首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cloud/fog samples were collected during spring of 2007 in the highly polluted North China Plain in order to examine the impact of pollution and dust particles on cloud water chemistry. The volume weighted mean pH of cloud water was 3.68. The cloud acidity was shown to be associated with air mass origins. Cloud water with its air mass trajectories originating from the southern part of China was more acidic than those from northern China. Anthropogenic source and dust had obvious impact on cloud water composition as indicated by the very high mean concentrations of SO42? (1331.65 μeq L? 1), NO3? (772.44 μeq L? 1), NH4+ (1375.92 μeq L? 1) and Ca2+ (625.81 μeq L? 1) in the observation periods. During sandstorm days, cloud pH values were relatively high, and the concentrations of all the ions in cloud water reached unusual high levels. Significant decreases in the mass concentrations of PM2.5 and PM10 were observed during cloud events. The average scavenging ratio for PM2.5 and PM10 was 52.0% and 55.7%, respectively. Among the soluble ions in fine particles, NO3?, K+ and NH4+ tend to be more easily scavenged than Ca2+ and Na+.  相似文献   

2.
《Atmospheric Research》2009,91(2-4):243-252
Aerosol size distributions were measured with Micro Orifice Uniform Deposit Impactor (MOUDI) cascade impactors at the rural Angiola and urban Fresno Supersites in California's San Joaquin Valley during the California Regional PM10/PM2.5 Air Quality Study (CRPAQS) winter campaign from December 15, 2000 to February 3, 2001. PM2.5 filter samples were collected concurrently at both sites with Sequential Filter Samplers (SFS). MOUDI nitrate (NO3) concentrations reached 66 μg/m3 on January 6, 2001 during the 1000–1600 PST (GMT-8) period. Pair-wise comparisons between PM2.5 MOUDI and SFS concentrations revealed high correlations at the Angiola site (r > 0.93) but more variability (r < 0.85) at the Fresno site for NO3, sulfate (SO4=), and ammonium (NH4+). Correlations were higher at Fresno (r > 0.87) than at Angiola (r < 0.7) for organic carbon (OC), elemental carbon (EC), and total carbon (TC). NO3 and SO4= size distributions in Fresno were multi-modal and wider than the uni-modal distributions observed at Angiola. Geometric mean diameters (GMD) were smaller for OC and EC than for NO3 and SO4= at both sites. OC and EC were more concentrated on the lowest MOUDI stage (0.056 µm) at Angiola than at Fresno. The NO3 GMD increased from 0.97 to 1.02 µm as the NO3 concentration at Angiola increased from 43 to 66 µg m 3 during a PM2.5 episode from January 4–7, 2001. There was a direct relationship between GMD and NO3 and SO4= concentrations at Angiola but no such relationships for OC or EC. This demonstrates that secondary aerosol formation increases both concentration and particle size for the rural California environment.  相似文献   

3.
The samples of water-soluble inorganic ions (WSIs), including anions (F?, Cl?, SO42?, NO3?) and cations (NH4+, K+, Na+, Ca2+, Mg2+) in 8 size-segregated particle matter (PM), were collected using a sampler (with 8 nominal cut-sizes ranged from 0.43 to 9.0 μm) from October 2008 to September 2009 at five sites in both polluted and background regions of a coastal city, Xiamen. The results showed that particulate matters in the fine mode (PM2.1, Dp < 2.1 μm) comprised large part of mass concentrations of aerosols, which accounted for 45.56–51.27%, 40.04–60.81%, 42.02–60.81%, and 40.46–57.07% of the total particulate mass in spring, summer, autumn, and winter, respectively. The water-soluble ionic species in the fine mode at five sampling sites varied from 15.33 to 33.82 (spring), 14.03 to 28.06 (summer), 33.47 to 72.52 (autumn), and 48.39 to 69.75 μg m? 3 (winter), respectively, which accounted for 57.30 ± 6.51% of the PM2.1 mass concentrations. Secondary pollutants of NH4+, SO42? and NO3? were the dominant contributors of WSIs, which suggested that pollutants from anthropogenic activities, such as SO2, NOx were formed in aerosols by photochemical reactions. The size distributions of Na+, Cl?, SO42? and NO3? were bimodal, peaking at 0.43–0.65 μm and 3.3–5.8 μm. Although some ions, such as NH4+ presented bimodal distributions, the coarse mode was insignificant compared to the fine mode. Ca2+ and Mg2+ exhibited unimodal distributions at all sampling sites, peaking at 2.1–3.3 μm, while K+ having a bimodal distributions with a major peak at 0.43–0.65 μm and a minor one at 3.3–4.7 μm, were used in most of samples. Seasonal and spatial variations in the size-distribution profiles suggested that meteorological conditions (seasonal patterns) and sampling locations (geographical patterns) were the main factors determining the formation of secondary aerosols and characteristics of size distributions for WSIs.  相似文献   

