首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The restricted environment of the Black Sea is particularly sensitive to climatic and oceanographic fluctuations, owing to its connection with the Mediterranean Sea via the narrow Bosphorus Strait. The exact mechanism and timing of the most recent connection between these water bodies is controversial with debate on the post-glacial history of the Black Sea being dependent on radiocarbon dating for numerical ages. Here we present new 23 accelerator mass spectrometer (AMS) radiocarbon ages on peat and bivalve molluscs, supported by the first amino acid racemization (AAR) dating of bivalve molluscs (n = 66) in the Black Sea. These data indicate infilling of the Black Sea during the early Holocene from an initial depth 107 m below sea-level, and 72 m below that of the Bosphorus Sill. These data combined with a review of previous radiocarbon ages has enabled a unique perspective on the post-glacial Black Sea. A sea-level curve based on conventional and AMS radiocarbon ages on peat and AMS-based ages on Dreissena sp. shells indicate the water-level in the earlier lake phase continued, until the early Holocene, to be lower than the Bosphorus Sill after the Younger Dryas ended. However, the absence of AMS-dated mollusc ages from the shelves of this basin older than the Younger Dryas is suggestive of sub-aerial exposure of the shelves, and comparatively lower water-levels when the Younger Dryas began. Thus post-glacial outflow from the Black Sea occurred through a lowered or open Bosphorus seaway. Basin-wide radiocarbon ages on peat indicate a prompt increase in water-level from that of the pre-existing and unconnected palaeo-lake during the earliest Holocene (9600–9200 cal a BP). Mass colonisation of the Black Sea by Mediterranean taxa did not occur until salinity had risen sufficiently, a process which took 1000 a or more from the initial transgressive event. This gradual change in salinity contrasts with the prompt transgression which would have taken ~400 a to occur.  相似文献   

2.
A catastrophic flooding of the Black Sea basin was proposed to have occurred during its reconnection to the ocean in the early Holocene. Possible cultural consequences of the flood include the migration of Neolithic farmers from around the Black Sea towards central Europe as well as the creation of flood myths. Stratigraphic and paleo-geomorphologic information from Danube delta aided by radiocarbon ages on articulated mollusks constrain the level in the Black Sea before the marine reconnection to ca 30 m below the present sea level rather than 80 m or lower. If the flood occurred at all, the sea level increase and the flooded area during the reconnection were significantly smaller than previously proposed.  相似文献   

3.
This paper presents two dinoflagellate cyst records from the south‐western shelf of the Black Sea. A new site, MAR05‐13, from the Sakarya shelf is described and placed into context with site MAR02‐45, ~250 km distant on the Thracian shelf. The records provide a centennial resolution of surface water conditions in the Holocene. Analysis of the data suggests that the surface salinity of the south‐western shelf increased in a gradual and progressive manner. In the period ~11 000–9000 cal a BP the assemblages suggest surface‐water salinities between 7–13 psu. The initial arrival of euryhaline species, ~8100 cal a BP, is linked to the reconnection of the Black Sea and Marmara Sea. The suggested surface water changes related to the reconnection took approximately 1000 years. Following this initial change in assemblages, a further increase in the number of euryhaline species is noted between 5000 and 4000 cal a BP. This is linked to the establishment of more saline surface‐water conditions, close to present‐day values. The record for MAR05‐13 highlights the complexity of the changes in cyst assemblages during the mid‐Holocene. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
The laminated lacustrine sediments deposited in the last glacial Lake Lisan represent annual deposits of primary aragonite and silty detritus that reflect the annual supply of bicarbonate‐bearing freshwater to the lake. A varve‐counting curve was constructed for the time interval of ca. 17.4–22 cal. ka BP based on aragonite U/Th, and atmospheric radiocarbon ages of organic debris recovered from the studied section. Radiocarbon in the primary (evaporitic) aragonite comprises both atmospheric and old carbon (reflecting the reservoir age). The aragonite reservoir ages were determined by comparing the aragonite radiocarbon dates to the varve counting curve, and are found to lie in the range 1900–600 a and display a continuous decline. This opens the possibility for high (annual) resolution monitoring of the reservoir age, similar in quality to tree ring counting, during the upper part of Marine Isotope Stage (MIS) 2. Our work also demonstrates that a ‘uniform’ reservoir age correction is inappropriate when determining the chronology of short‐term climate events in lacustrine environments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
During and after deglaciation, Lake Vättern developed from a proglacial lake situated at the westernmost rim of the Baltic Ice Lake (BIL), into a brackish water body connecting the North Sea and the Baltic Sea, and finally into an isolated freshwater lake. Here we present geochemical and mineralogical data from a 70‐m composite sediment core recovered in southern Lake Vättern. Together with a radiocarbon age model of this core, we are able to delineate the character and timing of the different lake stages. In addition to a common mineralogical background signature seen throughout the sediment core, the proglacial sediments bear a calcite imprint representing ice‐sheet transported material from the limestone bedrock that borders the lake basin in the northeast. The proglacial fresh to brackish water transition is dated to 11 480±290 cal. a BP and is in close agreement with other regional chronologies. The brackish period lasted c. 300 years and was followed by a c. 1600 year freshwater period before the Vättern basin became isolated from the Initial Littorina Sea. Decreasing detrital input, increasing δ13C values and the appearance of diatoms in the upper 15 m of the sediment succession are interpreted as an overall increase in biological productivity. This mode of sedimentation continues until the present and is interpreted to mark the final isolation of the lake at 9530±50 cal. a BP. Consequently, the isolation of Lake Vättern was not an outcome of the Ancylus Lake regression, but rather because of ongoing continental uplift in the early Littorina period.  相似文献   

