首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Quaternary Science Reviews》2007,26(3-4):386-404
This study provides an interpretation of interrelated Quaternary fluvial and aeolian activity related to climate change on Cooper Creek in the Lake Eyre Basin in southwestern Queensland, central Australia. The extensive muddy floodplain is characterised by buried sandy palaeochannels now almost entirely invisible but stratigraphically connected to source-bordering dunes that emerge as distinctive sandy islands through the floodplain surface. Luminescence dating has identified pronounced periods of fluvial activity represented by abundant sandy alluvium from Marine Isotope Stages (MIS) 8–3. While all these sandy fluvial episodes on Cooper Creek were much more powerful than anything subsequent, they appear to be ranked in order of declining activity. MIS 8–6 saw reworking of almost the entire floodplain whereas subsequent phases of reworking were far less extensive. Source-bordering dunes were derived from active sandy channels in late MIS 5 (∼85–80 ka) and mid MIS 3 (50–40 ka). After ∼40 ka sand-channel activity largely ceased and the floodplains and channels were inundated with mud, isolating the dunes as emergent features. Although aeolian reworking of the upper parts of some dunes has continued to the present, they show remarkable resilience, having survived without appreciable migration for at least 40 ka. Whilst the channels once determined the location of source-bordering dunes, in an interesting role reversal the remnant dunes now determine the position of many contemporary flood-channels and waterholes by deflection and confinement of overbank flows.  相似文献   

2.
The technique of optically stimulated luminescence (OSL) dating applied to fluvial sediments provided a geochronological framework of river terrace formation in the middle part of the Dunajec River basin – a reference area for studies of evolution of river valleys in the northern part of the Carpathians (West Carpathians). Fluvial sediments at 18–90 m above valley bottoms were dated in the valleys of the Dunajec River and one of its tributaries. The resulting ages range from 158.9±8.3 to 12.2±1.3 ka. This indicates that some of the terrace sediments were deposited much later than previously assumed on the grounds of a combined morphostratigraphical and climatostratigraphical approach. The OSL‐based chronostratigraphy of terrace formation consists of seven separate phases of fluvial aggradation, separated by periods of incision and lateral erosion. Some of the ages determined correspond to warm stages of the Pleistocene – Marine Isotope Stage 3 (MIS 3) and MIS 5 – demonstrating that some terraces were formed during interstadial or interglacial periods. The results provide a key for evaluating rates of neotectonic uplift, allowing us to decipher the response of a fluvial system to climate change within the context of the glacial–interglacial scheme.  相似文献   

3.
《Quaternary Science Reviews》2007,26(19-21):2598-2616
Linear dunes occupy more than one-third of the Australian continent, but the timing of their formation is poorly understood. In this study, we collected 82 samples from 26 sites across the Strzelecki and Tirari Deserts in the driest part of central Australia to provide an optically stimulated luminescence chronology for these dunefields. The dunes preserve up to four stratigraphic horizons, bounded by palaeosols, which represent evidence for multiple periods of reactivation punctuated by episodes of increased environmental stability. Dune activity took place in episodes around 73–66, 35–32, 22–18 and 14–10 ka. Intermittent partial mobilisation persisted at other times throughout the last 75 ka and dune activity appears to have intensified during the late Holocene. Dune construction occurred when sediment was available for aeolian transport; in the Strzelecki and Tirari Deserts, this coincided with cold, arid conditions during Marine Isotope Stage (MIS) 4, late MIS 3 and MIS 2, and the warm, dry climates of the late Pleistocene–Holocene transition period and late Holocene. Localised influxes of sediment on active floodplains and lake floors during the relatively more humid periods of MIS 5 also resulted in dune formation. The timing of widespread dune reactivation coincided with glaciation in southeastern Australia, along with cooler temperatures in the adjacent oceans and Antarctica.  相似文献   

