使冰盖变化与其在相位上保持一致.海冰的阻隔效应使大气中CO2在冰消期时增多.冰期时大洋环流减弱使大气中CO2逐渐减少.当模型只有ETP驱动的风化作用而不考虑冰盖变化时,模拟的δ13C记录显示极强的40万年周期,体现了大洋碳储库对热带风化过程的响应.当同时考虑冰盖变化和风化作用时,模拟的δ13C结果中40万年周期减弱而10万年周期加强,并且40万年周期上碳储库与偏心率的相位与不考虑冰盖变化时的相位也存在差异,反映了冰盖变化引起的洋流改组压制了大洋碳循环对热带过程的响应.   相似文献   

9.
深海记录中的热带过程及其周期性   总被引:2,自引:4,他引:2  
田军  汪品先 《地球科学》2006,31(6):747-753
地球运行轨道参数包括偏心率、斜率和岁差, 在地质时期分别具有413ka和100ka、41ka、23ka和19ka的周期, 它决定地表太阳辐射在不同纬度和季节的周期性变化.太阳辐射变化中, 岁差周期最为明显, 斜率周期在中高纬度比较明显, 而偏心率周期本身作用微弱, 主要通过调控岁差周期的变幅影响气候.传统的地球轨道驱动理论认为, 北半球高纬的太阳辐射决定全球冰量和地表的气候变化, 轨道周期可能线性地反映到气候变化的周期中去.实际的深海记录反映的情况并非如此, 尤其在热带海区, 气候替代性指标的周期性与太阳辐射的周期性既存在相似性, 也存在较大区别.相似性在于, 热带海区的气候替代性指标均表现出较强的岁差和斜率周期, 而且通常情况下岁差周期的强度要高于斜率周期的强度, 说明热带海区的气候变化受控于岁差调控的太阳辐射的变化; 区别性在于, 热带海区气候替代性指标通常表现出较强的不容忽视的100ka、413ka的偏心率周期和10ka左右的半岁差周期, 而且100ka、413ka的偏心率周期还是季风系统的典型周期, 说明热带海区的气候变化并不是简单的线性响应太阳辐射的变化, 也不完全受北半球高纬的控制, 而是具有自身的特性.   相似文献   

10.
Deep sea sediment cores taken between 50° and 75°N in the North Atlantic, in water depths varying between 1340 and 3850 m, were examined to provide an astronomically calibrated late Quaternary time-scale based on physical property records. Magnetic susceptibility and gamma ray attenuation porosity evaluator (GRAPE) density changes of these cores revealed significant responses to orbital forcing in the eccentricity (100 kyr), obliquity (41 kyr) and precessional (23, 19 kyr) bands. At 75°N (Greenland Sea), a response to obliquity forcing was weak despite the fact that it should become more pronounced in sediments at high latitudes. Application of bandpass filtering at the obliquity period (41 kyr), however, showed that variance at this period did exist in the magnetic susceptibility record, but at a very low power. At 50°N stacked curves of magnetic susceptibility correlated strongly with the SPECMAP curve for the past 500 ka. Since about 65 ka, dropstone layers are recorded in both magnetic susceptibility and GRAPE data of Rockall Plateau sediments. Although Rockall Plateau sediments show peaks in physical properties that correlate with Heinrich events (H1, H2, H4, H5, H6), such a relationship was not readily observed in Norwegian-Greenland Sea records. Heinrich events at Rockall Plateau sites indicate a northward flow of icebergs in the eastern North Atlantic. This flow pattern and the presence of Heinrich events during the past 65 ka raise the questions of whether similar events occurred before this time period, and to what kind of ice sheet dynamics and climatic-oceanographic conditions favoured major iceberg surges from the Laurentide ice sheet to the North Atlantic at 50°N.  相似文献   