6.
A mathematical model describing the Black Sea level change in the Late Pleistocene-Holocene is offered. A theoretical curve for temporal change in the sea level is obtained. It is established that, in the range from 20 to 12 ky BP, the sea level rose to ∼20 m and fluctuated with various amplitudes and periods. In the range from 12 to 11 ky BP during the Bosphorus Strait formation, there was a sea regression by 30–50 meters, and level of the Black Sea dropped to the World Ocean level. Further, it mirrored variation of the ocean level.  相似文献   

7.
Lake Ladoga in northwestern Russia is Europe's largest lake. The postglacial history of the Ladoga basin is for the first time documented continuously with high temporal resolution in the upper 13.3 m of a sediment core (Co1309) from the northwestern part of the lake. We applied a multiproxy approach including radiographic imaging, (bio‐)geochemical and granulometric analyses. Age control was established combining radiocarbon dating with varve chronology, the latter anchored to a correlated radiocarbon age from a lake close by. The age‐depth model reveals the onset of glacial varve sedimentation at 13 910±140 cal. a BP, when Lake Ladoga was part of the Baltic Ice Lake. Linear extrapolation of published retreat rates of the Scandinavian Ice Sheet provides a formation age of the Luga moraine close to Lake Ladoga's southern shore of 14.5–15.9 cal. ka BP, older than previously assumed. Varve sedimentation covers the Bølling/Allerød interstadial, the Younger Dryas stadial and the Early Holocene. Varve‐thickness variations, conjoined with grain‐size and geochemical variations, inform about the relative position of the Scandinavian Ice Sheet and the climate during the deglaciation phase. The upper limit of the varved succession marks the change from glaciolacustrine to normal lacustrine sedimentation and post‐dates the drainage of the Baltic Ice Lake as well as the formation of the Salpausselkä II moraine north of Lake Ladoga, by c. 250 years. The Holocene sediment record is divided into three periods in the following order: (i) a lower transition zone between the Holocene boundary and c. 9.5 cal. ka BP, characterized by mostly massive sediments with low organic content, (ii) a phase with increased organic content from c. 9.5 to 4.5 cal. ka BP corresponding to the Holocene Thermal Maximum, and (iii) a phase with relatively stable sedimentation in a lacustrine environment from c. 4.5 cal. ka BP until present.  相似文献   