4.
A detailed record of late Quaternary sea-level oscillations is preserved within the upper 45 m of deposits along an eight km transect across Croatan Sound, a drowned tributary of the Roanoke/Albemarle drainage system, northeastern North Carolina. Drill-hole and seismic data reveal nine relatively complete sequences filling an antecedent valley comprised of discontinuous middle and early Pleistocene deposits. On interfluves, lithologically similar marine deposits of different sequences occur stacked in vertical succession and separated by ravinement surfaces. Within the paleo-drainage, marine deposits are separated by fluvial and/or estuarine sediments deposited during periods of lowered sea level. Foraminiferal and molluscan fossil assemblages indicate that marine facies were deposited in a shallow-marine embayment with open connection to shelf waters. Each sequence modifies or truncates portions of the preceding sequence or sequences. Sequence boundaries are the product of a combination of fluvial, estuarine, and marine erosional processes. Stratigraphic and age analyses constrain the ages of sequences to late Marine Isotope Stage (MIS) 6 and younger (∼ 140 ka to present), indicating multiple sea-level oscillations during this interval. Elevations of highstand deposits associated with late MIS 5 and MIS 3 imply that sea level was either similar to present during those times, or that the region may have been influenced by glacio-isostatic uplift and subsidence.  相似文献   

5.
Irene Zembo 《Sedimentary Geology》2010,223(3-4):206-234
The sedimentary record of the Val d'Agri basin is of great importance for understanding the Quaternary tectonic activity and climatic variability in the Southern Apennines. Changes in tectonic controls, sediment supply and climatic input have been identified. The interval from ~ 56 to ~ 43 ka was associated with asymmetric subsidence restricted to the north-eastern actively faulted margin of the basin and development of axial braided river and transverse alluvial fan systems. Short-lasting Mediterranean-type pedogenesis between ~ 43 and ~ 32 ka (MIS Stage 3) coexisted with progradation–aggradation of the southern alluvial fan deposits and southwards tilting of the basin floor. Aggradation ended with consumption of accommodation space after 32 ka. During a subsequent stage of decline of vegetation cover, possibly as a consequence of climatic cooling (probably MIS Stage 2), active progradation of alluvial fans occurred. Breakthrough of the basin threshold and entrenchment of the drainage network must therefore be attributed to a latest Pleistocene to Holocene age. The first stages of basin opening and fill, predating ~ 56 ka have only been inferred by stratigraphic considerations: the earliest lacustrine sedimentation should be middle Pleistocene or older in age. The following south-eastward basin widening allowed progradation of alluvial fan systems, which completely filled the lacustrine area (tentatively late middle Pleistocene). Pedogenesis in “Mediterranean-like” climate conditions caused the final development of a highly mature fersiallitic paleosol at the top of the fan surfaces, in areas of morpho-tectonic stability, plausibly during MIS Stage 5. The study results demonstrate the potential of applying a multidisciplinary approach in an intermontane continental settings marked by a relative rapid and constant tectonic subsidence and a high rate of sediment supply during the Pleistocene glacial–interglacial cycles.  相似文献   

6.
Abandoned shorelines are an important archive used to constrain past fluctuations in the hydrological balance of lakes around the globe. Within Australia, the shorelines preserved at Lake George, NSW, form one of the few shoreline archives in the south-east of the continent that record palaeoenvironmental conditions throughout the late Quaternary. Here, we examined and tested the lake-level record for Lake George constructed in the 1970s by dating a well-preserved shoreline sequence at Luckdale, on the lake's eastern shore, using single-grain optically stimulated luminescence (OSL) dating. Ten stratigraphic units were identified, and these suggest a late Quaternary highstand for Lake George in MIS 3, with fluctuations superimposed upon an overall drying trend throughout MIS 2 and into the present. At Luckdale, the highest four shoreline-associated units were deposited ~13 to 19 m above lake base and date to between 39 ± 2 and 29 ± 1 ka ago. Our study pushes back the timing of maximum lake depth at Lake George to at least MIS 3, rather than MIS 2. The overall drying trend is supported by similar reductions in both Riverine Plain fluvial activity and other associated lake-level records from within the Murray basin.  相似文献   

