首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports in situ observations on barite (0 0 1) surface dissolution behavior in 0.1–0.001 M NaCl solutions at 30 °C using atomic force microscopy (AFM). The step retreating on barite (0 0 1) surfaces changed with increasing NaCl solution concentrations. In solutions with a higher NaCl concentration (⩾0.01 M), many steps showed curved or irregular fronts during the later experimental stage, while almost all steps in solutions with a lower NaCl concentration exhibited straight or angular fronts, even during the late stage. The splitting phenomenon of the initial 〈h k 0〉 one-layer steps (7.2 Å) into two half-layer steps (3.6 Å) occurred in all NaCl solutions, while that of the initial [0 1 0] one-layer steps observed only in the 0.1 M NaCl solution. The step retreat rates increased with an increasing NaCl solution concentration. We observed triangular etch pit and deep etch pit formation in all NaCl solutions, which tended to form late in solutions with lower NaCl concentrations. The deep etch pit morphology changed with increasing NaCl solution concentrations. A hexagonal form elongated in the [0 1 0] direction was bounded by the {1 0 0}, {3 1 0}, and (0 0 1) faces in a 0.001 M NaCl solution, and a rhombic form was bounded by the {5 1 0} and (0 0 1) faces in 0.01 M and 0.1 M NaCl solutions. An intermediate form was observed in a 0.005 M NaCl solution, which was defined by {1 0 0}, a curved face tangent to the [0 1 0] direction, {3 1 0}, and (0 0 1) faces: the intermediate form appeared between the hexagonal and rhombic forms in solutions with lower and higher NaCl concentrations, respectively. The triangular etch pit and deep etch pit growth rates also increased with the NaCl solution concentration. Combining the step and face retreat rates in NaCl solutions estimated in this AFM study as well as the data on the effect of water temperature on the retreat rates reported in our earlier study, we produced two new findings. One finding is that the retreat rates increase by approximately two-fold when the NaCl solution concentration increases by one order of magnitude, and the other finding is that the retreat rate increase due to a one order of magnitude increase in the NaCl concentration corresponds to an increase of approximately 8 °C in water temperature. This correlation may help to understand and evaluate increasing dissolution kinetics induced by the different mechanisms where barite dissolution is promoted by the catalytic effect of Na+ and Cl ions (through an increase in the NaCl solution concentration) or by an increase in the hydration of Ba2+ and SO42− (through an increase in water temperature).  相似文献   

2.
The Shapinggou porphyry Mo deposit, one of the largest Mo deposits in Asia, is located in the Dabie Orogen, Central China. Hydrothermal alteration and mineralization at Shapinggou can be divided into four stages, i.e., stage 1 ore-barren quartz veins with intense silicification, followed by stage 2 quartz-molybdenite veins associated with potassic alteration, stage 3 quartz-polymetallic sulfide veins related to phyllic alteration, and stage 4 ore-barren quartz ± calcite ± pyrite veins with weak propylitization. Hydrothermal quartz mainly contains three types of fluid inclusions, namely, two-phase liquid-rich (type I), two- or three-phase gas-rich CO2-bearing (type II) and halite-bearing (type III) inclusions. The last two types of fluid inclusions are absent in stages 1 and 4. Type I inclusions in the silicic zone (stage 1) display homogenization temperatures of 340 to 550 °C, with salinities of 7.9–16.9 wt.% NaCl equivalent. Type II and coexisting type III inclusions in the potassic zone (stage 2), which hosts the main Mo orebodies, have homogenization temperatures of 240–440 °C and 240–450 °C, with salinities of 34.1–50.9 and 0.1–7.4 wt.% NaCl equivalent, respectively. Type II and coexisting type III inclusions in the phyllic zone (stage 3) display homogenization temperatures of 250–345 °C and 220–315 °C, with salinities of 0.2–6.5 and 32.9–39.3 wt.% NaCl equivalent, respectively. Type I inclusions in the propylitization zone (stage 4) display homogenization temperatures of 170 to 330 °C, with salinities lower than 6.5 wt.% NaCl equivalent. The abundant CO2-rich and coexisting halite-bearing fluid inclusion assemblages in the potassic and phyllic zones highlight the significance of intensive fluid boiling of a NaCl–CO2–H2O system in deep environments (up to 2.3 kbar) for giant porphyry Mo mineralization. Hydrogen and oxygen isotopic compositions indicate that ore-fluids were gradually evolved from magmatic to meteoric in origin. Sulfur and lead isotopes suggest that the ore-forming materials at Shapinggou are magmatic in origin. Re–Os dating of molybdenite gives a well-defined 187Re/187Os isochron with an age of 112.7 ± 1.8 Ma, suggesting a post-collisional setting.  相似文献   