8.
In order to quantify the reservoir age in Baltic Sea sediment, one sedimentary sequence from an isostatically isolated basin was subject to high-resolution AMS radiocarbon dates. Diatom analysis confirmed deposition during the Litorina Sea stage and later, in a freshwater lake. Macrofossils from well preserved seeds and other remnants from terrestrial plants were used for AMS datings. It is assumed that these fragile plant remains are not redeposited or affected by internal ages. The ages obtained from the macrofossils range from 6460±125 to 5580±75 14C yr BP. By comparing these radiocarbon ages with those obtained by bulk sediment dates, it was obvious that the bulk samples were affected by reservoir ages, resulting in too old ages. The reservoir ages varied within the sediment column; during the most saline phase, the reservoir age was approximately 750 yr, shortly after the isolation ca 400 yr and in the freshwater lake, the age differences between the two series were neglectable.  相似文献   

9.
10.
A pollen record from Huguangyan Maar Lake documents regional palaeovegetation and palaeoclimate changes in southern China over the last 30 000 years. Huguangyan Maar Lake is located close to the South China Sea (SCS) coastline and is influenced by the East Asian Monsoon (EAM). The pollen assemblages show a succession of vegetation and climate changes. During the Last Glaciation, 30–15.8 cal. ka BP, the Huguangyan area was dominated by subtropical evergreen‐deciduous forest with grassland surrounding the lake, indicating a colder and drier climate than today. During 15.8–11 cal. ka BP, the study area experienced several climatic fluctuations. From 11 to 2 cal. ka BP, the climate shifted to warmer and wetter conditions. After the Holocene Optimum in the early Holocene, the temperature and precipitation decreased. The sediment record of the last 2000 years cannot be used to interpret natural palaeoclimate changes due to the intense anthropogenic influences. Overall, however, the Huguangyan pollen archive highlights the rapid responses of subtropical vegetation to insolation changes in southern China.  相似文献   

11.
《Quaternary Science Reviews》2007,26(9-10):1197-1203
Reconstructions of the British–Irish Ice Sheet (BIIS) during the Last Glacial Maximum (LGM) in the Celtic Sea and southern Ireland have been hampered by a paucity of well-dated stratigraphic records. As a result, the timing of the last advance of the largest outlet of the BIIS, the Irish Sea Ice Stream, to its maximum limit in the Celtic Sea has been variously proposed as being pre-last glaciation, Early Devensian and LGM. The Irish Sea Till was deposited by the Irish Sea Ice Stream during its last advance into the Celtic Sea. We present 26, stratigraphically well constrained, new AMS radiocarbon dates on glacially transported marine shells from the Irish Sea Till in southern Ireland, which constrain the maximum age of this advance. The youngest of these dates indicate that the BIIS advanced to its overall maximum limit in the Celtic Sea after 26,000–20,000 14C yr BP, thus during the last glaciation. The most extensive phase of BIIS growth therefore appears to have occurred during the LGM, at least along the Celtic Sea and Irish margins. These data further demonstrate that the uppermost inland glacial tills, from the area of supposed “older drift” in southern Ireland, a region previously regarded as having been unglaciated during the LGM also date from the last glaciation. Thus most of southern Ireland was ice covered at the LGM. Advance of the BIIS to its maximum southern limit in the Celtic Sea may have been a short-lived glaciodynamic response facilitated by subglacial bed conditions, rather than a steady-state response to climate forcing alone.  相似文献   