7.
Although Jurassic-Early Cretaceous sedimentary systems were extensively developed on northeastern Gondwana, deciphering their paleogeography has been complicated by poor exposure and the lack of a robust chronostratigraphic framework. The southeastern margin of the Carpentaria Basin, northeastern Australia is one of the few regions where these sedimentary systems are extensively exposed. Employing a combination of facies analysis and new data from paleontology and detrital zircon geochronology, we present a temporally and environmentally refined paleogeographic framework for this region. A Late Jurassic, southeasterly directed marine incursion invaded northeastern Gondwana, extending inland across the Carpentaria Basin, as demonstrated by a thin (~30 m), marine influenced (fluvio-estuarine) stratigraphic succession capped by a sequence bounding ~30 myr paraconformity. The depositional hiatus marked the Late Jurassic-Early Cretaceous uplift of the Euroka Arch, with loss of sedimentary and fluvial connectivity between the Carpentaria Basin and adjoining Eromanga Basin. Subsequent deposition by low-accommodation fluvial systems resulted in a thin, fluviatile depositional package developing during the Early Cretaceous. Paleocurrent and provenance data indicate that the Middle to Late Jurassic (c. 170–160 Ma) fluvial systems predating the paraconformity extended from the Eromanga Basin to the south across the southeastern Carpentaria Basin, transporting sediment from distal sources in the Lachlan Orogen of southeastern Australia. Fluvial systems of the southeastern Carpentaria Basin post-dating the paraconformity and Euroka Arch uplift show a provenance shift to easterly sources in the Mossman Orogen and Kennedy Igneous Association. Previously unrecognised Jurassic-Early Cretaceous igneous activity provided a persistent source of sediment to the southeastern Carpentaria Basin succession due to reworking of air fall tuff from an active magmatic arc located on the continental margin of northeastern Gondwana.  相似文献   

8.
Un‐fragmented stratigraphic records of late Quaternary multiple incised valley systems are rarely preserved in the subsurface of alluvial‐delta plains due to older valley reoccupation. The identification of a well‐preserved incised valley fill succession beneath the southern interfluve of the Last Glacial Maximum Arno palaeovalley (northern Italy) represents an exceptional opportunity to examine in detail evolutionary trends of a Mediterranean system over multiple glacial–interglacial cycles. Through sedimentological and quantitative meiofauna (benthic foraminifera and ostracods) analyses of two reference cores (80 m and 100 m long) and stratigraphic correlations, a mid‐Pleistocene palaeovalley, 5 km wide and 50 m deep, was reconstructed. Whereas valley filling is chronologically constrained to the penultimate interglacial (Marine Isotope Stage 7) by four electron spin resonance ages on bivalve shells (Cerastoderma glaucum), its incision is tentatively correlated with the Marine Isotope Stage 8 sea‐level fall. Above basal fluvial‐channel gravels, the incised valley fill is formed by a mud‐prone succession, up to 44 m thick, formed by a lower floodplain unit and an upper unit with brackish meiofauna that reflects the development of a wave‐dominated estuary. Subtle meiofauna changes towards less confined conditions record two marine flooding episodes, chronologically linked to the internal Marine Isotope Stage 7 climate‐eustatic variability. After the maximum transgressive phase, recorded by coastal sands, the interfluves were flooded around 200 ka (latest Marine Isotope Stage 7). The subsequent shift in river incision patterns, possibly driven by neotectonic activity, prevented valley reoccupation guiding the northward formation of the Last Glacial Maximum palaeovalley. The applied multivariate approach allowed the sedimentological characterization of the Marine Isotope Stage 7 and Marine Isotope Stage 1 palaeovalley fills, including shape, size and facies architecture, which revealed a consistent river‐coastal system response over two non‐consecutive glacial–interglacial cycles (Marine Isotope Stages 8 to 7 and Marine Isotope Stages 2 to 1). The recurring stacking pattern of facies documents a predominant control exerted on stratigraphy by Milankovitch and sub‐Milankovitch glacio‐eustatic oscillations across the late Quaternary period.  相似文献   