3.
Based on petrographical data, three types of greisen have been characterized at the western border of Água Boa pluton: siderophyllite–topaz–quartz greisen (greisen 1), fluorite–phengite–quartz greisen (greisen 2) and quartz–chlorite–phengite greisen (greisen 3). Episyenites were also identified.Two fluids of independent origin interacted with the same protolith – a hornblende-biotite alkali feldspar granite – and produced both the greisens and potassic episyenite: (1) an acid, low-salinity (4–12 wt.% NaCl eq.), F-rich, relatively hot (400–350 °C) reduced aqueous-carbonic fluid (CH4–H2O–NaCl–FeCl2 ± KCl), which by immiscibility gave rise to fluid IA (aqueous) and IC (carbonic); and (2) a lower salinity (2–4 wt.% NaCl eq.) and temperature (200–150 °C) aqueous fluid (H2O–NaCl), which was responsible for all dilution processes. Fluid 1 seems to have had a magmatic-hydrothermal origin, while fluid 2 is probably surface-derived (meteoric water?). An alkaline, F-poorer and diluted equivalent of fluid IA was interpreted to have caused the episyenitization of the granite host rock as well as the formation of phengite-rich greisen 3. The continuos interaction of this fluid with the potassic episyenite produced a moderate- to high-salinity (20–24 wt.% NaCl eq.), low-temperature (200–100 °C) fluid (H2O–NaCl–CaCl2 ± KCl), leading to the formation of chlorite-rich zone of greisen 3 and late silicification of potassic episyenite.In the greisen 1, decreasing F-activity and increasing oxygen fugacity, as the system cooled down, favored the formation of a topaz-rich inner zone, which grades into a siderophyllite-rich zone outwardly. Greisen 2 was formed under more oxidizing conditions by fluids poorer in F than those trapped in the siderophyllite-rich zone.The oxidation of aqueous-carbonic fluid took place at three distinct stages: (i) below the FMQ buffer; (ii) between the FMQ and NNO buffers; and (iii) above the NNO buffer.The dissolution cavities generated during the episyenitization process increased the permeability of the altered rocks, resulting in an increase of the fluid/rock ratios at the potassic episyenite and greisen 3 sites.All these fluids were trapped under pressure conditions of <1.0 kbar, representing shallow crustal levels and are consistent with those that have been estimated for the Pitinga tin–granites.The oxygen fugacity, F-activity gradients and salinity variations that occurred during the cooling of the hydrothermal system, in addition to differences in permeability, were important factors in the formation of distinct greisens. They not only controlled the fluid compositional changes, but also caused the cassiterite and sulfide precipitation at the greisen sites.  相似文献   

4.
The Lanjiagou porphyry molybdenum deposit in western Liaoning Province, China, is hosted in fine-grained Jurassic granites. LA-ICP-MS zircon U–Pb analyses indicate that the crystallization of the ore-hosting granites took place 185.0 ± 1.8 Ma (MSWD = 1.4). Molybdenum mineralization in the deposit can be divided into three stages: the stockwork quartz vein stage, the planar quartz vein stage, and the fissure-filling quartz vein stage. Re–Os isotopic ages for the molybdenite from the stockwork quartz vein-type ores yielded an isochron age of 188.8 ± 9.9 Ma (MSWD = 3.0), while six samples from the planar quartz vein-type ores yielded a similar isochron age of 185.6 ± 1.2 Ma (MSWD = 0.5). Re–Os isotopic ages for the molybdenite identical, within error, to zircon U–Pb isotopic ages indicate that the molybdenum mineralization is related to the host intrusions. Apart from primary inorganic fluid inclusions (IFIs), a large number of primary organic fluid inclusions (OFIs) are found in the latter two stages of vein quartz, and minors found in the first stage. The components and characteristics of OFIs in the three stages of vein quartz differ from each other, which is also true for the IFIs. OFIs in stockwork vein quartz are characterized by halite-bearing inclusions, and organic liquids in the inclusions are brown and do not fluoresce under ultraviolet (UV) light. Homogenization temperatures (Th) for the primary IFIs coeval with OFIs of this stage ranges from 300 °C to > 450 °C, while the salinity varies from 10 to 53 wt.% NaCl equiv.. In planar vein quartz, OFIs are predominately two-phased (liquid and gas), and salt daughter minerals (halite) are absent. Organic liquids are light brown to colorless and show blue fluorescence under UV light; The Th range for the IFIs of this stage is 250–360 °C, and the salinity range is 3–17 wt.% NaCl equiv. Finally, OFIs in fissure-filling vein quartz are marked by liquid–gas inclusions. Organic liquids are generally colorless and show yellow fluorescence under UV light. The Th range for the primary IFIs is 180–240 °C and the salinity range is 4–11 wt.% NaCl equiv. Organic geochemical analyses indicate that organic matter in the Lanjiagou deposit was derived from mature crude oil. We suggest that large volumes of crude-oil-bearing non-magmatic fluids were flushed into the Lanjiagou porphyry hydrothermal system during all phases of ore formation and likely played important roles in mineralization.  相似文献   

5.
Ag-ores occur in a specific zone of the Bou Azzer Co–As deposit in the Precambrian basement of the Anti-Atlas belt (Morocco), especially in highly microfractured quartz-depleted diorite. They formed after the main Co–As stage of mineralization, but both ore stages (Co–As and Ag-ore) appear linked to similar immiscible fluids: an hyper-saline Na–Ca brine (5.5–22 wt.%. eq. NaCl and 13.5–18.5 wt.% eq. CaCl2, with Na/Ca ranging from 0.4 to 1.2 during Ag-mineralization) occurring as L + V ± halite fluid inclusions and CH4–(N2) gas dominated fluids. Pressure–temperature estimates for the Ag-stage range from 40 to 80 MPa and 150 to 200 °C e.g. at a temperature slightly lower than that of the preceding Co–As stage (200–220 °C).Chlorinity, cation (Na/Ca ca. 2.2) and halogen ratios (Cl/Br from 300 to 360) are typical of deep basinal brines, especially of surface-evaporated brines that have exceeded halite saturation. The primary brines were modified by fluid–rock interaction during burial and migration through the basement. Ag-deposition was probably favoured by dilution and cooling due to the mixing of brines with less saline fluids. Similarities between the Ag-brines from Bou Azzer, Zgounder and Imiter suggest a regional scale circulation of basinal brines during extension probably later than the Triassic, during the early stages of rifting of the Atlantic.  相似文献   