12.
Holocene relative shore-level changes and development of the Ģipka palaeolagoon in the western Gulf of Riga are reconstructed using multiproxy analyses by combining litho-, biostratigraphical and chronological data with remote sensing and geophysical data. The results show the development of the Ģipka basin from the Ancylus Lake/Initial Litorina Sea coastal zone (before c. 9.1 cal. ka BP) to coastal fen (c. 9.1 to 8.4 cal. ka BP) and gradual development of the Litorina Sea lagoon (c. 8.4 to 4.8 cal. ka BP) and its transition to a freshwater coastal lake (c. 4.8 to 4.6 cal. ka BP), fen (c. 4.6 to 4.2 cal. ka BP), and river floodplain (since c. 4.2 cal. ka BP). The highest shorelines of the Ancylus Lake and Litorina Sea were mapped at an elevation of 12–11 and 9 m a.s.l., respectively. A new relative shore level (RSL) curve for the western Gulf of Riga was constructed based on RSL data from the Ģipka area and from nearby Ruhnu Island studied earlier. The reconstruction shows that the beginning of the last marine transgression in the western Gulf of Riga started at c. 8.4 cal. ka BP, and concurred with the 1.9 m RSL rise event recorded from the North Sea basin. Diatom analysis results indicate the existence of the Ģipka lagoon between c. 7.7 and 4.8 cal. ka BP, with the highest salinity c. 6.1 cal. ka BP. During the existence of the brackish lagoon, settlement sites of the Neolithic hunter–gatherer groups existed on the shores of the lagoon in the period c. 6.0 to 5.0 cal. ka BP.  相似文献   

13.
The Baltic Sea has experienced a complex geological history, with notable swings in salinity driven by changes to its connection with the Atlantic and glacio‐isostatic rebound. Sediments obtained during International Ocean Drilling Program Expedition 347 allow the study of the effects of these changes on the ecology of the Baltic in high resolution through the Holocene in areas where continuous records had not always been available. Sites M0061 and M0062, drilled in the Ångermanälven Estuary (northern Baltic Sea), contain records of Holocene‐aged sediments and microfossils. Here we present detailed records of palaeoecological and palaeoenvironmental changes to the Ångermanälven Estuary inferred from diatom, palynomorph and organic‐geochemical data. Based on diatom assemblages, the record is divided into four zones that comprise the Ancylus Lake, Littorina Sea, Post‐Littorina Sea and Recent Baltic Sea stages. The Ancylus Lake phase is initially characterized as oligotrophic, with the majority of primary productivity in the upper water column. This transition to a eutrophic state continues into the Initial Littorina Sea stage. The Initial Littorina Sea stage contains the most marine phase recorded here, as well as low surface water temperatures. These conditions end before the Littorina Sea stage, which is marked by a return to oligotrophic conditions and warmer waters of the Holocene Thermal Maximum. Glacio‐isostatic rebound leads to a shallowing of the water column, allowing for increased benthic primary productivity and stratification of the water column. The Medieval Climate Anomaly is also identified within Post‐Littorina Sea sediments. Modern Baltic sediments and evidence of human‐induced eutrophication are seen. Human influence upon the Baltic Sea begins c. 1700 cal. a BP and becomes more intense c. 215 cal. a BP.  相似文献   

14.
A study of changes in siliceous microfossil assemblages and chemical analyses in a well-dated offshore sediment core from the Bornholm Basin, southwestern Baltic Sea, is carried out with the objective of increasing knowledge of the Holocene history of the area. The core covers about 11 300 calendar years from the brackish phase of the Yoldia Sea stage to the present. The first weak marine influence in the Ancylus Lake stage is recorded about 10 100 cal. yr BP (c. 8900 14C BP), indicating a complex transition to the Litorina Sea with different phases of brackish-water inflow. The lithology, organic carbon content and C/N and C/S ratios indicate no major changes in the sedimentary environment during the Litorina-Post-Litorina Sea stages. A high productivity event recorded in the Post-Litorina Sea stage around 950 cal. yr BP correlates with the Medieval warm event. A biostratigraphical change indicating a colder climate is recorded in the sediment at about 800 cal. yr BP, which might mark the beginning of the Little Ice Age.  相似文献   