4.
In this study, 24-h PM2.5 samples were collected using Harvard Honeycomb denuder/filter-pack system during different seasons in 2006 and 2007 at an urban site in Guangzhou, China. The particles collected in this study were generally acidic (average strong acidity ([H+]) ~ 70 nmol m? 3). Interestingly, aerosol sulfate was not fully neutralized in the ammonia-rich atmosphere (NH3 ~ 30 ppb) and even when NH4+]/[SO42?] was larger than 2. Consequently, strong acidity ([H+]) as high as 170 nmol m? 3 was observed in these samples. The kinetic rate of neutralization of acidity (acidic sulfate) by ambient ammonia was significantly higher than the rate of formation of ammonium nitrate involving HNO3 and NH3 for [NH4+]/[SO42?]  1.5 and much lower for NH4+]/[SO42?] > 1.5. Therefore, higher nitrate principally formed via homogeneous gas phase reactions involving ammonia and nitric acid were observed for [NH4+]/[SO42?] > 1.5. However, little nitrate, probably formed via heterogeneous processes e.g. reaction of HNO3 with sea salt or crustal species, was observed for [NH4+]/[SO42?]  1.5. These demonstrate a clear transition in the pathways of ambient ammonia to form aerosol ammonium at [NH4+]/[SO42?] = 1.5 and evidently explain the observed high acidity due to the unneutralized sulfate in the ammonium-rich aerosol (NH4+]/[SO42?] > 1.5). In fact, the measured acidity was almost similar to the excess acid defined as the acid that remains at [NH4+]/[SO42?] = 1.5 due to the un-neutralized fraction of sulfate ([H+] = 0.5[SO42?]). The presence of high excess acid and ammonium nitrate significantly lowered the deliquescence relative humidity of ammonium sulfate (from 80% to 40%) in the ammonium-rich samples.  相似文献   

5.
Gaseous pollutants and PM2.5 aerosol particles were investigated during a tropical storm and an air pollution episode in southern Taiwan. Field sampling and chemical analysis of particulate matter and gaseous pollutants were conducted in Daliao and Tzouying in the Kaohsiung area, using a denuder-filter pack system during the period of 22 October to 3 November 2004. Sulfate, nitrate and ammonium were the major ionic species in the PM2.5, accounting for 46 and 39% of the PM2.5 for Daliao and Tzouying, respectively. Higher PM2.5, Cl?, NO3? and NH4+, HNO2 and NH3 concentrations were found at night in both stations, whereas higher HNO3 was found during the day. In general, higher PM2.5, HCl, NH3, SO2, Cl?, NO3?, SO42? and NH4+ concentrations were found in Daliao. The synoptic weather during the experiment was first influenced by Typhoon NOCK-TEN, which resulted in the pollutant concentrations decreasing by about two-thirds. After the tropical thunderstorm system passed, the ambient air quality returned to the previous condition in 12 to 24 h. When there was a strong subsidence accompanied by a high-pressure system, a more stable environment with lower wind speed and mixing height resulted in higher PM2.5, as well as HNO2, NH3, SO42?, Cl?, NO3?, NH4+ and K+ concentrations during the episode days. The rainfall is mainly a scavenger of air pollutants in this study, and the stable atmospheric system and the high emission loading are the major reasons for high air pollutant concentrations.  相似文献   