9.
10.
Modern global warming is likely to cause future melting of Earth's polar ice sheets that may result in dramatic sea-level rise. A possible collapse of the West Antarctic Ice Sheet (WAIS) alone, which is considered highly vulnerable as it is mainly based below sea level, may raise global sea level by up to 5–6 m. Despite the importance of the WAIS for changes in global sea level, its response to the glacial–interglacial cycles of the Quaternary is poorly constrained. Moreover, the geological evidence for the disintegration of the WAIS at some time within the last ca. 750 kyr, possibly during Marine Isotope Stage (MIS) 11 (424–374 ka), is ambiguous. Here we present physical properties, palaeomagnetic, geochemical and clay mineralogical data from a glaciomarine sedimentary sequence that was recovered from the West Antarctic continental margin in the Amundsen Sea and spans more than the last 1 Myr. Within the sedimentary sequence, proxies for biological productivity (such as biogenic opal and the barium/aluminum ratio) and the supply of lithogenic detritus from the West Antarctic hinterland (such as ice-rafted debris and clay minerals) exhibit cyclic fluctuations in accordance with the glacial–interglacial cycles of the Quaternary. A prominent depositional anomaly spans MIS 15–MIS 13 (621–478 ka). The proxies for biological productivity and lithogenic sediment supply indicate that this interval has the characteristics of a single, prolonged interglacial period. Even though no proxy suggests environmental conditions much different from today, we conclude that, if the WAIS collapsed during the last 800 kyr, then MIS 15–MIS 13 was the most likely time period. Apparently, the duration rather than the strength of interglacial conditions was the crucial factor for the WAIS drawdown. A comparison with various marine and terrestrial climate archives from around the world corroborates that unusual environmental conditions prevailed throughout MIS 15–MIS 13. Some of these anomalies are observed in the pelagic Southern Ocean and the South Atlantic and might originate in major ice-sheet drawdown in Antarctica, but further research is required to test this hypothesis.  相似文献   

11.
The Corsica‐Sardinia block is a lithospheric fragment whose recent role in the geodynamics of the central‐Western Mediterranean basin is still enigmatic. The most recent regional structure in Sardinia is the Plio‐Pleistocene Campidano Basin, which is considered in a ‘post‐rift’ stage since the Middle Pleistocene. New structural and stratigraphic geological surveys along with luminescence ages provide evidence to support an ongoing tectonic activity since the Marine Isotopic Stage 7 (MIS7; ca. 220 ka) on the Sinis peninsula, the structural high that bounds the north‐western side of the Campidano Basin. In particular, this paper reveals for the first time the presence of N–S striking normal faults system offsetting late Pleistocene aeolianites (130 ± 12 ka; 82 ± 9 ka).  相似文献   

12.
《Quaternary Science Reviews》2007,26(22-24):2801-2822
Late Cenozoic fluvial successions are widespread in India. They include the deposits of the Siwalik basin which represent the accumulations of the ancient river systems of the Himalayan foreland basin. Palaeomagnetic studies reveal that fluvial architecture and styles of deposition were controlled by Himalayan tectonics as well as by major climatic fluctuations during the long (∼13 Ma) span of formation. The Indo-Gangetic plains form the world's most extensive Quaternary alluvial plains, and display spatially variable controls on sedimentation: Himalayan tectonics in the frontal parts, climate in the middle reaches, and eustasy in the lower reaches close to the Ganga–Brahmaputra delta. Climatic effects were mediated by strong fluctuations in the SW Indian Monsoon, and Himalayan rivers occupy deep valleys in the western Ganga plains where stream power is high, cut in part during early Holocene monsoon intensification; the broad interfluves record the simultaneous aggradation of plains-fed rivers since ∼100 ka. The eastward increase in precipitation across the Ganga Plains results in rivers with low stream power and a very high sediment flux, resulting in an aggradational mode and little incision. The river deposits of semi-arid to arid western India form important archives of Quaternary climate change through their intercalation with the eolian deposits of the Thar Desert. Although the synthesis documents strong variability—both spatial and temporal—in fluvial stratigraphy, climatic events such as the decline in precipitation during the Last Glacial Maximum and monsoon intensification in the early Holocene have influenced fluvial dynamics throughout the region.  相似文献   

