首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, total suspended particles (TSP) and size-segregated atmospheric aerosol samples were measured on Qianliyan Island in the Yellow Sea in spring (April–May), summer (July–August) and fall (October–November) of 2006 and in water (January–February) of 2007. The mass concentration of the TSP varied from 75.6 to 132.0 μg/m3. The average concentration were 9.37 ± 7.56 μg/m3 and 5.32 ± 4.25 μg/m3 for nitrate and ammonium in the TSP, respectively. TSP concentration showed a significant correlation with those of nitrate (n = 27, r = 0.73) and ammonium (n = 27, r = 0.60). The mass-size distribution of atmospheric particles exhibited two modes with an accumulation mode at 0.43–1.1 μm and a coarse mode at 3.3–4.7 μm throughout the sampling months. A bi-modal size distribution of nitrate in concentration occurred in the April–May, October–November and January–February, but a uni-modal size distribution occurred in the August. The uni-modal size distribution of ammonium at 0.43–0.65 μm was observed throughout the sampling months. The average of inorganic nitrogen in mass concentration accounted for 4.0% of the total mass of aerosol particles while ammonium-N was the dominant fraction of TIN (Total Inorganic Nitrogen), contributing to 62–71% of the TIN.  相似文献   

2.
Cloud/fog samples were collected during spring of 2007 in the highly polluted North China Plain in order to examine the impact of pollution and dust particles on cloud water chemistry. The volume weighted mean pH of cloud water was 3.68. The cloud acidity was shown to be associated with air mass origins. Cloud water with its air mass trajectories originating from the southern part of China was more acidic than those from northern China. Anthropogenic source and dust had obvious impact on cloud water composition as indicated by the very high mean concentrations of SO42? (1331.65 μeq L? 1), NO3? (772.44 μeq L? 1), NH4+ (1375.92 μeq L? 1) and Ca2+ (625.81 μeq L? 1) in the observation periods. During sandstorm days, cloud pH values were relatively high, and the concentrations of all the ions in cloud water reached unusual high levels. Significant decreases in the mass concentrations of PM2.5 and PM10 were observed during cloud events. The average scavenging ratio for PM2.5 and PM10 was 52.0% and 55.7%, respectively. Among the soluble ions in fine particles, NO3?, K+ and NH4+ tend to be more easily scavenged than Ca2+ and Na+.  相似文献   

3.
The samples of water-soluble inorganic ions (WSIs), including anions (F?, Cl?, SO42?, NO3?) and cations (NH4+, K+, Na+, Ca2+, Mg2+) in 8 size-segregated particle matter (PM), were collected using a sampler (with 8 nominal cut-sizes ranged from 0.43 to 9.0 μm) from October 2008 to September 2009 at five sites in both polluted and background regions of a coastal city, Xiamen. The results showed that particulate matters in the fine mode (PM2.1, Dp < 2.1 μm) comprised large part of mass concentrations of aerosols, which accounted for 45.56–51.27%, 40.04–60.81%, 42.02–60.81%, and 40.46–57.07% of the total particulate mass in spring, summer, autumn, and winter, respectively. The water-soluble ionic species in the fine mode at five sampling sites varied from 15.33 to 33.82 (spring), 14.03 to 28.06 (summer), 33.47 to 72.52 (autumn), and 48.39 to 69.75 μg m? 3 (winter), respectively, which accounted for 57.30 ± 6.51% of the PM2.1 mass concentrations. Secondary pollutants of NH4+, SO42? and NO3? were the dominant contributors of WSIs, which suggested that pollutants from anthropogenic activities, such as SO2, NOx were formed in aerosols by photochemical reactions. The size distributions of Na+, Cl?, SO42? and NO3? were bimodal, peaking at 0.43–0.65 μm and 3.3–5.8 μm. Although some ions, such as NH4+ presented bimodal distributions, the coarse mode was insignificant compared to the fine mode. Ca2+ and Mg2+ exhibited unimodal distributions at all sampling sites, peaking at 2.1–3.3 μm, while K+ having a bimodal distributions with a major peak at 0.43–0.65 μm and a minor one at 3.3–4.7 μm, were used in most of samples. Seasonal and spatial variations in the size-distribution profiles suggested that meteorological conditions (seasonal patterns) and sampling locations (geographical patterns) were the main factors determining the formation of secondary aerosols and characteristics of size distributions for WSIs.  相似文献   