15.
《Quaternary Science Reviews》2007,26(5-6):732-742
The radiocarbon reservoir age of high latitude North Atlantic Ocean surface water is essential for linking the continental and marine climate records, and is expected to vary according to changes in North Atlantic deep water (NADW) production. Measurements from this region also provide important input and/or tests of oceanic radiocarbon using 3-D global ocean circulation models. Here, we present a surface water radiocarbon reservoir age record of the high latitude western North Atlantic for the deglacial period via the use of fossil cold-water corals growing in waters that are rapidly exchanged with nearby surface waters. The reservoir age of high latitude North Atlantic surface waters was computed from the radiocarbon age difference between our radiocarbon calibration record (http://radiocarbon.LDEO.columbia.edu) and our marine radiocarbon data. 230Th/234U/238U dates provide the absolute coral ages. Our high latitude North Atlantic Ocean reservoir age data combined with recalculated reservoir ages based on published coexisting terrestrial and marine material and Vedde ash radiocarbon dates from central and eastern North Atlantic show modern values (380±140 year, n=14) during the Bolling and Allerod warm period and a 200 year increase in reservoir age (590±130 year, n=10) during the entire Younger Dryas (YD) cold episode. The reservoir age then decreased to 270±20 year (n=2) at the Preboreal/YD transition, although the dates are too sparse for us to be confident in this estimate. We are not able to resolve the timing of the transition to increased reservoir ages from the mid-Allerod to the YD due to the relatively small change and correspondingly large uncertainty in the estimates. The atmospheric Δ14C record derived from our atmospheric radiocarbon record displays a 40 per mil increase from 12,900 to 12,650 cal years BP, coincident with the shift to high reservoir ages in the early YD cold event. Intrusion of 14C depleted Antarctic Intermediate Water (AAIW) to the high latitude North Atlantic and reduction of NADW formation are possible causes for the coincident shift to high reservoir ages in the North Atlantic surface ocean and increased atmospheric Δ14C during the beginning of the YD event.  相似文献   

16.
We present evidence of a submerged early Holocene landscape off the Blekinge coastline in the Baltic Sea, dating to the Yoldia Sea and Initial Littorina Sea Stages when the water level was lower than at present. 14C dated wood remains obtained by surveillance diving and new archaeological findings in combination with bathymetric analyses and interpolations between other sites across the Baltic Sea were used for refinement of the shoreline displacement history of the region. The new results reveal a Yoldia Sea lowstand level at 20 m b.s.l., a subsequent Ancylus Lake highstand at 3 m a.s.l., and then a period of relatively stable water level at about 4 m b.s.l. during the Initial Littorina Sea Stage, several metres lower than previously concluded. The refined shoreline displacement record was used for palaeo‐reconstructions of the study area during four key periods, the Yoldia Sea lowstand phase, the Ancylus Lake transgression phase, the Ancylus Lake highstand phase and the Initial Littorina Sea lowstand phase, using elevation data and map algebra functions. A flow accumulation algorithm was used for reconstruction of the now submerged prehistoric river network in order to identify areas of high archaeological potential. Our revised shoreline displacement record, and especially its lowstand period during the Initial Littorina Sea Stage around 9500–8500 cal. a BP, raises future demands not only for specific archaeological shallow‐water surveys down to 4 m b.s.l. in the area, but also for a renewed cultural heritage management strategy. The results of this study fill an important gap in the early Holocene part of the shoreline displacement history of Blekinge, contributing to its completion since the deglaciation, which is unique for the Baltic Sea.  相似文献   

17.
Many Northern Hemisphere paleoclimatic records, including ice cores, speleothems, lake sediments, ocean cores and glacier chronologies, indicate an abrupt cooling event about 8200 cal yr BP. A new well-dated series of sediment cores taken from Brown's Lake, a kettle in Northeast Ohio, shows two closely spaced intervals of loess deposition during this time period. The source of loess is uncertain; however, it is likely from an abandoned drainage and former glacial lake basin located to the north of the stagnant ice topography that gave rise to the kettle lake. Strong visual stratigraphy, loss on ignition data and sediment grain size analyses dated with 3 AMS radiocarbon dates place the two intervals of loess deposition between 8950 and 8005 cal yr BP. The possibility of a two-phase abrupt climate change at this time is a finding that has been suggested in other research. This record adds detail to the spatial extent and timing as well as possible structure of the 8.2-ka abrupt climate change event.  相似文献   