6.
The Fuxing porphyry Cu deposit is a recently discovered deposit in Eastern Tianshan, Xinjiang, northwestern China. The Cu mineralization is associated with the Fuxing plagiogranite porphyry and monzogranite, mainly presenting as various types of hydrothermal veins or veinlets in alerted wall rocks, with potassic, chlorite, phyllic, and propylitic alteration developed. The ore-forming process can be divided into four stages: stage I barren quartz veins, stage II quartz–chalcopyrite–pyrite veins, stage III quartz–polymetallic sulfide veins and stage IV quartz–calcite veins. Four types of fluid inclusions (FIs) can be distinguished in the Fuxing deposit, including hypersline (H-type), vapor-rich two-phase (V-type), liquid-rich two-phase (L-type), and trace amounts of pure vapor inclusions (P-type), but only the stage I quartz contains all types of FIs. The stages II and III quartz have two types of FIs, with exception of H- and P-types. In stage IV quartz minerals, only the L-type inclusions can be observed. The FIs in quartz of stages I, II, III and IV are mainly homogenized at temperatures of 357–518 °C, 255–393 °C, 234–322 °C and 145–240 °C, with salinities of 1.9–11.6 wt.% NaCl equiv., 1.6–9.6 wt.% NaCl equiv., 1.4–7.7 wt.% NaCl equiv. and 0.9–3.7 wt.% NaCl equiv., respectively. The ore-forming fluids of the Fuxing deposit are characterized by high temperature, moderate salinity and relatively oxidized condition. Carbon, hydrogen and oxygen isotopic compositions of quartz indicate that the ore-forming fluids were gradually evolved from magmatic to meteoric in origin. Sulfur and lead isotopes suggest that the ore-forming materials were derived from a deep-seated magma source. The Cu mineralization in the Fuxing deposit occurred at a depth of ~ 1 km, and the changes of oxygen fugacity, decompression boiling, and local mixing with meteoric water were most likely critical for the formation of the Fuxing Cu deposit.  相似文献   

7.
The phase behavior of CO2–CH4–H2S–brine systems is of importance for geological storage of greenhouse gases, sour gas disposal and enhanced oil recovery (EOR). In such projects, reservoir simulations play a major role in assisting decision makings, while modeling the phase behavior of the relevant CO2–CH4–H2S–brine system is a key part of the simulation. There is a need for an equation of state (EOS) for such system which is accurate, with wide application range (pressure, temperature and aqueous salinity), computationally efficient and easy for implementation in a reservoir simulator.In this study, an improved cubic EOS model of the system CO2–CH4–H2S–brine is developed based on the modifications of the binary interaction parameters in Peng–Robinson EOS, which is widely implemented in reservoir simulators. Thus the new model is suited for numerical implementation in reservoir simulators.The available experimental data of pure gas brine equilibrium and gas mixture solubility in water/brine are carefully reviewed and compared with the new model. From the comparison, the new model can accurately reproduce (1) the CO2–brine mutual solubility data at temperature from 0 °C to 250 °C, pressure from 1 bar to 1000 bar and NaCl molality (mole number in 1 kg water, molal is used for short) from 0 to 6 molal, (2) CH4–brine mutual solubility data at temperature from 0 °C to 250 °C, pressure from 1 bar to 2000 bar and NaCl molality from 0 to 6 molal, (3) H2S–brine mutual solubility data at temperature from 0 °C to 250 °C, pressure from 1 bar to 200 bar and NaCl molality from 0 to 6 molal, and (4) has good accuracy for gas mixture solubility in brine.  相似文献   

8.
The recently discovered Zhuxi W–Cu ore deposit is located within the Taqian–Fuchun Ore Belt in the southeastern edge of the Yangtze Block, South China. Its inferred tungsten resources, based on new exploration data, are more than 280 Mt by 2016. At least three paragenetic stages of skarn formation and ore deposition have been recognized: prograde skarn stage; retrograde stage; and hydrothermal sulfide stage. Secondly, greisenization, marmorization and hornfels formation are also observed. Scheelite and chalcopyrite are the dominant metal minerals in the Zhuxi deposit and their formation was associated with the emplacement of granite stocks and porphyry dykes intruded into the surrounding Carboniferous carbonate sediments (Huanglong and Chuanshan formations) and the Neoproterozoic slate and phyllites. The scheelite was mostly precipitated during the retrograde stage, whereas the chalcopyrite was widely precipitated during the hydrothermal sulfide stage. A muscovite 40Ar/39Ar plateau age of about 150 Ma is interpreted as the time of tungsten mineralization and molybdenite Re–Os model ages ranging from 145.9 ± 2.0 Ma to 148.7 ± 2.2 Ma (for the subsequent hydrothermal sulfide stage of activity) as the time of the copper mineralization. Our new molybdenite Re–Os and muscovite 40Ar/39Ar dating results, along with previous zircon U–Pb age data, indicate that the hydrothermal activity from the retrograde stage to the last hydrothermal sulfide stage lasted up to 5 Myr, from 150.6 ± 1.5 to 145.9 ± 1 Ma, and is approximately coeval or slightly later than the emplacement of the associated granite porphyry and biotite granite. The new ages reported here confirm that the Zhuxi tungsten deposit represents one of the Mesozoic magmatic–hydrothermal mineralization events that took place in South China in a setting of lithospheric extension during the Late Jurassic (160–150 Ma). It is suggested that mantle material played a role in producing the Zhuxi W–Cu mineralization and associated magmatism.  相似文献   