6.
Hourly data of CO2 fugacity (fCO2) at 8°N–38°W were analyzed from 2008 to 2011. Analyses of wind, rainfall, temperature and salinity data from the buoy indicated two distinct seasonal periods. The first period (January to July) had a mean fCO2 of 378.9 μatm (n = 7512). During this period, in which the study area was characterized by small salinity variations, the fCO2 is mainly controlled by sea surface temperature (SST) variations (fCO2 = 24.4*SST-281.1, r2 = 0.8). During the second period (August–December), the mean fCO2 was 421.9 μatm (n = 11571). During these months, the region is subjected to the simultaneous action of (a) rainfall induced by the presence of the Intertropical Convergence Zone (ITCZ); (b) arrival of fresh water from the Amazon River plume that is transported to the east by the North Equatorial Countercurrent (NECC) after the retroflection of the North Brazil Current (NBC); and (c) vertical input of CO2-rich water due to Ekman pumping. The data indicated the existence of high-frequency fCO2 variability (periods less than 24 h). This high variability is related to two different mechanisms. In the first mechanism, fCO2 increases are associated to rapid increases in SST and are attributed to the diurnal cycle of solar radiation. In addition, low wind speed contributes to SST rising by inhibiting vertical mixing. In the second mechanism, fCO2 decreases are associated to SSS decreases caused by heavy rainfall.  相似文献   

7.
Mixing states of cloud interstitial particles between water-soluble and insoluble materials apparently differ under various cloud-forming conditions. To study the mixing states of cloud interstitial particles, we made observations at Mt. Tateyama, Japan (2300 m a.s.l.) during June 2007 using fog (> 10 μm)-cut inlets. Number concentrations of dried particles (0.3–0.5 μm diameter) selected for less-grown (LG) particles (particles smaller than 0.56 μm diameter at 88% relative humidity) were used to quantify tendencies of the growth characteristics of cloud interstitial particles. Size-segregated soot mass concentrations (< 0.4 and < 1.1 μm) were also measured for cloud interstitial particles. Three samples of cloud interstitial LG particles at 88% RH were investigated for water-soluble and insoluble components using dialysis (extraction) of water-soluble materials with transmission electron microscopy (TEM). For one TEM sample with high fractions of the LG particles and high soot mass concentrations under high precipitation (2–6 mm/h), most particles (0.1–0.5 μm) were found to be water insoluble. More than half of the water-insoluble particles were considered to be soot particles showing chain aggregations of electron-opaque spherules. Regarding the other two TEM samples with low fractions of the LG particles under less intense precipitation (ca. 1 mm/h), most particles were partly water soluble. The scavenging process in the precipitating cloud can change the population of particles left behind, preferentially leaving insoluble particles according to cloud formation conditions.  相似文献   

8.
《Atmospheric Research》2007,83(3-4):688-697
Intensive measurements of gas and aerosol for 2 weeks were carried out at Qingdao (gas and aerosol in 2000, 2001 and 2002), Fenghuangshan (gas and aerosol in 2000 and 2001), and Dalian (aerosol in 2002) in the winter–spring period. High SO2 episodes were observed on 18 January 2000 at both Qingdao and Fenghuangshan. According to back trajectory calculations and analysis of gaseous species, high SO2 episodes were caused by local pollution and transport.Nitrate, sulfate and ammonium were the major species in PM2.5. Mass fractions of NO3, nss-SO42− and NH4+ at Qingdao in 2002 were 10%, 12% and 5.5% for PM2.5, respectively, which were higher than that of nss-Ca2+ (1%). Chemical compositions observed at Dalian and Fenghuangshan were similar to those at Qingdao. The mass ratio of nss-SO42−/SO2 at Qingdao in winter was low (< 1.2), indicating that sulfate was probably produced by the slow oxidation of SO2 in the gas phase and/or was transported from outside of Qingdao in winter. The equivalent ratio of NH4+ to nss-SO42− was 1.39, suggesting that ammonium sulfate was one of the major chemical compositions in PM2.5. The NO3/SO42− ratio at Qingdao was higher than that at remote places in East Asia. Gas and aerosol data obtained at Fenghuangshan were similar to data at Qingdao, suggesting that emissions from small cities may have a great influence on pollution in northern China.  相似文献   