4.
《Atmospheric Research》2009,91(2-4):253-263
A high-volume cascade impactor, equipped with a PM10 inlet, was used to collect size-segregated aerosol samples during the summer of 2004 at two Portuguese locations: a coastal-rural area (Moitinhos) and an urban area (Oporto). Concentrations of airborne particulate matter (PM), total carbon (TC), organic carbon (OC), elemental carbon (EC), and water-soluble organic carbon (WSOC) were determined for the following particle size ranges: < 0.49, 0.49–0.95, 0.95–3.0, and 3.0–10 µm. The total PM mass concentrations at the urban and coastal-rural sites ranged from 22.8 to 79.6 μg m 3 and 19.9 to 28.2 μg m 3, respectively, and more than 56% of the total aerosol mass was found in the fractions below 3.0 μm. At both locations the highest concentrations of OC and EC were found in the submicrometer size range. The regional variability for the OC and EC concentrations, with the highest concentrations being found in the urban area, was related to the contribution of local primary sources (mostly traffic emissions). It was also verified an enrichment of the small size particles in WSOC, representing on average 37.3(± 12.4)% and 59.7(± 18.0)% of OC in the very fine aerosol at the coastal-rural and urban areas, respectively. The amount of secondary OC calculated by the minimum OC/EC ratio method indicates that secondary organic aerosol formation was important throughout the study at both sites. The obtained results suggest that long-range transport and favourable summer conditions for photochemical oxidation are key factors determining secondary OC formation in the coastal-rural and urban areas. The ultraviolet absorption properties of the chromophoric constituents of the WSOC fractions were also different among the different particle size ranges and also between the two sampling locations, thus suggesting the strong impact of the diverse emission sources into the composition of the size-segregated organic aerosol.  相似文献   

5.
Below-cloud aerosol scavenging is generally estimated from field measurements using advanced instruments that measure changes in aerosol distributions with respect to rainfall. In this study, we discuss various scavenging mechanisms and scavenging coefficients from past laboratory and field measurements. Scavenging coefficients derived from field measurements (representing natural aerosols scavenging) are two orders higher than that of theoretical ones for smaller particles (Dp < 2 μm). Measured size-resolved scavenging coefficients can be served as a better option to the default scavenging coefficient (e.g. a constant of 10?4 s?1 for all size of aerosols, as used in the CALPUFF model) for representing below-cloud aerosol scavenging. We propose scavenging correction parameter (CR) as an exponential function of size-resolved scavenging coefficients, winds and width in the downwind of the source–receptor system. For a wind speed of 3 m s?1, CR decrease with the width in the downwind for particles of diameters Dp < 0.1 μm but CR does not vary much for particles in the accumulation mode (0.1 < Dp < 2 μm). For a typical urban aerosol distribution, assuming 3 m s?1 air-flow in the source–receptor system, 10 km downwind width, 2.84 mm h?1 of rainfall and using aerosol size dependent scavenging coefficients in the CR, scavenging of aerosols is found to be 16% in number and 24% in volume of total aerosols. Using the default scavenging coefficient (10?4 s?1) in the CALPUFF model, it is found to be 64% in both number and volume of total aerosols.  相似文献   

6.
The results of the first large scale chemical characterization of PM10 and PM2.5 at three different sites in the urban city of Beirut, Lebanon, are presented. Between May 2009 and April 2010 a total of 304 PM10 and PM2.5 samples were collected by sampling every sixth day at three different sites in Beirut. Observed mass concentrations varied between 19.7 and 521.2 μg m? 3 for PM10 and between 8.4 and 72.2 μg m? 3 for PM2.5, respectively. Inorganic concentrations accounted for 29.7–35.6 μg m? 3 and 46.0–53.5 μg m? 3 of the total mass of PM10 and PM2.5, respectively. Intra-city temporal and spatial variations were assessed based on the study of three factors: correlation coefficients (R) for PM and chemical components, coefficient of divergence (CODs), and source apportionment using positive matrix factorization (PMF). Based on R and COD of PM concentrations, the three sites appear homogeneous. However, when individual elements were compared, heterogeneity among sites was found. This latter was attributed to the variability in the percent contribution of biogenic and local anthropogenic source factors such as traffic related sources and dust resuspension. Other factors included the proximity to the Mediterranean sea, the population density and the topographical structure of the city. Hence, despite its small size (20.8 km2), one PM monitoring site does not reflect an accurate PM level in Beirut.  相似文献   