13.
The Andean piedmont of Mendoza is a semiarid region covered by extensive and partially vegetated dune fields consisting of mostly inactive aeolian landforms of diverse size and morphology. This paper is focused on the San Rafael plain (SRP) environment, situated in the distal Andean piedmont of Mendoza (34° 30′S), and reports the sedimentology and OSL chronology of two representative exposures of late Quaternary deposits, including their paleoenvironmental and paleoclimatic significance. Eleven facies, including channel, floodplain, fluvio–aeolian interaction, and reworked pyroclastic and aeolian deposits, were described and grouped into two facies associations (FA1 and FA2). FA1 was formed by unconfined sheet flows, minor channelized streams and fluvial–aeolian interaction processes. FA2 was interpreted as aeolian dune and sand-sheet deposits. OSL chronology from the SRP sedimentary record indicates that between ca. 58–39 ka and ca. 36–24 ka (MIS 3), aggradation was governed by ephemeral fluvial processes (FA1) under generally semiarid conditions. During MIS 2, the last glacial maximum (ca. 24–12 ka), a major climatic shift to more arid conditions is documented by significant aeolian activity (FA2) that became the dominant sedimentation process north of the Diamante–Atuel fluvial system. The inferred paleoenvironmental conditions from the SRP sections are in broad agreement with regional evidence.  相似文献   

14.
This study forms part of a wider investigation of late Quaternary environments in the Southern Hemisphere. We here review the terrestrial and near-shore proxy data from Australia, Indonesia, Papua New Guinea (PNG), New Zealand and surrounding oceans during 35–10 ka, an interval spanning the lead-up to the Last Glacial Maximum (LGM), the LGM proper (21 ± 2 ka), and the ensuing deglaciation. Sites selected for detailed discussion have a continuous or near continuous sedimentary record for this time interval, a stratigraphically consistent chronology, and one or more sources of proxy climatic data. Tropical Australia, Indonesia and PNG had LGM mean annual temperatures 3–7 °C below present values and summer precipitation reduced by at least 30%, consistent with a weaker summer monsoon and a northward displacement of the Intertropical Convergence Zone. The summer monsoon was re-established in northwest Australia by 14 ka. Precipitation in northeast Australia was reduced to less than 50% of present values until warmer and wetter conditions resumed at 17–16 ka, followed by a second warmer, wetter phase at 15–14 ka. LGM temperatures were up to 8 °C lower than today in mainland southeast Australia and up to 4 °C cooler in Tasmania. Winter rainfall was much reduced throughout much of southern Australia although periodic extreme flood events are evident in the fluvial record. Glacial advances in southeast Australia are dated to 32 ± 2.5, 19.1 ± 1.6 and 16.8 ± 1.4 ka, with periglacial activity concentrated towards 23–16 ka. Deglaciation was rapid in the Snowy Mountains, which were ice-free by 15.8 ka. Minimum effective precipitation in southern Australia was from 14 to 12 ka. In New Zealand the glacial advances date to ~28, 21.5 and 19 ka, with the onset of major cooling at ~28 ka, or well before the LGM. There is no convincing evidence for a Younger Dryas cooling event in or around New Zealand, but there are signs of the Antarctic Cold Reversal in and around New Zealand and off southern Australia. There remain unresolved discrepancies between the climates inferred from pollen and those inferred from the beetle and chironomid fauna at a number of New Zealand sites. One explanation may be that pollen provides a generalised regional climatic signal in contrast to the finer local resolution offered by beetles and chironomids. Sea surface temperatures (SSTs) were up to 5 °C cooler during the LGM with rapid warming after 20 ka to attain present values by 15 ka. The increase in summer monsoonal precipitation at or before 15 ka reflects higher insolation, warmer SSTs and steeper thermal gradients between land and sea. The postglacial increase in winter rainfall in southern Australia is probably related to the southward displacement of the westerlies as SSTs around Antarctica became warmer and the winter pack ice and Antarctic Convergence Zone retreated to the south.  相似文献   