9.
The results of the first large scale chemical characterization of PM10 and PM2.5 at three different sites in the urban city of Beirut, Lebanon, are presented. Between May 2009 and April 2010 a total of 304 PM10 and PM2.5 samples were collected by sampling every sixth day at three different sites in Beirut. Observed mass concentrations varied between 19.7 and 521.2 μg m? 3 for PM10 and between 8.4 and 72.2 μg m? 3 for PM2.5, respectively. Inorganic concentrations accounted for 29.7–35.6 μg m? 3 and 46.0–53.5 μg m? 3 of the total mass of PM10 and PM2.5, respectively. Intra-city temporal and spatial variations were assessed based on the study of three factors: correlation coefficients (R) for PM and chemical components, coefficient of divergence (CODs), and source apportionment using positive matrix factorization (PMF). Based on R and COD of PM concentrations, the three sites appear homogeneous. However, when individual elements were compared, heterogeneity among sites was found. This latter was attributed to the variability in the percent contribution of biogenic and local anthropogenic source factors such as traffic related sources and dust resuspension. Other factors included the proximity to the Mediterranean sea, the population density and the topographical structure of the city. Hence, despite its small size (20.8 km2), one PM monitoring site does not reflect an accurate PM level in Beirut.  相似文献   

10.
Below-cloud aerosol scavenging is generally estimated from field measurements using advanced instruments that measure changes in aerosol distributions with respect to rainfall. In this study, we discuss various scavenging mechanisms and scavenging coefficients from past laboratory and field measurements. Scavenging coefficients derived from field measurements (representing natural aerosols scavenging) are two orders higher than that of theoretical ones for smaller particles (Dp < 2 μm). Measured size-resolved scavenging coefficients can be served as a better option to the default scavenging coefficient (e.g. a constant of 10?4 s?1 for all size of aerosols, as used in the CALPUFF model) for representing below-cloud aerosol scavenging. We propose scavenging correction parameter (CR) as an exponential function of size-resolved scavenging coefficients, winds and width in the downwind of the source–receptor system. For a wind speed of 3 m s?1, CR decrease with the width in the downwind for particles of diameters Dp < 0.1 μm but CR does not vary much for particles in the accumulation mode (0.1 < Dp < 2 μm). For a typical urban aerosol distribution, assuming 3 m s?1 air-flow in the source–receptor system, 10 km downwind width, 2.84 mm h?1 of rainfall and using aerosol size dependent scavenging coefficients in the CR, scavenging of aerosols is found to be 16% in number and 24% in volume of total aerosols. Using the default scavenging coefficient (10?4 s?1) in the CALPUFF model, it is found to be 64% in both number and volume of total aerosols.  相似文献   

11.
《Atmospheric Research》2007,83(3-4):579-590
A method for determining evaporation rates and thermodynamic properties of aqueous solution droplets is introduced. The method combines evaporation rate measurements using modified TDMA technique with data evaluation using an accurate evaporation model. The first set of data has been collected and evaluated for succinic acid aqueous solution droplets.Evaporation rates of succinic acid solution droplets have been measured using a TDMA system at controlled relative humidity (65%) and temperature (298 K). A temperature-dependent expression for the saturation vapour pressure of pure liquid phase succinic acid at atmospheric temperatures has been derived by analysing the evaporation rate data with a numerical model. The obtained saturation vapour pressure of liquid phase succinic acid is ln(p) = 118.41  16204.8/T  12.452ln(T). The vapour pressure is in unit of Pascal and the temperature in Kelvin. A linear expression for the enthalpy of vaporization for liquid state succinic acid is also presented.According to the results presented in the following, a literature expression for the vapour pressure of liquid phase succinic acid defined for temperatures higher than 461 K [Yaws, C.L., 2003. Yaws' Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel] can be extrapolated to atmospheric temperatures with very good accuracy. The results also suggest that at 298 K the mass accommodation coefficient of succinic acid is unity or very close to unity.  相似文献   