7.
The chemical mass balance model was applied to atmospheric Polycyclic Aromatic Hydrocarbons (PAHs) in Istanbul, Turkey. A total of 326 airborne samples were collected and analyzed for 16 PAHs and Total Suspended Particles (TSP) in the September 2006–December 2007 period at three monitoring stations: Yildiz, DMO (urban sites) and Kilyos (rural site). The total average PAH concentrations were 100.66 ± 61.26, 84.63 ± 46.66 and 25.12 ± 13.34 ng m?3 and the TSP concentrations were 101.16 ± 53.22, 152.31 ± 99.12, 49.84 ± 18.58 μg m?3 for Yildiz, DMO and Kilyos stations respectively. At all the sites, the lighter compounds were the most abundant, notably Nap, AcPy and PA. The average correlation values between TSP and total heavier PAH were greater than 0.5 for Yildiz and DMO stations. The patterns of PAH and TSP concentrations showed spatial and temporal variations. PAH concentrations were evaluated for the PAH contribution from four sources (diesel engines, gasoline engines, natural gas combustion, and coal + wood burning). Vehicle emissions appear to be the major source with contributions of 61.2%, 63.3% and 54.1% for Yildiz, DMO and Kilyos stations respectively. Seasonal and yearly variations had different trends for all sites.  相似文献   

8.
Concentrations and flux densities of methane were determined during a Lagrangian study of an advective filament in the permanent upwelling region off western Mauritania. Newly upwelled waters were dominated by the presence of North Atlantic Central Water and surface CH4 concentrations of 2.2 ± 0.3 nmol L−1 were largely in equilibrium with atmospheric values, with surface saturations of 101.7 ± 14%. As the upwelling filament aged and was advected offshore, CH4 enriched South Atlantic Central Water from intermediate depths of 100–350 m was entrained into the surface mixed layer of the filament following intense mixing associated with the shelf break. Surface saturations increased to 198.9 ± 15% and flux densities increased from a mean value over the shelf of 2.0 ± 1.1 μmol m−2 d−1 to a maximum of 22.6 μmol m−2 d−1. Annual CH4 emissions for this persistent filament were estimated at 0.77 ± 0.64 Gg which equates to a maximum of 0.35% of the global oceanic budget. This raises the known outgassing intensity of this area and highlights the importance of advecting filaments from upwelling waters as efficient vehicles for air-sea exchange.  相似文献   

9.
Simultaneous measurements of the M-component current (surges superimposed on lightning continuing currents) and the corresponding electromagnetic fields at 60 m and 550 m from the lightning channel are analyzed and simulated with a two-wave model. The measured results reveal that the M-component current at the bottom of the channel exhibits a V-shape character with a leading edge of 78 μs and a trailing edge of 194 μs, while the electric field pulses at 60 m and 550 m have trailing edges faster than leading edges. The peak of the M-component current lags behind the electric field peak by tens of microseconds, when the distance increases to 550 m, the disparity of the time shift increases as well. However, the waveshape of the M-component current is similar to that of the magnetic field pulse. The M-component electric fields at 60 m and 550 m are 1.16 kV/m and 0.17 kV/m, respectively, and exhibit a logarithmic distance dependence which implies that the M-component charge density increases with height. Additionally, a two-wave model is used to examine the sensitivity of the predicted electric and magnetic fields to the speed and current reflection coefficient variations of the M-component. The simulated results show that the effects are different for the electric and magnetic fields. The M-component speed essentially controls the electric field, but has little effect on the magnetic field. Larger reflection coefficient results in a larger magnetic field, but a smaller electric field.  相似文献   