9.
Most skarn deposits are closely related to granitoids that intruded into carbonate rocks. The Cihai (>100 Mt at 45% Fe) is a deposit with mineral assemblages and hydrothermal features similar to many other typical skarn deposits of the world. However, the iron orebodies of Cihai are mainly hosted within the diabase and not in contact with carbonate rocks. In addition, some magnetite grains exhibit unusual relatively high TiO2 content. These features are not consistent with the typical skarn iron deposit. Different hydrothermal and/or magmatic processes are being actively investigated for its origin. Because of a lack of systematic studies of geology, mineral compositions, fluid inclusions, and isotopes, the genetic type, ore genesis, and hydrothermal evolution of this deposit are still poorly understood and remain controversial.The skarn mineral assemblages are the alteration products of diabase. Three main paragenetic stages of skarn formation and ore deposition have been recognized based on petrographic observations, which show a prograde skarn stage (garnet-clinopyroxene-disseminated magnetite), a retrograde skarn stage (main iron ore stage, massive magnetite-amphibole-epidote ± ilvaite), and a quartz-sulfide stage (quartz-calcite-pyrite-pyrrhotite-cobaltite).Overall, the compositions of garnet, clinpyroxene, and amphibole are consistent with those of typical skarn Fe deposits worldwide. In the disseminated ores, some magnetite grains exhibit relatively high TiO2 content (>1 wt.%), which may be inherited from the diabase protoliths. Some distinct chemical zoning in magnetite grains were observed in this study, wherein cores are enriched in Ti, and magnetite rims show a pronounced depletion in Ti. The textural and compositional data of magnetite confirm that the Cihai Fe deposit is of hydrothermal origin, rather than associated with iron rich melts as previously suggested.Fluid inclusions study reveal that, the prograde skarn (garnet and pyroxene) formed from high temperature (520–600 °C), moderate- to high-salinity (8.1–23.1 wt.% NaCl equiv, and >46 wt.% NaCl equiv) fluids. Massive iron ore and retrograde skarn assemblages (amphibole-epidote ± ilvaite) formed under hydrostatic condition after the fracturing of early skarn. Fluids in this stage had lower temperature (220°–456 °C) and salinity (8.4–16.3 wt.% NaCl equiv). Fluid inclusions in quartz-sulfide stage quartz and calcite also record similar conditions, with temperature range from 128° to 367 °C and salinity range from 0.2 to 22.9 wt.% NaCl equiv. Oxygen and hydrogen isotopic data of garnet and quartz suggest that mixing and dilution of early magmatic fluids with external fluids (e.g., meteoric waters) caused a decrease in fluid temperature and salinity in the later stages of the skarn formation and massive iron precipitation. The δ18O values of magnetite from iron ores vary between 4.1 and 8.5‰, which are similar to values reported in other skarn Fe deposits. Such values are distinct from those of other iron ore deposits such as Kiruna-type and magmatic Fe-Ti-V deposits worldwide. Taken together, these geologic, geochemical, and isotopic data confirm that Cihai is a diabase-hosted skarn deposit related to the granitoids at depth.  相似文献   

10.
Magnesian skarn-type tin deposits are relatively rare in the world. The Hehuaping cassiterite-sulfide deposit in southern China, having a total reserve of approximately 130,000 t of tin, 50,000 t of lead and 10,000 t of zinc, is identified as such type. The deposit is related to the Late Jurassic (157 Ma) Hehuaping medium- to coarse-grained biotite granite that intruded the Middle Devonian Qiziqiao dolomite Formation and the Tiaomajian sandstone Formation. Four paragenetic stages of skarn and ore formation have been recognized: I. prograde stage, II. retrograde stage, III. cassiterite-sulfide stage and IV. carbonate stage. Alteration zoning between fresh granite and unaltered country rocks can be identified. The skarn are typified by Mg-mineral assemblages of forsterite, spinel, diopside, tremolite, serpentine, talc, and phlogopite. The geochemistry of various skarn minerals shows a gradually decrease of Mg end member and, correspondingly, an increase of Fe- and especially Mn end members along the process of skarn alteration.Tin mineralization developed during the late retrograde stage resulted in cassiterite–magnetite-diopside skarn. However, the deposition of cassiterite occurred predominantly as cassiterite-sulfide veins along fractures and interlayer fracture zones during stage III. The petrogeochemistry of Hehuaping granite, as well as S- and Pb isotopic analyses suggest that the ore-forming elements have a magmatic source originated from the upper crust. The HO isotopic and fluid-inclusion analyses indicate that high-temperature ore-forming fluids in early anhydrous skarn stage (stage I) are also magmatic origin. In comparison, the retrograde fluids are characterized by relatively low salinity (2 to 10 wt.% NaCl equiv) and low temperature (220 to 300 °C), suggesting a mixed origin of meteoric waters with magmatic fluids. The major ore-forming stage III fluids are characterized by lower temperature (170 to 240 °C) and salinity (1 to 6 wt.% NaCl equiv), indicating fluid mixing could be an efficient tin-mineralizing mechanism. Meteoric waters are dominant in stage IV, resulting in a further lowering of temperature (130 to 200 °C) and salinity (0.4 to 1 wt.% NaCl equiv).  相似文献   

