首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
In this study, the null-field boundary integral equation method (BIEM) and the image method are used to solve the SH wave scattering problem containing semi-circular canyons and circular tunnels. To fully utilize the analytical property of circular geometry, the polar coordinates are used to expand the closed-form fundamental solution to the degenerate kernel, and the Fourier series is also introduced to represent the boundary density. By collocating boundary points to match boundary condition on the boundary, a linear algebraic system is constructed. The unknown coefficients in the algebraic system can be easily determined. In this way, a semi-analytical approach is developed. Following the experience of near-trapped modes in water wave problems of the full plane, the focusing phenomenon and near-trapped modes for the SH wave problem of the half-plane are solved, since the two problems obey the same mathematical model. In this study, it is found that the SH wave problem containing two semi-circular canyons and a circular tunnel has the near-trapped mode and the focusing phenomenon for a special incident angle and wavenumber. In this situation, the amplification factor for the amplitude of displacement is over 300.  相似文献   

2.
In this paper, the degenerate kernels and Fourier series expansions are adopted in the null-field integral equation to solve the exterior Helmholtz problems with alluvial valleys. The main gain of using degenerate kernels in integral equations is free of calculating the principal values for singular integrals by locating the null-field point exactly on the real boundary. An adaptive observer system is addressed to fully employ the property of degenerate kernels for circular boundaries in the polar coordinate. Image concept and technique of decomposition are utilized for half-plane problems. After moving the null-field point to the real boundary and matching the boundary conditions, a linear algebraic system is obtained without boundary discretization. The unknown coefficients in the algebraic system can be easily determined. The present method is treated as a “semi-analytical” solution since error only attributes to the truncation of Fourier series. Earthquake analysis for the site response of alluvial valley or canyon subject to the incident SH-wave is the main concern. Numerical examples including single and successive alluvial valleys are given to test our program. Limiting cases of a single canyon and two successive canyons are also addressed. Amplification of soft basin is also observed in this study. The validity of the semi-analytical method is verified. Our advantages, well-posed model, principal value free, elimination of boundary-layer effect and exponential convergence and mesh-free, by using the present method are achieved.  相似文献   

3.
This study is concerned with the dynamic response of an arbitrary shaped rigid strip foundation embedded in an orthotropic elastic soil. The foundation is subjected to time-harmonic vertical, horizontal and moment loadings. The boundary-value problem related to an embedded foundation is analysed by using the indirect boundary integral equation method. The kernel functions of the integral equations are displacement and traction Green's functions of an anisotropic elastic half plane. Exact analytical solutions are used for the Green's functions. The boundary integral equation is solved by using numerical techniques. Selected numerical results are presented for the impedances of rectangular and semi-circular rigid strip foundations embedded in four types of anisotropic soils. A discussion on the influence of soil anisotropy and frequency of excitation on the impedances is presented. The versatility of the analysis is demonstrated by considering the through soil interaction between two semi-circular strip foundations.  相似文献   

4.
A closed-form wave equation analytic solution of two-dimensional scattering and diffraction of outof-plane(SH) waves by an almost semi-circular shallow cylindrical hill on a flat, elastic and homogeneous half space is proposed by applying the discrete Fourier series expansions of sine and cosine functions. The semi-circular hill problem is discussed as a special case for the new formulated equation.Compared with the previous semi-circular cases solutions, the present method can give surface displacement amplitudes which agrees well with previous results. Although the proposed equation can only solve the problem of SH-waves diffracted by almost semi-circular shallow hills, the stress and displacement residual amplitudes are numerical insignificantly everywhere. Moreover, the influences of the depth-towidth ratio(a parameter defined in this paper to evaluate the shallowness of the topography of hills) on ground motions are presented and summarized. The limitations and errors of truncation from Graf's addition theorem and Fourier series equations in the present paper are also discussed.  相似文献   

5.
In this work, a hybrid boundary integral equation method (BIEM) is developed, based on both displacement and hypersingular traction formulations, for the analysis of time-harmonic seismic waves propagating through cracked, multi-layered geological regions with surface topography and under plane strain conditions. Specifically, the displacement-based BIEM is used for a multi-layered deposit with interface cracks, while the regularized, traction-based BIEM is used when internal cracks are present within the layers. The standard uni-dimensional boundary element with parabolic shape functions is employed for discretizing the free surface and the layer interfaces, while special discontinuous boundary elements are placed near the crack tips to model the asymptotic behaviour of both displacements and tractions. This formulation yields displacement amplitudes and phase angles on the free surface of a geological deposit, as well as stress intensity factors near the tips of the cracks. Finally, in the companion paper, numerical results are presented which show that both scattered wave and stress concentration fields are sensitive to the incidence seismic wave parameters and to specific site conditions such as surface topography, layering, the presence of cracks and crack interaction.  相似文献   