10.
The relationships between meteorological conditions (temperature, wind-speed and direction, relative humidity, surface-inversion depth and strength, and stability) and PM2.5 concentrations in Fairbanks, Alaska were investigated using ten years of observational data. The results show that during wintertime (November through February) PM2.5 concentrations exceeding the 24 h National Air Quality Standard (35 μg/m3) occurred under calm wind, extremely low temperature (≤20 °C) and moisture (water-vapor pressure < 2 hPa) multiday surface-inversion conditions that trap the pollutants in the breathing level and inhibit transport of polluted air out of Fairbanks. PM2.5 concentrations tend to be higher under stable than other conditions, but are not sensitive to the degree of stability. The presence of a surface inversion and calm wind are necessary, but in combination with low temperatures and humidity, the conditions are sufficient for high PM2.5 concentrations. The low temperatures are required because they lead to increased emission rates from domestic heating and power production. During multiday inversions with temperatures above ? 20 °C, high relative humidity (> 75%) partly caused by water-vapor emission reduces PM2.5 concentrations.  相似文献   

11.
A new methodology is proposed to estimate the strength of the South Atlantic Anticyclone (SAA), using the gridded sea level pressure (SLP) of the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) Reanalysis data. The top quartile (1017.3 hPa) of the SLP data was found a reasonable criterion to delimit the SAA area. Consequently, we defined the SAA area as the quadrangle containing 80% of the observations with pressure >1017.3 hPa. In this quadrangle, an area weighted pressure gradient (AWPG) was computed for the whole area and for the north–south and west–east halves. When compared with maximum pressure, the AWPG showed a better correlation with the significant wave height (SWH) and wind speed (WS) derived from altimetry. The mean value of the AWPG was 8 × 10−4 Pa/m, with representative values of 9.1 × 10−4 Pa/m and 7.4 × 10−4 Pa/m for austral winter and summer, respectively. The phase difference between the monthly AWPG in the north and south sub-quadrangles accounts for the evolution of the spatial pattern of the anticyclone throughout a year. This quantitative approach proved to be a useful estimate of the strength of South Atlantic Anticyclone. Further improvements of this approach are discussed.  相似文献   

12.
《Atmospheric Research》2009,91(2-4):243-252
Aerosol size distributions were measured with Micro Orifice Uniform Deposit Impactor (MOUDI) cascade impactors at the rural Angiola and urban Fresno Supersites in California's San Joaquin Valley during the California Regional PM10/PM2.5 Air Quality Study (CRPAQS) winter campaign from December 15, 2000 to February 3, 2001. PM2.5 filter samples were collected concurrently at both sites with Sequential Filter Samplers (SFS). MOUDI nitrate (NO3) concentrations reached 66 μg/m3 on January 6, 2001 during the 1000–1600 PST (GMT-8) period. Pair-wise comparisons between PM2.5 MOUDI and SFS concentrations revealed high correlations at the Angiola site (r > 0.93) but more variability (r < 0.85) at the Fresno site for NO3, sulfate (SO4=), and ammonium (NH4+). Correlations were higher at Fresno (r > 0.87) than at Angiola (r < 0.7) for organic carbon (OC), elemental carbon (EC), and total carbon (TC). NO3 and SO4= size distributions in Fresno were multi-modal and wider than the uni-modal distributions observed at Angiola. Geometric mean diameters (GMD) were smaller for OC and EC than for NO3 and SO4= at both sites. OC and EC were more concentrated on the lowest MOUDI stage (0.056 µm) at Angiola than at Fresno. The NO3 GMD increased from 0.97 to 1.02 µm as the NO3 concentration at Angiola increased from 43 to 66 µg m 3 during a PM2.5 episode from January 4–7, 2001. There was a direct relationship between GMD and NO3 and SO4= concentrations at Angiola but no such relationships for OC or EC. This demonstrates that secondary aerosol formation increases both concentration and particle size for the rural California environment.  相似文献   