11.
A new composite BDP-96 biogenic silica record over the entire Pleistocene was generated by splicing BDP-96-1 and BDP-96-2 drill cores from Lake Baikal, crosschecked against a similar record from a nearby BDP-98 drill core. A new astronomically tuned age model is proposed based on correlating peak biogenic silica responses with the timing of September perihelia. This target is derived from analysis of regional climate proxy responses during the Holocene, the last interglacial and around paleomagnetic reversals. By resolving virtually every precessional cycle during the Pleistocene, the new age model represents a major improvement compared with previously reported Lake Baikal timescales. The astronomically tuned ages of the Pleistocene paleomagnetic reversals are consistent with published dates. The minimal tuning approach we used (precession only) has also aligned high signal power in a narrow obliquity band, confirming the strong presence of orbital forcing. There are also strong ca 100-ka scale cycles, but these are not aligned with the orbital eccentricity.Despite the location of Lake Baikal in a continental interior that is highly sensitive to insolation forcing, the tuned biogenic silica record reveals a consistent phase difference of −32° (ca 4 ka) relative to insolation in the obliquity band. An inherent lag embedded in a continental proxy record, not driven by global ice volume, is an intriguing finding. Another new observation is that long-term changes in sedimentation rates in Lake Baikal appear to be related to the amplitude of orbital forcing; both amplitudes and sedimentation rates undergo significant changes during MIS 24-MIS 19 interval corresponding to the Middle Pleistocene Transition. With potential for linking continental and marine climato-stratigraphies, the new Baikal record serves a new benchmark correlation target in continental Eurasia, as an alternative to June 65°N insolation and ODP-correlated timescales.  相似文献   

12.
A multiproxy analysis of Hole 911A (Ocean Drilling Program (ODP) Leg 151) drilled on the Yermak Plateau (eastern Arctic Ocean) is used to investigate the behaviour of the Svalbard/Barents Sea ice sheet (SBIS) during late Pliocene and early Pleistocene (~3.0-1.7 Ma) climate changes. Contemporary with the 'Mid-Pliocene (~3 Ma) global warmth' (MPGW), a warmer period lasting ~300 kyr with seasonally ice-free conditions in the marginal eastern Arctic Ocean is assumed to be an important regional moisture source, and possibly one decisive trigger for intensification of the Northern Hemisphere glaciation in the Svalbard/Barents Sea area at ~2.7 Ma. An abrupt pulse of ice-rafted debris (IRD) to the Yermak Plateau at ~2.7 Ma reflects distinct melting of sediment-laden icebergs derived from the SBIS and may indicate the protruding advance of the ice sheet onto the outer shelf. Spectral analysis of the total organic carbon (TOC) record being predominantly of terrigenous/fossil-reworked origin indicates SBIS and possibly Scandinavian Ice Sheet response to incoming solar radiation at obliquity and precession periodicities. The strong variance in frequencies near the 41 kyr obliquity cycle between 2.7 and 1.7 Ma indicates, for the first time in the Arctic Ocean, a close relationship of SBIS growth and decay patterns to the Earth's orbital obliquity amplitudes, which dominated global ice volume variations during late Pliocene/early Pleistocene climate changes.  相似文献   

13.
Foraminifera from two cores off eastern Vietnam and the northwestern Philippines, where modern summer and winter monsoon-driven upwelling occurs in the South China Sea, respectively, were analyzed to evaluate the changes in paleoproductivity and upper water structure over the last 220,000 yr. We observed enhanced organic carbon flux and a shoaled thermocline when upwelling intensified off eastern Vietnam during interglacial ages and off the northwestern Philippines during glacial ages. This indicates that the East Asian summer monsoon increased while the winter monsoon decreased during interglacial ages. Particularly, the upwelling reached a maximum off eastern Vietnam during late marine isotopic stage (MIS) 5 and off the northwestern Philippines during MIS 2, implying that the summer monsoon decreased gradually since MIS 5 while the winter monsoon displayed an opposite trend. The variations in upwelling proxies exhibit a distinct cyclicity with frequencies near 41,000 yr and 23,000 yr off eastern Vietnam, in contrast to a strong frequency peak near 100,000 yr off the northwestern Philippines. We suggest that the East Asian summer monsoon has been forced by changes in solar insolation associated with precession and obliquity, while ice-volume forcing is probably a primary factor in determining the strength and timing of the East Asian winter monsoon but with less important insolation forcing.  相似文献   