12.
Concentrations and flux densities of methane were determined during a Lagrangian study of an advective filament in the permanent upwelling region off western Mauritania. Newly upwelled waters were dominated by the presence of North Atlantic Central Water and surface CH4 concentrations of 2.2 ± 0.3 nmol L−1 were largely in equilibrium with atmospheric values, with surface saturations of 101.7 ± 14%. As the upwelling filament aged and was advected offshore, CH4 enriched South Atlantic Central Water from intermediate depths of 100–350 m was entrained into the surface mixed layer of the filament following intense mixing associated with the shelf break. Surface saturations increased to 198.9 ± 15% and flux densities increased from a mean value over the shelf of 2.0 ± 1.1 μmol m−2 d−1 to a maximum of 22.6 μmol m−2 d−1. Annual CH4 emissions for this persistent filament were estimated at 0.77 ± 0.64 Gg which equates to a maximum of 0.35% of the global oceanic budget. This raises the known outgassing intensity of this area and highlights the importance of advecting filaments from upwelling waters as efficient vehicles for air-sea exchange.  相似文献   

13.
This paper presents a set of technically feasible multi-gas emission pathways (envelopes) for stabilising greenhouse gas concentration at 450, 550 and 650 ppm CO2-equivalent and their trade-offs between direct abatement costs and probabilities to meet temperature targets. There are different pathways within the envelope. Delayed response pathways initially follow the upper boundary of the emission envelope and reduce more by the end of the century. In contrast, early action pathways first follow the lower boundary and then the upper boundary. The latter require an early peak in the global emissions but keeps the option open for shifting to lower concentration targets in the future. Costs evaluations depend on the discount rate. Early action profiles have high costs early on, but learning-by-doing and smoother reduction rates over time lead to in most cases to lower costs across the century (net present value (NPV)). To achieve the 450 ppm CO2-equivalent, the global emissions need to peak before 2020. The NPV of costs increase from 0.2% of cumulative gross domestic product to 1.0% as the shift is made from 650 to 450 ppm (discount rate 5%). However, the chances of limiting global mean warming to 2 °C above pre-industrial levels are very small for peaking and stabilisation at 650 ppm (1–23%) and 550 ppm (1–48%), but increase for a peaking at 510 ppm with subsequent stabilisation 450 ppm to 14–67%.  相似文献   

14.
The Water vapour Strong Lines at 183 GHz (183-WSL) fast retrieval method retrieves rain rates and classifies precipitation types for applications in nowcasting and weather monitoring. The retrieval scheme consists of two fast algorithms, over land and over ocean, that use the water vapour absorption lines at 183.31 GHz corresponding to the channels 3 (183.31 ± 1 GHz), 4 (183.31 ± 3 GHz) and 5 (183.31 ± 7 GHz) of the Advanced Microwave Sounding Unit module B (AMSU-B) and of the Microwave Humidity Sounder (MHS) flying on NOAA-15-18 and Metop-A satellite series, respectively.The method retrieves rain rates by exploiting the extinction of radiation due to rain drops following four subsequent steps. After ingesting the satellite data stream, the window channels at 89 and 150 GHz are used to compute scattering-based thresholds and the 183-WSLW module for rainfall area discrimination and precipitation type classification as stratiform or convective on the basis of the thresholds calculated for land/mixed and sea surfaces. The thresholds are based on the brightness temperature difference Δwin = TB89 ? TB150 and are different over land (L) and over sea (S): cloud droplets and water vapour (Δwin < 3 K L; Δwin < 0 K S), stratiform rain (3 K < Δwin < 10 K L; 0 K < Δwin < 10 K S), and convective rain (Δwin > 10 K L and S). The thresholds, initially empirically derived from observations, are corroborated by the simulations of the RTTOV radiative transfer model applied to 20000 ECMWF atmospheric profiles at midlatitudes and the use of data from the Nimrod radar network. A snow cover mask and a digital elevation model are used to eliminate false rain area attribution, especially over elevated terrain. A probability of detection logistic function is also applied in the transition region from no-rain to rain adjacent to the clouds to ensure continuity of the rainfall field. Finally, the last step is dedicated to the rain rate retrieval with the modules 183-WSLS (stratiform) and 183WSLC (convective), and the module 183-WSL for total rainfall intensity derivation.A comparison with rainfall retrievals from the Goddard Profiling (GPROF) TRMM 2A12 algorithm is done with good results on a stratiform and hurricane case studies. A comparison is also conducted with the MSG-based Precipitation Index (PI) and the Scattering Index (SI) for a convective-stratiform event showing good agreement with the 183-WSLC retrieval. A complete validation of the product is the subject of Part II of the paper.  相似文献   