13.
Hourly data of CO2 fugacity (fCO2) at 8°N–38°W were analyzed from 2008 to 2011. Analyses of wind, rainfall, temperature and salinity data from the buoy indicated two distinct seasonal periods. The first period (January to July) had a mean fCO2 of 378.9 μatm (n = 7512). During this period, in which the study area was characterized by small salinity variations, the fCO2 is mainly controlled by sea surface temperature (SST) variations (fCO2 = 24.4*SST-281.1, r2 = 0.8). During the second period (August–December), the mean fCO2 was 421.9 μatm (n = 11571). During these months, the region is subjected to the simultaneous action of (a) rainfall induced by the presence of the Intertropical Convergence Zone (ITCZ); (b) arrival of fresh water from the Amazon River plume that is transported to the east by the North Equatorial Countercurrent (NECC) after the retroflection of the North Brazil Current (NBC); and (c) vertical input of CO2-rich water due to Ekman pumping. The data indicated the existence of high-frequency fCO2 variability (periods less than 24 h). This high variability is related to two different mechanisms. In the first mechanism, fCO2 increases are associated to rapid increases in SST and are attributed to the diurnal cycle of solar radiation. In addition, low wind speed contributes to SST rising by inhibiting vertical mixing. In the second mechanism, fCO2 decreases are associated to SSS decreases caused by heavy rainfall.  相似文献   

14.
Conventional surface data and quantitative estimations of precipitation are used to document the occurrence and spatial distribution of severe weather phenomena associated with deep moist convection over southeastern South America.Data used in this paper are 24-hour rainfall, maximum hourly gusts and present weather reports from the surface station network for Argentina to the north of 40°S and cover the period 2000–2005. Hourly rainfall estimated with the CMORPH technique (CPC MORPHing technique, R. J. Joyce et al., 2004) is included in the analysis in order to increase the density of the precipitation database from January 2003 to December 2005. Extreme events are detected by means of a 95th-percentile analysis of the 24-hour rainfall and wind; values greater than 30 mm and 25 m s?1 respectively are considered extreme in the study area. These results are related to the presence of deep convection by considering the 235 K and 218 K cloud shield evolution in Geostationary Operational Environmental Satellite-12 Infrared (GOES-IR) imagery evaluated by the Forecasting and Tracking of Cloud Cluster (FORTRACC) technique. Rainfall above 30 mm day?1 and present convection-related weather events tend to occur in the northeast of the country.Finally, an analysis is made of the relationship between severe phenomena and the location and lifecycle of Mesoscale Convective Systems (MCSs) defined by the 218 K or 235 K levels. According to the reports, favorable locations for severe weather concentrate to the northeast of the cloud shield anvil centroid although most of the cases are found in the northwest. This feature can be seen in systems with anvil areas larger than 250,000 km2 in association to the predominant mid-level wind shear direction from the northwest over the area. Moreover, systems with centers located north of 30°S present a more circular shape while those to the south are more elongated with a NW–SE main axis clearly related to the presence and interaction with frontal zones over the area. Most of the events occur previous to the moment when the systems reach their maximum extension, between 2 and 10 h after the initiation of the system depending on the size of the MCSs.  相似文献   

15.
This study incorporates observations from Array of Real-time Geostrophic Oceanography (ARGO) floats and surface drifters to identify seasonal circulation patterns at the surface, 1000 m, 1500 m, and 2000 m in the northwest Indian Ocean, and quantify velocities associated with them. A skill comparison of the Simple Ocean Data Assimilation (SODA) reanalysis output was also performed to contribute to the understanding of the circulation dynamics in this region.Subsurface currents were quantified and validated using the ARGO float data. Surface currents were identified using surface drifter data and compared to the subsurface observations to enhance our previous understanding of surface circulations. Quantified Southwest Monsoon surface currents include the Somali Current (vmax = 179.5 cm/s), the East Arabian Current (vmax = 52.3 cm/s), and the Southwest Monsoon Current (vmax = 51.2 cm/s). Northeastward flow along the Somali coast is also observed at 1000 m (vmax = 26.1 cm/s) and 1500 m (vmax = 12.7 cm/s). Currents associated with the Great Whirl are observed at the surface (vmax = 161.4 cm/s) and at 1000 m (vmax = 16.2 cm/s). In contrast to previous studies, both ARGO and surface drifter data show the Great Whirl can form as early as the boreal Spring intermonsoon, lasting until the boreal Fall intermonsoon. The Arabian Sea exhibits eastward/southeastward flow at the surface, 1000 m, 1500 m, and 2000 m. Quantified Northeast Monsoon surface currents include the Somali Current (vmax = 97.3 cm/s), Northeast Monsoon Current (vmax = 30.0 cm/s), and the North Equatorial Current (vmax = 28.5 cm/s). Southwestward flow along the Somali coast extends as deep as 1500 m.Point-by-point vector and scalar correlations of SODA output to ARGO and surface drifter data showed that surface SODA output and surface drifter data generally produced a strong correlation attributed to surface currents strongly controlled by the monsoons, while subsurface correlations of SODA output and ARGO were mostly insignificant due to variability associated with intermonsoonal transitions. SODA output produced overall smaller velocities than both observational datasets. Assimilating ARGO velocities into the SODA reanalysis could improve subsurface velocity assimilation, especially during the boreal fall and spring when ARGO observations suggest that flow is highly variable.  相似文献   