14.
Late Pleistocene variations in rainfall in subtropical southern African are estimated from sediments preserved in the Pretoria Saltpan, a 200000 year-old closed-basin crater lake on the interior plateau of South Africa. We show that South African summer rainfall covaried with changes in southern hemisphere summer insolation resulting from orbital precession. As predicted by orbital precession geometry (Berger, 1978), this South African record is out of phase with North African palaeomonsoon indices (Street and Grove, 1979; Rossignol-Strick, 1983; McIntyre et al., 1989); the amplitude of the rainfall response to insolation forcing agrees with climate model estimates (Prell and Kutzbach, 1987). These results document the importance of direct orbital insolation forcing on both subtropical North and South African climate as well as the predicted antiphase sensitivity to precessional insolation forcing.  相似文献   

15.
Previous studies have suggested that Marine Isotope Stage (MIS) 13, recognized as atypical in many paleoclimate records, is marked by the development of anomalously strong summer monsoons in the northern tropical areas. To test this hypothesis, we performed a multi-proxy study on three marine records from the tropical Indian Ocean in order to reconstruct and analyse changes in the summer Indian monsoon winds and precipitations during MIS 13. Our data confirm the existence of a low-salinity event during MIS 13 in the equatorial Indian Ocean but we argue that this event should not be considered as “atypical”. Taking only into account a smaller precession does not make it possible to explain such precipitation episode. However, when considering also the larger obliquity in a more complete orbitally driven monsoon “model,” one can successfully explain this event. In addition, our data suggest that intense summer monsoon winds, although not atypical in strength, prevailed during MIS 13 in the western Arabian Sea. These strong monsoon winds, transporting important moisture, together with the effect of insolation and Eurasian ice sheet, are likely one of the factors responsible for the intense monsoon precipitation signal recorded in China loess, as suggested by model simulations.  相似文献   

16.
The role of ocean feedback on monsoon variations at 6 and 9.5 kyr Before Present (BP) compared to present-day is investigated by using sets of simulations computed with the IPSL–CM4 ocean–atmosphere coupled model and simulations with the atmospheric model only with the SST prescribed to the present-day simulation for the coupled model. This work is complementary to the study by Marzin and Braconnot (2009) who have analyzed in detail the response of Indian and African monsoons to changes in insolation at 6 and 9.5 kyr BP using the IPSL–CM4 coupled model. The monsoon rainfall was intensified at 6 and 9.5 kyr BP compared to 0 kyr BP as a result of the intensified seasonal cycle of insolation in the Northern Hemisphere. In this paper, the impact of the ocean feedback is analysed for the Indian, East-Asian and African monsoons. The response of the ocean to the 6 and 9.5 kyr BP insolation forcing shares similarities between the two periods, but we highlight local differences and a delay in the response of the surface ocean between 6 and 9.5 kyr BP. The ocean feedback is shown to be positive for the early stage of the African monsoon. A dipole of SST in the tropical Atlantic favouring the earlier build-up of the monsoon in the 6 and 9.5 kyr BP coupled simulations. However, it is strongly negative for the Indian and East Asian monsoons, and of stronger amplitude at 9.5 than at 6 kyr BP over India. In these Asian regions, the convection is more active over the ocean than over the continent during the late monsoon season due to the ocean feedback. The results are consistent with previous studies about 6 kyr BP climate. In addition, it is shown that the ocean feedback is not sufficient to explain the relative amplifications of the different monsoon systems within the three periods of the Holocene, but that the mechanisms such as the effect of the precession on the seasonal cycle of monsoons as discussed in Marzin and Braconnot (2009) are more plausible.  相似文献   

17.
天文古气候理论及其进展—从米兰柯维奇到贝尔杰   总被引:3,自引:0,他引:3  
扼要介绍了天文古气候学的创立和发展简史。太阳是地球大气运动的第一驱动力,地球气候的长期演变在很大程度上受到入射太阳辐射变化的影响。入射太阳辐的变化主要和三个地球轨道参数有关,即地球绕太阳运行的椭圆轨道偏心率,地球自转轴倾角及岁差。太阳辐射的长期振荡主要集中在与这三个参数有关的频率上,这些频率通常被称为米兰柯维奇频率,数值模拟和地学记录都证实地质时间尺度的古气候的演化大多位于米兰柯维奇频率带上。  相似文献   