15.
北京大气能见度的主要影响因子   总被引:4,自引:3,他引:1       下载免费PDF全文
利用北京市道面自动气象站、国家级自动气象站等多种观测数据分析北京地区2007—2015年能见度及其主要影响因子, 并挑选两次典型低能见度事件过程进行详细分析。从空间分布看, 北京西北地区能见度明显高于中心城区和东南大部地区。从时间分布看, 北京地区平均能见度最大值出现在5月, 最小值出现在7月; 日间的最低值多出现在06:00(北京时, 下同)左右, 冬季略向后推迟; 最高值多出现在16:00前后, 冬季略有提前。整体而言, 2007—2015年北京地区发生低能见度事件的概率为62.14%, 且发生低能见度的事件集中于1~5 km, 霾事件中干霾、湿霾的发生频率分别为86.13%和13.87%。能见度的主要影响因子为相对湿度、风速和PM2.5浓度。其中, 能见度与风速呈正相关, 与相对湿度和PM2.5浓度呈反相关。需要指出的是, 当相对湿度增加至80%, 能见度受PM2.5浓度的影响程度在下降, 而主要受相对湿度的影响。基于所选个例, 当北京地区出现湿霾事件时, 能见度的恶化程度远高于干霾事件, 且PM2.5浓度需比干霾事件时下降得更低才能有效改善能见度。  相似文献   

16.
To investigate the interannual variations of particulate matter (PM) pollution in winter, this paper examines the pollution characteristics of PM with aerodynamic diameters of less than 2.5 and 10 μm (i.e., PM2.5 and PM10), and their relationship to meteorological conditions over the Beijing municipality, Tianjin municipality, and Hebei Province—an area called Jing–Jin–Ji (JJJ, hereinafter)—in December 2013–16. The meteorological conditions during this period are also analyzed. The regional average concentrations of PM2.5 (PM10) over the JJJ area during this period were 148.6 (236.4), 100.1 (166.4), 140.5 (204.5), and 141.7 (203.1) μg m–3, respectively. The high occurrence frequencies of cold air outbreaks, a strong Siberian high, high wind speeds and boundary layer height, and low temperature and relative humidity, were direct meteorological causes of the low PM concentration in December 2014. A combined analysis of PM pollution and meteorological conditions implied that control measures have resulted in an effective improvement in air quality. Using the same emissions inventory in December 2013–16, a modeling analysis showed emissions of PM2.5 to decrease by 12.7%, 8.6%, and 8.3% in December 2014, 2015, and 2016, respectively, each compared with the previous year, over the JJJ area.  相似文献   

17.
This study incorporates observations from Array of Real-time Geostrophic Oceanography (ARGO) floats and surface drifters to identify seasonal circulation patterns at the surface, 1000 m, 1500 m, and 2000 m in the northwest Indian Ocean, and quantify velocities associated with them. A skill comparison of the Simple Ocean Data Assimilation (SODA) reanalysis output was also performed to contribute to the understanding of the circulation dynamics in this region.Subsurface currents were quantified and validated using the ARGO float data. Surface currents were identified using surface drifter data and compared to the subsurface observations to enhance our previous understanding of surface circulations. Quantified Southwest Monsoon surface currents include the Somali Current (vmax = 179.5 cm/s), the East Arabian Current (vmax = 52.3 cm/s), and the Southwest Monsoon Current (vmax = 51.2 cm/s). Northeastward flow along the Somali coast is also observed at 1000 m (vmax = 26.1 cm/s) and 1500 m (vmax = 12.7 cm/s). Currents associated with the Great Whirl are observed at the surface (vmax = 161.4 cm/s) and at 1000 m (vmax = 16.2 cm/s). In contrast to previous studies, both ARGO and surface drifter data show the Great Whirl can form as early as the boreal Spring intermonsoon, lasting until the boreal Fall intermonsoon. The Arabian Sea exhibits eastward/southeastward flow at the surface, 1000 m, 1500 m, and 2000 m. Quantified Northeast Monsoon surface currents include the Somali Current (vmax = 97.3 cm/s), Northeast Monsoon Current (vmax = 30.0 cm/s), and the North Equatorial Current (vmax = 28.5 cm/s). Southwestward flow along the Somali coast extends as deep as 1500 m.Point-by-point vector and scalar correlations of SODA output to ARGO and surface drifter data showed that surface SODA output and surface drifter data generally produced a strong correlation attributed to surface currents strongly controlled by the monsoons, while subsurface correlations of SODA output and ARGO were mostly insignificant due to variability associated with intermonsoonal transitions. SODA output produced overall smaller velocities than both observational datasets. Assimilating ARGO velocities into the SODA reanalysis could improve subsurface velocity assimilation, especially during the boreal fall and spring when ARGO observations suggest that flow is highly variable.  相似文献   