16.
Identifying the sources of reactive nitrogen (N) and quantifying their contributions to groundwater nitrate concentrations are critical to understanding the dynamics of groundwater nitrate contamination. Here we assessed groundwater nitrate contamination in China using literature analysis and N balance calculation in coupled human and natural systems. The source appointment via N balance was well validated by field data via literature analysis. Nitrate was detected in 96% of groundwater samples based on a common detection threshold of 0.2 mg N L?1, and 28% of groundwater samples exceeded WHO's maximum contaminant level (10 mg N L?1). Groundwater nitrate concentrations were the highest beneath industrial land (median: 34.6 mg N L?1), followed by urban land (10.2 mg N L?1), cropland (4.8 mg N L?1), and rural human settlement (4.0 mg N L?1), with the lowest found beneath natural land (0.8 mg N L?1). During the period 1980–2008, total reactive N leakage to groundwater increased about 1.5 times, from 2.0 to 5.0 Tg N year?1, in China. Despite that the contribution of cropland to the total amount of reactive N leakage to groundwater was reduced from 50 to 40% during the past three decades, cropland still was the single largest source, while the contribution from landfill rapidly increased from 10 to 34%. High reactive N leakage mainly occurred in relatively developed agricultural or urbanized regions with a large population. The amount of reactive N leakage to groundwater was mainly driven by anthropogenic factors (population, gross domestic product, urbanization rate and land use type). We constructed a high resolution map of reactive N source appointment and this could be the basis for future modeling of groundwater nitrate dynamics and for policy development on mitigation of groundwater contamination.  相似文献   

17.
A mooring equipped with 200 high-resolution temperature sensors between 6 and 404 m above the bottom was moored in 1890 m water depth above a steep, about 10° slope of Mount Josephine, NE-Atlantic. The sensors have a precision of less than 0.5 mK. They are synchronized via induction every 4 h so that the 400 m range is measured to within 0.02 s, every 1 s. Thin cables and elliptical buoyancy assured vertical mooring motions to be smaller than 0.1 m under maximum 0.2 m s−1 current speeds. The local bottom slope is supercritical for semidiurnal internal tides by a factor of two. Exploring a one-month record in detail, the observations show: 1/semidiurnal tidal dominance in variations of dissipation rate ε, eddy diffusivity Kz and temperature, but no significant correlation between the records of ε and total kinetic energy, 2/a variation with time over four orders of magnitude of 100-m vertically averaged ε, 3/a local minimum in density stratification between 50 and 100 m above the bottom, 4/a gradual decrease in daily or longer averaged ε and Kz by one order of magnitude over a vertical distance of 250 m, upwards from 150 m above the bottom, 5/monthly mean values of <[ε]> = 2 ± 0.5 × 10−7 m2 s−3, <[Kz]> = 8 ± 3 × 10−3 m2 s−1 averaged over the lower 150 m above the bottom.  相似文献   