15.
The Quaternary deposits of tectonically stable areas are a powerful tool to investigate high‐frequency climate variations (<10 ka) and to distinguish allogenic and autogenic factors controlling deposition. Therefore, an Upper Pleistocene–Holocene coastal apron‐fan system in north–western Sardinia (Porto Palmas, Italy) was studied to investigate the relations between climate changes, sea‐level fluctuations and sediment source‐supply that controlled its development. The sedimentary sequence records the strong influence of local (wet/dry) and worldwide (sea‐level) environmental variations in the sedimentation and preservation of the deposits. A multi‐disciplinary approach allowed subdivision of the succession into four major, unconformity‐bounded stratigraphic units: U1 U2, U3 and U4. Unit U1, tentatively dated to the warm and humid Marine Isotopic Stage (MIS) 5, consists of sandy, gravelly coastal/beach deposits developed during high sea‐level in low‐lying areas. Unit U2 consists of debris‐flow dominated fan‐deposits (ca 74 ka; MIS 4), preserved as partial fills of small valleys and coves. Unit U2 is mainly composed of reddish silty conglomerate to pebbly siltstones sourced from the Palaeozoic metamorphic inland hills (bedrock), superficially disintegrated during the preceding warm, vegetation‐rich MIS 5. The cold and semi‐arid climate strongly reduced vegetation cover along the valley flanks. Therefore, sediment gravity‐flow processes, possibly activated by rainstorms, led to deposition of debris‐flow dominated fans. Unit U3 consists of water‐flow dominated alluvial‐fan deposits (ca 47 to 23 ka; MIS 3), developed on a slightly inclined coastal plain. Unit U3 is composed of sandstone and sandy conglomerate fed from two main sediment sources: metamorphic inland bedrock and Quaternary bioclastic‐rich shelf‐derived sands. During this cold phase, sea‐level dropped sufficiently to expose bioclastic sands accumulated on the shelf. Frequent climate fluctuations favoured inland aeolian transport of sand during dry phases, followed by reworking of the aeolian bodies by flash floods during wet phases. Bedrock‐derived fragments mixed with water‐reworked, wind‐blown sands led to the development of water‐flow dominated fans. The Dansgaard–Oeschger events possibly associated with sand landward deflation and main fan formations are Dansgaard–Oeschger 13 (ca 47 ka), Dansgaard–Oeschger 8 (ca 39 ka) and Dansgaard–Oeschger 2 (ca 23 ka). No record of sedimentation during MIS 2 was observed. Finally, bioclastic‐rich aeolianites (Unit U4, ca 10 to 5 ka; MIS 1), preserved on a coastal slope, were developed during the Holocene transgression (ca 10 to 5 ka; MIS 1). The studied sequence shows strong similarities with those of other Mediterranean sites; it is, however, one of the few where the main MIS 4 and MIS 3 climatic fluctuations are registered in the sedimentary record.  相似文献   

16.
The Burhan Budai Shan in NE Tibet represents a key location for examining the variable influence of the mid‐latitude westerly and monsoonal circulations on late Quaternary glaciations in this sector of the Tibetan Plateau. Our study investigates the glacial history of mountains near Lake Donggi Cona (35°17′N, 98°33′E) using field mapping in combination with 10Be surface exposure dating and numerical reconstructions of former glacial equilibrium line altitudes (palaeo‐ELA). A set of 23 new exposure ages, collected from moraines in four glacial valleys, ranges from 45 to 190 ka, indicating ice expansion during the early and middle part of the last glacial cycle, and during the penultimate and possibly an earlier Mid‐Pleistocene glaciation. Ice advances reaching 12–15 km in length occurred at around 190–180 ka (≥MIS 6), between 140–100 ka (late MIS 6/MIS 5), and 90–65 ka (late MIS 5/early MIS 4), with a maximum ELA depression of 400–500 m below the estimated modern snowline. Exposure ages from the valley headwaters further indicate a small glaciation between c. 60–50 ka (late MIS 4/early MIS 3), which was essentially restricted to the cirque areas. Significantly, we find no evidence for any subsequent glaciation in the area during MIS 2 or the Holocene period. These results indicate a diminishing trend of glaciation in the region since at least MIS 4, and corroborate the case of a ‘missing LGM’ in the more interior parts of the northeastern Tibetan Plateau. The emerging pattern suggests that the most favourable conditions for glaciation during the Late Pleistocene correspond to periods of relatively moderate cooling combined with an intermediate or rising East Asian monsoon strength.  相似文献   