11.
Crnac is an intermediate sulfidation Pb–Zn–Ag epithermal deposit located within the Vardar suture zone of the Central Balkan Peninsula. The epithermal Pb–Zn–Ag mineralization consists of (i) a series of steeply-dipping veins hosted within the Jurassic amphibolites, and (ii) overlying hydrothermal-explosive breccia with angular (level IV) or rounded fragments of listwanite (surface) cemented by epithermal mineralization. The mineralization is related to the Oligocene quartz latite dykes that crosscut the Crnac antiform. Quartz latite rocks predominantly display a shoshonitic character. The obtained 40Ar/39Ar age of fresh quartz latite is 28.9 ± 0.3 Ma. Fine-grained sericite from altered quartz latite is dated at 28.6 ± 0.5 Ma. Early, alteration related fluid inclusions within quartz latite show coexistence of high-density brine and a low-density vapor-saturated phase that homogenized at 280–405 °C. Phase separation occurs at a paleodepth of 0.6 to 0.9 km.Epithermal mineralization developed in three stages: (i) early pyrite–arsenopyrite–pyrrhotite–quartz–kaolinite; (ii) main sphalerite–galena–tetrahedrite–chalcopyrite and (iii) late carbonate–pyrite–arsenopyrite assemblage. The onset of mineral deposition within epithermal veins was initiated by boiling of Na–Cl ± K ± Ca ± Mg fluid at a paleodepth of 0.6 to 0.9 km. Coexisting vapor and liquid-rich inclusions display salinities and trapping temperatures of 4 wt.% NaCl equiv., 280–370 °C and 2–27 wt.% NaCl equiv., 230–375 °C, respectively. Boiling continued throughout the deposition of the sphalerite-galena-tetrahedrite-chalcopyrite assemblage. Late stage carbonate was deposited from diluted, non-boiling, low-temperature Na–Ca–Mg–Cl ± CO2 fluid (0.2 to 4.8 wt.% NaCl equiv., 115–280 °C).About 100–150 m higher in the system, precipitation of listwanite breccia cement began as a result of boiling Na–Cl ± Ca ± Mg ± K fluid of medium salinities (2.6 to 12.1 wt.% NaCl equiv.) at temperatures of 245–370 °C. Boiling and dilution of fluids continue throughout the precipitation of the main sphalerite-galena-tetrahedrite and late, mainly carbonate assemblage. Surface listwanite breccia contain quartz phenocrysts deposited from a homogeneous fluid with a medium salinity (8–10 wt.% NaCl equiv.) and high temperatures (Th = 295–315 °C), whereas the early and main stage of a surface listwanite breccia cement precipitated from a boiling fluid of decreasing salinity and temperature. Aqueous ± CO2, high salinity (16 to 18 wt.% NaCl equiv.), low temperature (120 °C), homogeneously trapped fluid that precipitated late stage carbonates, is most likely a remnant of boiled off fluid. The epithermal assemblage of the surface listwanites precipitated at a paleodepth of 0.4 to 0.6 km.The δ13C values of the late stage ankerite range from − 4.2 to 4.1‰, whereas δ18O range from 9.6 to 17.5‰. The calculated δ18O of fluid that precipitated carbonates within epithermal veins, and listwanite breccia cement range from 6.3 to 11.3‰, indicating a contribution of magmatic water.Deposition of all mineralization types was initiated by neutralization of primary acidic magmatic fluid by water-rock reactions that caused widespread propylitization and sericitization. Extensive and long-lasting boiling combined with dilution by meteoric water increased the pH towards the final stage of hydrothermal activity.  相似文献   

12.
2-D velocity structure up to the basement is derived by travel-time inversion of the first arrival seismic refraction and wide-angle reflection data along the SW–NE trending Jhagadia–Rajpipla profile, located on the western part of Deccan syneclise in the Narmada–Tapti region. The study region is mostly covered by alluvium. Inversion of refraction and wide-angle reflection data reveals four layered velocity structure above the basement. The first two layers with P-wave velocities of 1.95–2.3 km s?1 and 2.7–3.05 km s?1 represent the Recent and Quaternary sediments respectively. The thickness of these sediments varies from 0.15 km to 3.4 km. The third layer with a P-wave velocity of 4.8–5.1 km s?1 corresponds to the Deccan volcanics, whose thickness varies from 0.5 km to 1.0 km. Presence of a low velocity zone (LVZ) below the high velocity volcanic rocks in the study area is inferred from the travel-time ‘skip’ and amplitude decay of the first arrival refraction data and the wide-angle reflection from top of the LVZ present immediately after the first arrival refraction from Deccan Trap layer. The thickness of the low velocity Mesozoic sediments varies from 0.3 km to 1.7 km. The basement with a P-wave velocity of 5.9–6.15 km s?1 lies at a depth of 4.9 km near Jhagadia and shallows to 1.2 km towards northeast near Rajpipla. The results indicate presence of low velocity Mesozoic sediments hidden below the Deccan Trap layer in the western part of the Deccan syneclise.  相似文献   

13.
Seafloor sediment containing biogenic amino acids was heated with NaCl solutions at 50–200 °C for 240 h to investigate the dissolution process of amino acids and evaluate their stabilities under hydrothermal conditions. Dissolved amino acids in the combined phase (dissolved combined amino acids, DCAAs) and free phase (dissolved free amino acids, DFAAs) were rapidly released into the solution during heating. The amount of DCAAs in the solutions was 4–9 times higher than the amount of DFAAs at each temperature. When heated at ⩽ 100 °C, most of the total dissolved hydrolyzable amino acids (TDHAAs) were in the combined form (DCAAs/TDHAAs ratios > 0.9). The compositions of the DCAAs in solutions heated at ⩽ 100 °C were similar to that of the total hydrolyzable amino acids (THAAs) of the initial sediment, indicating that the DCAAs, which are derived from organisms and biodebris in the sediment, are barely altered during the hydrothermal reaction at these temperatures. On the other hand, the DCAAs/TDHAAs ratios were 0.72 and 0.57 at 150 and 200 °C, respectively, and the compositions of the DCAAs at 150 and 200 °C were significantly different from that of the initial THAAs. In addition, non-protein amino acids (β-alanine and γ-aminobutyric acid), which are sensitive biochemical indicators of the diagenetic alteration of natural organic matter, drastically increased to 80.9% of the DCAAs after heating at 200 °C. These results suggests that DCAAs are thermally unstable in the hydrothermal solutions at ⩾ 150 °C. These DCAA would be transformed into thermally stable geo-polymers such as humic-like substances and hydrolyzable kerogens.  相似文献   