6.
A closed-form analytical solution of surface motion of a semi-elliptical cylindrical hill for incident plane SH waves is presented. Although some previous analytical work had already dealt with hill topography of semi-circular and shallow circular, our work aims at calculating surface motion of very prolate hill for high incident frequency, and explaining the special vibrating properties of very prolate hill. Accuracy of the solution is checked by boundary conditions, numerical results for surface motion of oblate and prolate hills are calculated, and some conclusions are obtained.  相似文献   

7.
In this article, we first reviewed the method of boundary integral equation (BIEM) for modelling rupture dynamics of a planar fault embedded in a 3-D elastic half space developed recently (ZHANG and CHEN, 2005a,b). By incorporating the half-space Green's function, we successfully extended the BIEM, which is a powerful tool to study earthquake rupture dynamics on complicated fault systems but limited to full-space model to date, to half-space model. In order to effectively compute the singular integrals in the kernels of the fundamental boundary integral equation, we proposed a regularization procedure consisting of the generalized Apsel-Luco correction and the Karami-Derakhshan algorithm to remove all the singularities, and developed an adaptive integration scheme to efficiently deal with those nonsingular while slowly convergent integrals. The new BIEM provides a powerful tool for investigating the physics of earthquake dynamics. We then applied the new BIEM to investigate the influences of geometrical and physical parameters, such as the dip angle (δ) and depth (h) of the fault, radius of the nucleation region (Rasp), slip-weakening distance (Dc), and stress inside (Ti) and outside (Te) the nucleation region, on the dynamic rupture processes on the fault embedded in a 3-D half space, and found that (1) overall pattern of the rupture depends on whether the fault runs up to the free surface or not, especially for strike-slip, (2) although final slip distribution is influenced by the dip angle of the fault, the dip angle plays a less important role in the major feature of the rupture progress, (3) different value of h, δ, Rasp, Te, Ti and Dc may influence the balance of energy and thus the acceleration time of the rupture, but the final rupture speed is not controlled by these parameters.  相似文献   

8.
SH波对圆弧形凸起地形的散射   总被引:20,自引:3,他引:17  
本文采用“契合”的方法,给出了一个求解平面SH波对圆弧形凸起形散射的新方法。利用包括圆绵形凸起上边界线在内的一个圆域中预先构造的满足凸起边界应力为零。其余边界应力待定的级数解和其余下的具有圆弧形凹陷的半空间中的解答。通过在其结合面上完成“契合”的过程中分别确定出圆域和半空间听解答。给出了问题的最终结果。利用上述方法,问题的求解仍归结为对一个无穷代数方程组的求解。最后,本文给出了数值结果并对其进行了  相似文献   

9.
Vertical vibration of an embedded rigid foundation in a poroelastic soil   总被引:4,自引:0,他引:4  
This paper considers time-harmonic vertical vibration of an axisymmetric rigid foundation embedded in a homogeneous poroelastic soil. The soil domain is represented by a homogeneous poroelastic half space that is governed by Biot's theory of poroelastodynamics. The foundation is subjected to a time-harmonic vertical load and is perfectly bonded to the surrounding half space. The contact surface can be either fully permeable or impermeable. The dynamic interaction problem is solved by employing an indirect boundary integral equation method. The kernel functions of the integral equation are the influence functions corresponding to vertical and radial ring loads, and a ring fluid source applied in the interior of a homogeneous poroelastic half space. Analytical techniques are used to derive the solution for influence functions. The indirect boundary integral equation is solved by using numerical quadrature. Selected numerical results for vertical impedance of rigid foundations are presented to demonstrate the influence of poroelastic effect, foundation geometry, hydraulic boundary condition along the contact surface and frequency of excitation.  相似文献   

10.
In this paper we derive some similarity solutions of a nonlinear equation associated with a free boundary problem arising in the shallow-water approximation in glaciology. In addition we present a classical potential symmetry analysis of this second-order nonlinear degenerate parabolic equation related to non-Newtonian ice sheet dynamics in the isothermal case. After obtaining a general result connecting the thickness function of the ice sheet and the solution of the nonlinear equation (without any unilateral formulation), a particular example of a similarity solution to a problem formulated with Cauchy boundary conditions is described. This allows us to obtain several qualitative properties on the free moving boundary in the presence of an accumulation-ablation function with realistic physical properties.  相似文献   