18.
针对2013年1月江苏淮安地区发生的一次连续性雾霾天气过程,分析该天气过程中PM10和PM2.5的质量浓度演变特征、能见度与气象要素之间的关系、中低层环流特征以及污染物来源。结果表明:雾霾期间PM10和PM2.5质量浓度最低值出现在05:00至07:00(北京时间,下同)和13:00至17:00,最高值出现在21:00至23:00,PM10和PM2.5质量浓度并非同时达到极大值;持续变化较小的气压梯度、较低的风速、相对湿度的增大以及PM2.5和PM10质量浓度的增高是雾霾发生发展的必要条件;能见度与气压、相对湿度、PM2.5质量浓度的相关性较好,建立回归方程,对能见度的整体变化趋势拟合效果较好;高空环流形势平稳、中低层的暖平流、持续稳定少动的地面高压场分布为雾霾天气的持续发生发展提供了有利的形势背景;稳定的层结结构、中低层偏东及偏东北方向气团的输送、本地污染源以及严重的空气污染是此次过程中能见度偏低、霾天数较多的主要原因。  相似文献   

19.
A mooring equipped with 200 high-resolution temperature sensors between 6 and 404 m above the bottom was moored in 1890 m water depth above a steep, about 10° slope of Mount Josephine, NE-Atlantic. The sensors have a precision of less than 0.5 mK. They are synchronized via induction every 4 h so that the 400 m range is measured to within 0.02 s, every 1 s. Thin cables and elliptical buoyancy assured vertical mooring motions to be smaller than 0.1 m under maximum 0.2 m s−1 current speeds. The local bottom slope is supercritical for semidiurnal internal tides by a factor of two. Exploring a one-month record in detail, the observations show: 1/semidiurnal tidal dominance in variations of dissipation rate ε, eddy diffusivity Kz and temperature, but no significant correlation between the records of ε and total kinetic energy, 2/a variation with time over four orders of magnitude of 100-m vertically averaged ε, 3/a local minimum in density stratification between 50 and 100 m above the bottom, 4/a gradual decrease in daily or longer averaged ε and Kz by one order of magnitude over a vertical distance of 250 m, upwards from 150 m above the bottom, 5/monthly mean values of <[ε]> = 2 ± 0.5 × 10−7 m2 s−3, <[Kz]> = 8 ± 3 × 10−3 m2 s−1 averaged over the lower 150 m above the bottom.  相似文献   

20.
The chemical mass balance model was applied to atmospheric Polycyclic Aromatic Hydrocarbons (PAHs) in Istanbul, Turkey. A total of 326 airborne samples were collected and analyzed for 16 PAHs and Total Suspended Particles (TSP) in the September 2006–December 2007 period at three monitoring stations: Yildiz, DMO (urban sites) and Kilyos (rural site). The total average PAH concentrations were 100.66 ± 61.26, 84.63 ± 46.66 and 25.12 ± 13.34 ng m?3 and the TSP concentrations were 101.16 ± 53.22, 152.31 ± 99.12, 49.84 ± 18.58 μg m?3 for Yildiz, DMO and Kilyos stations respectively. At all the sites, the lighter compounds were the most abundant, notably Nap, AcPy and PA. The average correlation values between TSP and total heavier PAH were greater than 0.5 for Yildiz and DMO stations. The patterns of PAH and TSP concentrations showed spatial and temporal variations. PAH concentrations were evaluated for the PAH contribution from four sources (diesel engines, gasoline engines, natural gas combustion, and coal + wood burning). Vehicle emissions appear to be the major source with contributions of 61.2%, 63.3% and 54.1% for Yildiz, DMO and Kilyos stations respectively. Seasonal and yearly variations had different trends for all sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号