14.
The Hetaoping zinc–lead deposit is located in the northern Baoshan block, Sanjiang region, SW China. The ore deposit comprises massive orebodies in the lower part and lenticular and vein-like orebodies in the upper part, both of which are hosted in the marbleized Upper Cambrian limestone and slate of the Hetaoping Formation. Three mineralization stages of Hetaoping skarn system have been recognized based on petrographic observation, which are pre-ore stage (pyroxene–garnet–actinolite–epidote–magnetite), syn-ore stage (sulfides–quartz–calcite–fluorite), and post-ore stage (calcite–quartz–chlorite). Andradite and hedenbergite are dominant in pre-ore garnet and pyroxene, respectively. Ore minerals consist of mainly pyrite, sphalerite, chalcopyrite, bornite and galena. Three types of fluid inclusions have been identified in Hetaoping, including primary two-phase (A type), primary three-phase (B type) and secondary two-phase (C type) inclusions. Based on fluid inclusion microthermometric study, the fluids forming the Hetaoping skarn minerals and sulfides evolved from high-moderate temperature (255–498 °C) and low-moderate salinity (5.0–18.0 wt.% NaCl equiv) in pre-ore stage, through moderate-low temperature (152–325 °C) and low salinity (0.4–14.2 wt.% NaCl equiv) in syn-ore stage, to low temperature (109–205 °C) and low salinity (0.9–10.0 wt.% NaCl equiv) in post-ore stage. The sulfide δ34S values range from 3.7 to 7.1‰ (mean = 5.2‰, n = 29), indicative of a dominantly magmatic sulfur origin. Silicate and carbonate oxygen isotopes give calculated δ18OH2O ranges of 3.9–11.1‰ in prograde stage, − 0.9 to 4.6‰ in early retrograde stage, and − 1.3 to 2.9‰ in late retrograde stage (syn-ore stage), The oxygen isotope data reveal that the prograde fluid in Hetaoping could be primarily magmatic, which has been mixed significantly with meteoric water in the late retrograde stage. Such a fluid mixing process is considered to be a key factor controlling ore precipitation.  相似文献   

15.
The Baishan porphyry Mo deposit formed in the Middle Triassic in Eastern Tianshan, Xinjiang, northwestern China. Mo mineralization is associated with the Baishan monzogranite and granite porphyry stocks, mainly presenting as various types of hydrothermal veinlets in alerted wall rocks, with potassic, phyllic, propylitic, and fluorite alteration. The ore-forming process can be divided into four stages: stage I K-feldspar–quartz–pyrite veinlets, stage II quartz–molybdenite ± pyrite veinlets, stage III quartz–polymetallic sulfide veinlets and stage IV barren quartz–calcite veins. Four types of fluid inclusions (FIs) can be distinguished in the Baishan deposit, namely, liquid-rich two-phase (L-type), vapor-rich two-phase (V-type), solid-bearing multi-phase (S-type) and mono-phase vapor (M-type) inclusions, but only the stage I quartz contains all types of FIs. The stages II and III quartz have three types of FIs, with exception of M-type. In stage IV quartz minerals, only the L-type inclusions can be observed. The FIs in quartz of stages I, II, III and IV are mainly homogenized at temperatures of 271–468 °C, 239–349 °C, 201–331 °C and 134–201 °C, with salinities of 2.2–11.6 wt.% NaCl equiv., 1.1–10.2 wt.% NaCl equiv., 0.5–8.9 wt.% NaCl equiv. and 0.2–5.7 wt.% NaCl equiv., respectively. The ore-forming fluids of the Baishan deposit are characterized by high temperature, moderate salinity and relatively reduced condition, belonging to a H2O–NaCl ± CH4 ± CO2 system. Hydrogen and oxygen isotopic compositions of quartz indicate that the ore-forming fluids were gradually evolved from magmatic to meteoric in origin. Sulfur and lead isotopes suggest that the ore-forming materials came predominantly from a deep-seated magma source from the lower continental crust. The Mo mineralization in the Baishan deposit is estimated to have occurred at a depth of no less than 4.7 km, and the decrease in temperature and remarkable transition of the redox condition (from alkalinity to acidity) of ore-forming fluids were critical for the formation of the Baishan Mo deposit.  相似文献   