18.
A comprehensive study on the chemical compositions of rainwater was carried out from Jan. to Dec. in 2008 in Chengdu, a city located on the acid rain control zone of southwest China. All samples were analyzed for pH and major ions (F, Cl?, NO3?, SO42?, K+, Na+, Ca2+, Mg2+, and NH4+). The pH increased due to the result of neutralization caused by the base ions. It was observed that Ca2+ was the most abundant cation with a VWM value of 196.6 μeq/L (17.3–1568.7 μeq/L), accounting for 49.7% (9.4%–79.2%) of the total cations. SO42? was the most abundant anion with VWM value of 212.8 μeq/L (41.8–1227.6 μeq/L). SO42? and NO3? were dominant among the anions, accounting for 90.4%–99.1% of the total measured anions.The concentrations of NO3? were higher than the most polluted cities abroad, which indicated Chengdu has been a severe polluted city over the world. The high fuel consumption from urbanization and the rapid increase of vehicles resulted in the high emission of SO2 and NOx, which were the precursor of the high concentration of acidic ions NO3? and SO42?. It was the main reason of the severe acid rain in Chengdu.The high concentrations of alkaline ions (mainly Ca2+, NH4+) in Chengdu city atmosphere have played an important role to neutralize the acidity of rainwater and the pH value has increased by 0.7 units since 1989. It is worth noting that the emission of NOx from the automobile exhaust is increased and is becoming the important precursor of acid rain now.  相似文献   

19.
The character of turbulent overturns in a weakly stratified deep-sea is investigated in some detail using 144 high-resolution temperature sensors at 0.7 m intervals, starting 5 m above the bottom. A 9-day, 1 Hz sampled record from the 912 m depth flat-bottom (<0.5% bottom-slope) mooring site in the central-north Alboran Sea (W-Mediterranean) demonstrates an overall conservative temperature range of only 0.05 °C, a typical mean buoyancy period as large as 3 h and a 1 Hz-profile-vertically-averaged turbulence dissipation rate maximum of only 10−8 m2 s−3. Nonetheless, this ‘boundary layer’ varies in height between <6 and >104 m above the bottom and is thus not homogeneous throughout; the temperature variations are seldom quiescent and are generally turbulent in appearance, well exceeding noise levels. The turbulence character is associated with small-scale internal waves; examples are found of both shear- and convection-driven turbulence; particular association, although not phase-locked, is found between turbulence variations and tidal rather than with inertial motions; the mean buoyancy frequency of a few times the inertial frequency implies the importance of ‘slantwise convection’ in the direction of the earth rotational vector rather than in the direction of gravity. Such convection is observed both in near-homogeneous and weakly stratified form.  相似文献   

20.
《Atmospheric Research》2009,91(2-4):159-169
Characterizations of urban and regional sources of particulate matter (PM) were performed in the Milan area (North of Italy) during Föhn and stagnant (non-Föhn) conditions. The measurements were performed at two different places: in an urban area North of Milan (Bresso) and in a regional area at the EMEP-GAW station in Ispra (about 65 km NW from Milan) during the winter periods of the years 2002–2007. Particle size distributions and chemical bulk analysis of aerosols are combined with single particle mass spectrometry to obtain information about the chemical content of the particles and their mixing state. Föhn conditions are characterized by extremely clean background air from which background aerosol is scavenged, and consequently local sources (here defined as sources between the sampling sites and the mountain range top about 100–150 km away depending on the wind direction) determine the aerosol properties.It was observed that during Föhn events the accumulation mode in the size range 50 nm < d < 300 nm practically disappears and that the size fraction below 50 nm dominates the total number distribution. The significant change in the number size distribution and the large decrease in PM10 mass during Föhn events are accompanied by a significant change in the chemical composition of the particles. Results from bulk chemical analysis showed high amounts of carbonaceous compounds and very low concentrations of ammonium nitrate (as indicator for secondary chemistry) during Föhn episodes, in contrast to stagnant conditions, when secondary components are dominating the aerosol composition. Single particle measurements confirm the high contribution of carbonaceous compounds in locally emitted particles.It was concluded that particles that originated in the urban area come mainly from combustion processes, especially direct traffic emissions, domestic heating and industrial activities, whereas the regionally emitted particles are different with much less traffic contribution.We estimate that under prevailing (non-Föhn) winter conditions, about 50–65% of the aerosol mass load in the city of Milan are caused by local emissions, and about 35–50% come from regional background. This finding suggests that in order to improve air quality in a big city like Milan, it is important to combine local traffic restriction interventions with other long-term regional scale air-quality-measures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号