17.
The extensive aeolian deposits of the Tibetan Plateau (TP) represent important environmental archives, recording information about the past interplay between the Asian monsoon and Westerlies and the link between dust accumulation and Quaternary glaciations. In the northeast TP, mantles of sandy loess form a distinct belt lying between 3500 and 4500 m a.s.l. on the east‐facing slopes of the Anyemaqen Mountains. However, there is little chronological information about the loess deposits in this region. This study provides a detailed chronology for loess formation in the region using luminescence dating. A total of 29 samples were collected from an 8‐m‐thick homogeneous loess section at Hebei (HB) in order to date sand‐sized (63–90 μm) quartz and K‐feldspar fractions using optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL and pIRIR) signals, respectively. The resulting quartz and feldspar ages are in good agreement over the last 40 ka; beyond this (i.e. De >120 Gy), the quartz age is underestimated, and the pIRIR170 feldspar ages are considered more reliable. The HB loess section records continuous environmental information from c. 50 to c. 30 ka, i.e. throughout Marine Isotope Stage (MIS) 3. Mass accumulation rates (MARs) varied considerably over this period with increased dust accumulation around c. 38 ka and after c. 32 ka; in between, and at the beginning of MIS 3 (50–40 ka), the dust accumulation rate was ~50% lower. Finally, the HB section also records a MIS 2 hiatus of c. 17 ka duration, probably resulting from deflation. This study implies that loess deposition on the TP is predominantly an interglacial/interstadial phenomenon and the TP may be deflating at the same time as the Chinese Loess Plateau is accumulating, at least during MIS 2.  相似文献   

18.
Dating and geomorphology of shoreline features in the Qinghai Lake basin of northwestern China suggest that, contrary to previous interpretations, the lake likely did not reach levels 66-140 m above modern within the past ∼ 90,000 yr. Maximum highstands of ∼ 20-66 m above modern probably date to Marine Isotope Stage (MIS) 5. MIS 3 highstands are undated and uncertain but may have been at or below post-glacial highs. The lake probably reached ∼ 3202-3206 m (+ 8-12 m) during the early Holocene but stayed below ∼ 3202 m after ∼ 8.4 ka. This shoreline history implies significantly different hydrologic balances in the Qinghai Lake basin before ∼ 90 ka and after ∼ 45 ka, possibly the result of a more expansive Asian monsoon in MIS 5.  相似文献   

19.
Wind gaps in actively growing mountain ranges are unique geomorphological features testifying to the competition between tectonics and fluvial incision. Although it is clear that these landforms reflect the defeat of rivers during sustained rock uplift, the role of climate changes in their formation has never been explored. Here, we use a coupled tectonics–landscape evolution model to show that temporal changes in precipitation rate exert an important control on wind gap formation. In models with a constant precipitation rate, rivers flowing across a growing range are either defeated at an early stage or they abandon their valleys very late, if at all. If precipitation varies, wind gaps form mostly c. 100–200 ka after a transition to drier conditions because of sediment aggradation upstream of the range. Our results suggest that the Pliocene–Quaternary aridification of Central Asia contributed to wind gap formation in active mountain ranges in the foreland of northeastern Tibet.  相似文献   

20.
Elmejdoub, N., Mauz, B. & Jedoui, Y. 2010: Sea‐level and climatic controls on Late Pleistocene coastal aeolianites in the Cap Bon peninsula, northeastern Tunisia. Boreas, 10.1111/j.1502‐3885.2010.00162.x. ISSN 0300‐9483. The chronology of coastal dunes (aeolianites) along the western littoral of the Cap Bon peninsula (northeastern Tunisia) was investigated using an optical dating technique to examine their tentative correlation with the Marine Isotope Stage (MIS) record. These dunes, formed under a northwesterly wind regime and supplied by sand from the shore, are an indicator of sea‐level and climate changes. We obtained optically stimulated luminescence ages for these aeolianites ranging from 112±10 to 53±2 ka and clustering around the last interglacial period (~125–75 ka), implying that the former stratigraphic allocation of these dunes is inaccurate. The optical chronology suggests dune formation during MIS 5 in association with a sea level lower than today but higher than the glacial sea‐level lowstand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号