16.
The Laoshankou Fe–Cu–Au deposit is located at the northern margin of Junggar Terrane, Xinjiang, China. This deposit is hosted in Middle Devonian andesitic volcanic breccias, basalts, and conglomerate-bearing basaltic volcanic breccias of the Beitashan Formation. Veined and lenticular Fe–Cu–Au orebodies are spatially and temporally related to diorite porphyries in the ore district. Wall–rock alteration is dominated by skarn (epidote, chlorite, garnet, diopside, actinolite, and tremolite), with K–feldspar, carbonate, albite, sericite, and minor quartz. On the basis of field evidence and petrographic observations, three stages of mineralization can be distinguished: (1) a prograde skarn stage; (2) a retrograde stage associated with the development of Fe mineralization; and (3) a quartz–sulfide–carbonate stage associated with Cu–Au mineralization. Electron microprobe analysis shows that garnets and pyroxenes are andradite and diopside-dominated, respectively. Fluid inclusions in garnet yield homogenization temperatures (Th) of 205–588 °C, and salinities of 8.95–17.96 wt.% NaCl equiv. In comparison, fluid inclusions in epidote and calcite yield Th of 212–498 and 150–380 °C, and salinities of 7.02–27.04 and 13.4–18.47 wt.% NaCl equiv., respectively. Garnets yield values of 6.4‰ to 8.9‰ δ18Ofluid, whereas calcites yield values of − 2.4‰ and 4.2‰ δ18Ofluid, and − 0.9‰ to 2.4‰ δ13CPDB, indicating that the ore-forming fluids were dominantly magmatic fluids in the early stage and meteoric water in the late stage. The δ34S values of sulfides range from − 2.6‰ to 5.4‰, indicating that the sulfur in the deposit was probably derived from deep-seated magmas. The diorite porphyry yields LA–MC–ICP–MS zircon U–Pb age of 379.7 ± 3.0 Ma, whereas molybdenites give Re–Os weighted mean age of 383.2 ± 4.5 Ma (MSWD = 0.06). These ages suggest that the mineralization-related diorite porphyry was emplaced during the Late Devonian, coincident with the timing of mineralization within the Laoshankou Fe–Cu–Au deposit. The geological and geochemical evidence presented here suggest that the Laoshankou Fe–Cu–Au deposit is a skarn deposit.  相似文献   

17.
《Comptes Rendus Geoscience》2015,347(4):161-169
The Dead Sea Fault is a major strike-slip fault bounding the Arabia plate and the Sinai subplate. On the basis of three GPS campaign measurements, 12 years apart, at 19 sites distributed in Israel and Jordan, complemented by Israeli permanent stations, we compute the present-day deformation across the Wadi Arava fault, the southern segment of the Dead Sea Fault. Elastic locked-fault modelling of fault-parallel velocities provides a slip rate of 4.7 ± 0.7 mm/yr and a locking depth of 11.6 ± 5.3 km in its central part. Along its northern part, south of the Dead Sea, the simple model proposed for the central profile does not fit the velocity field well. To fit the data, two faults have to be taken into account, on both sides of the sedimentary basin of the Dead Sea, each fault accommodating  2 mm/yr. Locking depths are small (less than 2 km on the western branch, ∼ 6 km on the eastern branch). Along the southern profile, we are once again unable to fit the data using the simple model, similar to the central profile. It is very difficult to propose a velocity greater than 4 mm/yr, i.e. smaller than that along the central profile. This leads us to propose that a part of the relative movement from Sinai to Arabia is accommodated along faults located west of our profiles.  相似文献   

18.
The Linghou deposit, located near Hangzhou City of Zhejiang Province, eastern China, is a medium-sized polymetallic sulfide deposit associated with granitic intrusion. This deposit is structurally and lithologically controlled and commonly characterized by ore veins or irregular ore lenses. In this deposit, two mineralization events were identified, of which the former produced the Cu–Au–Ag orebodies, while the latter formed Pb–Zn–Cu orebodies. Silicification and calc-silicate (skarn type), phyllic, and carbonate alternation are four principal types of hydrothermal alteration. The early Cu–Au–Ag and late Pb–Zn–Cu mineralizations are characterized by quartz ± sericite + pyrite + chalcopyrite + bornite ± Au–Ag minerals ± magnetite ± molybdenite and calcite + dolomite + sphalerite + pyrite + chalcopyrite + galena, respectively. Calcite clusters and calcite ± quartz vein are formed during the late hydrothermal stage.The NaCl–H2O–CO2 system fluid, coexisting with NaCl–H2O system fluid and showing the similar homogenization temperatures (385 °C and 356 °C, respectively) and different salinities (16.89–21.68 wt.% NaCl eqv. and 7.70–15.53 wt.% NaCl eqv.), suggests that fluid immiscibility occurred during the Cu–Au–Ag mineralization stage and might have given rise to the ore-metal precipitation. The ore-forming fluid of the Pb–Zn–Cu mineralization mainly belongs to the NaCl–H2O–CO2 system of high temperature (~ 401 °C) and mid-high salinity (10.79 wt.% NaCl eqv.).Fluids trapped in the quartz-chalcopyrite vein, Cu–Au–Ag ores, Pb–Zn–Cu ores and calcite clusters yielded δ18OH2O and δD values varying from 5.54‰ to 13.11‰ and from − 71.8‰ to − 105.1‰, respectively, indicating that magmatic fluids may have played an important role in two mineralization events. The δ13CPDB values of the calcite change from − 2.78‰ to − 4.63‰, indicating that the CO32  or CO2 in the ore-forming fluid of the Pb–Zn–Cu mineralization was mainly sourced from the magmatic system, although dissolution of minor marine carbonate may have also occurred during the ore-forming processes. The sulfide minerals have homogeneous lead isotopic compositions with 206Pb/204Pb ranging from 17.958 to 18.587, 207Pb/204Pb ranging from 15.549 to 15.701, and 208Pb/204Pb ranging from 37.976 to 39.052, indicating that metallic elements of the Linghou deposit came from a mixed source involving mantle and crustal components.Based on geological evidence, fluid inclusions, and H–O–C–S–Pb isotopic data, the Linghou polymetallic deposit is interpreted as a high-temperature, skarn-carbonate replacement type. Two types of mineralization are both related to the magmatic–hydrothermal system, with the Cu–Au–Ag mineralization having a close relationship with granodiorite.  相似文献   