18.
Our understanding of monsoon circulation timing’s at the orbital scale is currently a matter of debate. Here, we compare previous and recently published results of Indian, East Asian, West African and East African monsoon variability. We note different timings between the East African, West African, Indian and East-Asian monsoon systems for the most recent 45 ka, where the age models are constrained by AMS dating. On this basis, we construct different orbital forcing “reference curves” and apply them to the 200 ka time period for the different monsoon systems. Our results indicate that the ‘global monsoon’ concept at the orbital scale is a misnomer. We find real regional differences in the timing of the monsoon response to orbital forcing and differences in the weight of precession and obliquity in the monsoon records. This work highlights the necessity of studies aimed at understanding the underlying physics of these regional response patterns. This is crucial to a better understanding of monsoon dynamics and improved climate model simulations and comparisons with proxy data.  相似文献   

19.
High-resolution magnetic susceptibility (MS) analysis was carried out on a Lower Kimmeridgian alternating marl–limestone succession of pelagic origin that crops out at La Méouge (Vocontian Basin, southeastern France). The aim of the study was to characterize the strong, dm-scale sedimentary cyclicity of the succession at a very high resolution, and to analyze the cycles for evidence of astronomical forcing. From marl to limestone, MS varies progressively and closely tracks the highest frequency cyclicity corresponding to the basic marl–limestone couplets. Long-term wavelength cycling modulates the high-frequency cyclicity (couplets), and appears to be controlled by clay content. Spectral analysis of the MS record reveals the presence of the complete suite of orbital frequencies in the precession, obliquity, and eccentricity (95–128 ka and 405 ka) bands with very high amplitude of the precession index cycles originating from dm-scale couplets. 405 ka-eccentricity cycles are very pronounced in the MS maxima of the marl members of the couplets, suggesting eccentricity-driven detrital input to the basin. 405 ka-orbital tuning of the MS maxima further sharpens all of the orbital frequencies present in the succession. These results are similar to those of previous studies at La Méouge that used carbonate content observed in field. Our results are also in accordance with cyclostratigraphic studies in Spain and Canada that report dominant precession index forcing. By contrast, in the Kimmeridge Clay (Dorset, UK), obliquity forcing dominates cyclic sedimentation, with weaker influence from the precession index. Ammonite zone duration estimates are made by counting the interpreted precession cycles, and provide an ultra-high resolution assessment of geologic time. In sum, this study demonstrates the power of the MS as a proxy in characterizing the high-resolution cyclostratigraphy of Mesozoic sections, particularly in alternating marl–limestone successions, and for high-resolution correlation and astronomical calibration of the geologic time scale.  相似文献   

20.
We describe the evolution of climate system dynamics by examining the climate response to changes in obliquity and precession over the last 5.3 Myr. In particular, we examine changes in the shape of glacial cycles and the power of obliquity and precession response in benthic δ18O. When the exponential trend in δ18O variance is removed, its spectral power exhibits strong, proportional responses to amplitude modulations in orbital forcing over most of the Plio–Pleistocene. Precession responses correlate with modulations in forcing for the last 5 Myr, but 41-kyr response is sensitive to obliquity modulation only before 1.4 Myr. Where responses are sensitive to modulations in forcing, we demonstrate that glacial cycles are orbitally forced rather than being self-sustained or paced by orbital changes. The shapes of glacial cycles have several nonlinear properties, which may be indicative of glacial–interglacial differences in climate sensitivity or response time. The “saw-tooth” asymmetry of glacial cycles first appears shortly after the onset of major northern hemisphere glaciation, and the relative duration of interglacial stages decreases at 1.4 Myr. Collectively, trends in the shape of glacial cycles and the sensitivity of δ18O to obliquity and precession are suggestive of major transitions in climate dynamics at approximately 2.5 and 1.4 Myr but show no significant change associated with the appearance of strong 100-kyr cycles during the mid-Pleistocene transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号