18.
Molluscs, ostracodes, diatoms, pollen, plant macrofossils, peat, and wood have been found in glacial Lake Algonquin sediments, and estuarine-alluvial sediments of the same age, in southern Ontario. Molluscs and ostracodes are particularly abundant and widespread. Pollen analysis of Lake Algonquin sediments, bogs on the Algonquin terrace, and upland bogs above the Algonquin terrace, indicate that Lake Algonquin was still in existence at the time of the spruce-pine pollen transition, previously dated at an average of 10,600 yr BP at a number of sites in Michigan, Ohio, and southern Ontario. Wood in estuarine-alluvial sediments graded to the Algonquin level is of similar radiocarbon age. Evidence from several sites in the eastern Great Lakes area suggests the presence of a preceding low-water stage (Kirkfield outlet stage); drowned and alluviated valleys and fining-upward sediment sequences have been identified in this study as further supporting evidence. Lake Algonquin drained from the southern sites by isostatic tilting and eventual opening of the “North Bay outlet” some time shortly after 10,400 yr BP.Our radiocarbon dates suggest the low-water stage has an age of about 11,000 yr BP, and that Lake Algonquin drained 10,000–15,000 y. a. Dates previously published for the Lake Michigan basin are generally too young in comparison with ours, and dates on the Champlain Sea are generally too old. More critical evaluation of all dating results is desirable.From fossil remains we suggest a rapidly expanding fauna in the waters of Lake Algonquin. The spruce pollen period was a time of rapid faunal and floral migration, when the ice front was retreating from Kirkfield to North Bay, Ontario. Diversity of some species and fossil numbers increased substantially at the transition from spruce to pine just before Lake Algonquin drained.  相似文献   

19.
薛积彬  钟巍 《沉积学报》2008,26(4):647-654
根据中国西北干旱区巴里坤湖BLK 1剖面沉积物的粒度分析,采用粒级—标准偏差法提取了对沉积环境变化敏感的粒度组分。结果表明,巴里坤湖沉积物中45~170 μm粒级组分含量和平均粒径对研究区区域性风沙活动较为敏感,据此结合14C测年数据重建了研究区9400 cal aBP以来的风沙活动历史。在过去的2 000年内,巴里坤湖地区尘暴事件多发或强风沙活动时段主要出现在240~440 cal aBP、600~1 280 cal aBP和1 400~1 800 cal aBP期间,这些时段同历史时期的雨土频率高值期、古里雅冰芯阴阳离子高含量期较为一致。从更长地质时期来看,8 000~8 300 cal aBP、7 400~7 700 cal aBP、6 500~7 000 cal aBP时段,特别是在中全新世(3 900~6 100 cal aBP)期间,区域性的尘暴事件或强风沙活动尤其频繁,这些时段同古里雅冰芯中微粒浓度、敦德冰芯中的微粒含量记录均可以进行良好的对比。干旱区封闭湖泊沉积是记录地质历史时期风沙活动的良好载体,但由于气候环境变化往往具有较强的区域性特征,因此,对某一剖面沉积物环境敏感粒度组分的提取及应用不具有普适性。  相似文献   

20.
Twenty-two new radiocarbon ages from Skagit valley provide a detailed chronology of alpine glaciation during the Evans Creek stade of the Fraser Glaciation (early marine oxygen isotope stage (MIS) 2) in the Cascade Range, Washington State. Sediments at sites near Concrete, Washington, record two advances of the Baker valley glacier between ca. 30.3 and 19.5 cal ka BP, with an intervening period of glacier recession about 24.9 cal ka BP. The Baker valley glacier dammed lower Skagit valley, creating glacial Lake Concrete, which discharged around the ice dam along Finney Creek, or south into the Sauk valley. Sediments along the shores of Ross Lake in upper Skagit valley accumulated in glacial Lake Skymo after ca. 28.7 cal ka BP behind a glacier flowing out of Big Beaver valley. Horizontally laminated silt and bedded sand and gravel up to 20 m thick record as much as 8000 yr of deposition in these glacially dammed lakes. The data indicate that alpine glaciers in Skagit valley were far less extensive than previously thought. Alpine glaciers remained in advanced positions for much of the Evans Creek stade, which may have ended as early as 20.8 cal ka BP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号