19.
The Wangfeng gold deposit is located in Western Tian Shan and the central section of the Central Asian Orogenic Belt (CAOB). The deposit is mainly hosted in Precambrian metamorphic rocks and Caledonian granites and is structurally controlled by the Shenglidaban ductile shear zone. The gold orebodies consist of gold-bearing quartz veins and altered mylonite. The mineralization can be divided into three stages: quartz–pyrite veins in the early stage, sulfide–quartz veins in the middle stage, and quartz–carbonate veins or veinlets in the late stage. Ore minerals and native gold mainly formed in the middle stage. Four types of fluid inclusions were identified based on petrography and laser Raman spectroscopy: CO2–H2O inclusions (C-type), pure CO2 inclusions (PC-type), NaCl–H2O inclusions (W-type), and daughter mineral-bearing inclusions (S-type). The early-stage quartz contains only primary CO2–H2O fluid inclusions with salinities of 1.62 to 8.03 wt.% NaCl equivalent, bulk densities of 0.73 to 0.89 g/cm3, and homogenization temperatures of 256 °C–390 °C. Vapor bubbles are composed of CO2. The middle-stage quartz contains all four types of fluid inclusions, of which the CO2–H2O and NaCl–H2O types yield homogenization temperatures of 210 °C–340 °C and 230 °C–300 °C, respectively. The CO2–H2O fluid inclusions have salinities of 0.83 to 9.59 wt.% NaCl equivalent and bulk densities of 0.77 to 0.95 g/cm3, with vapor bubbles composed of CO2, CH4, and N2. Fluid inclusions in the late-stage quartz are NaCl–H2O solution with low salinities (0.35–3.87 wt.% NaCl equivalent) and low homogenization temperatures (122 °C–214 °C). The coexistence of inclusions of these four types in middle-stage quartz suggests that fluid boiling occurred in the middle-stage mineralization. Trapping pressures estimated from CO2–H2O inclusions are 110–300 MPa and 90–250 MPa for the early and middle stages, respectively, suggesting that gold mineralization mainly occurred at depths of about 10 km. In general, the Wangfeng gold deposit originated from a metamorphic fluid system characterized by low salinity, low density, and enrichment of CO2. Depressurized fluid boiling caused gold precipitation. Given the regional geology, ore geology, fluid-inclusion features, and ore-forming age, the Wangfeng gold deposit can be classified as a hypozonal orogenic gold deposit.  相似文献   

20.
This paper contributes to the understanding of the genesis of epigenetic, hypogene BIF-hosted iron deposits situated in the eastern part of Ukrainian Shield. It presents new data from the Krivoy Rog iron mining district (Skelevatske–Magnetitove deposit, Frunze underground mine and Balka Severnaya Krasnaya outcrop) and focuses on the investigation of ore genesis through application of fluid inclusion petrography, microthermometry, Raman spectroscopy and baro-acoustic decrepitation of fluid inclusions. The study investigates inclusions preserved in quartz and magnetite associated with the low-grade iron ores (31–37% Fe) and iron-rich quartzites (38–45% Fe) of the Saksaganskaya Suite, as well as magnetite from the locally named high-grade iron ores (52–56% Fe). These high-grade ores resulted from alteration of iron quartzites in the Saksaganskiy thrust footwall (Saksaganskiy tectonic block) and were a precursor to supergene martite, high-grade ores (60–70% Fe). Based on the new data two stages of iron ore formation (metamorphic and metasomatic) are proposed.The metamorphic stage, resulting in formation of quartz veins within the low-grade iron ore and iron-rich quartzites, involved fluids of four different compositions: CO2-rich, H2O, H2O–CO2 N2–CH4)–NaCl(± NaHCO3) and H2O–CO2 N2–CH4)–NaCl. The salinities of these fluids were relatively low (up to 7 mass% NaCl equiv.) as these fluids were derived from dehydration and decarbonation of the BIF rocks, however the origin of the nahcolite (NaHCO3) remains unresolved. The minimum P–T conditions for the formation of these veins, inferred from microthermometry are Tmin = 219–246 °C and Pmin = 130–158 MPa. The baro-acoustic decrepitation analyses of magnetite bands indicated that the low-grade iron ore from the Skelevatske–Magnetitove deposit was metamorphosed at T = ~ 530 °C.The metasomatic stage post-dated and partially overlapped the metamorphic stage and led to the upgrade of iron quartzites to the high-grade iron ores. The genesis of these ores, which are located in the Saksaganskiy tectonic block (Saksaganskiy ore field), and the factors controlling iron ore-forming processes are highly controversial. According to the study of quartz-hosted fluid inclusions from the thrust zone the metasomatic stage involved at least three different episodes of the fluid flow, simultaneous with thrusting and deformation. During the 1st episode three types of fluids were introduced: CO2–CH4–N2 C), CO2 N2–CH4) and low salinity H2O–N2–CH4–NaCl (6.38–7.1 mass% NaCl equiv.). The 2nd episode included expulsion of the aqueous fluids H2O–N2–CH4–NaCl(± CO2, ± C) of moderate salinities (15.22–16.76 mass% NaCl equiv.), whereas the 3rd event involved high salinity fluids H2O–NaCl(± C) (20–35 mass% NaCl equiv.). The fluids most probably interacted with country rocks (e.g. schists) supplying them with CH4 and N2. The high salinity fluids were most likely either magmatic–hydrothermal fluids derived from the Saksaganskiy igneous body or heated basinal brines, and they may have caused pervasive leaching of Fe from metavolcanic and/or the BIF rocks. The baro-acoustic decrepitation analyses of magnetite comprising the high-grade iron ore showed formation T = ~ 430–500 °C. The fluid inclusion data suggest that the upgrade to high-grade Fe ores might be a result of the Krivoy Rog BIF alteration by multiple flows of structurally controlled, metamorphic and magmatic–hydrothermal fluids or heated basinal brines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号