11.
The boundary integral equation method(BIEM)is now widely used in numerical studies on earthquake rupture dynamics,and is proved to be a powerful tool to deal with problems on complex fault system.However,since this method heavily lies on the specific forms of Green's function and only the Green's function in full-space has a closed analytic expression,it is usually limited to a full-space medium.In this study,as a first step to extend this method to an arbitrary complex fault system in half-space,the boundary integral equations(BIEs)for dynamic strike-slip on vertical complex fault system in half-space are derived based on exact Green's function for isotropic and homogeneous half-space.Effect of the geometry of the complex fault system are dealt with carefully.Final BIEs is composed of two parts:contribution from full-space,which has been thoroughly investigated by Aochi and his co-workers by using the Green's function for full-space,and that from free surface,which is studied in detail in this study.  相似文献   

12.
Satellite missions CHAMP and GRACE dedicated to global mapping of the Earth’s gravity field yield accurate satellite-to-satellite tracking (SST) data used for recovery of global geopotential models usually in a form of a finite set of Stokes’s coefficients. The US-German Gravity Recovery And Climate Experiment (GRACE) yields SST data in both the high-low and low-low mode. Observed satellite positions and changes in the intersatellite range can be inverted through the Newtonian equation of motion into values of the unknown geopotential. The geopotential is usually approximated in observation equations by a truncated harmonic series with unknown coefficients. An alternative approach based on integral inversion of the SST data of type GRACE into discrete values of the geopotential at a geocentric sphere is discussed in this article. In this approach, observation equations have a form of Green’s surface integrals with scalar-valued integral kernels. Despite their higher complexity, the kernel functions exhibit features typical for other integral kernels used in geodesy for inversion of gravity field data. The two approaches are discussed and compared based on their relative advantages and intended applications. The combination of heterogeneous gravity data through integral equations is also outlined in the article. panovak@kma.zcu.cz  相似文献   

13.
The aim of this paper is to present a rigorous investigation for a two-layered transversely isotropic linear elastic half-space containing a circular cylindrical cavity of length equal to the top layer undergoing mono-harmonic ring shape shear stress applied either on the vertical cylindrical surface or on the base of the cavity. To this end, a combination of Fourier cosine integral transform for depth and Hankel integral transform for radial distance are used, which translate the boundary value problem to a singular integral equation for the shear stress comes out from the continuity of two layers. The integral equation is solved for some collocation points with a smoothed variable of distance, which is adapted with the use of a free parameter. It is shown that, although the shear stress is highly singular, it does not highly depend on this free parameter. Both the analytical and numerical results are verified with both the static isotropic and dynamic transversely isotropic homogeneous cases. In addition, some new graphical results are presented for more understanding in engineering point of view.  相似文献   

14.

In this study, a seismic analysis of semi-sine shaped alluvial hills above a circular underground cavity subjected to propagating oblique SH-waves using the half-plane time domain boundary element method (BEM) was carried out. By dividing the problem into a pitted half-plane and an upper closed domain as an alluvial hill and applying continuity/boundary conditions at the interface, coupled equations were constructed and ultimately, the problem was solved step-by-step in the time domain to obtain the boundary values. After solving some verification examples, a semi-sine shaped alluvial hill located on an underground circular cavity was successfully analyzed to determine the amplification ratio of the hill surface. For sensitivity analysis, the effects of the impedance factor and shape ratio of the hill were also considered. The ground surface responses are illustrated as three-dimensional graphs in the time and frequency domains. The results show that the material properties of the hill and their heterogeneity with the underlying half-space had a significant effect on the surface response.

  相似文献   

15.
Scattering of SH waves by a scalene triangular hill   总被引:1,自引:1,他引:0  
<正>The influence of local landforms on ground motion is an important problem.The antiplane response of a scalene triangular hill to incident SH waves is studied in this paper by using a complex function,moving coordinates and auxiliary functions.First,the model is divided into two domains:a scalene triangular hill with a semi-circular bottom;and a half space with a semi-circular canyon.Wave functions that satisfy the zero-stress condition at the triangular wedges and at the horizontal surface are constructed in both domains.Then,considering the displacement continuity and stress equilibrium, algebraic equations are established.Finally,numerical examples are provided to illustrate the influence of the geometry of the hill and the characteristics of the incident waves on the ground motions.  相似文献   

16.
<正>The objective of this paper is to develop a dynamic slip model for a shear crack under constant stress drop.This crack problem is formulated by a traction boundary integral equation(BIE) in the frequency domain and then solved by the hyper-singular boundary element method as well as the regularization technique proposed in this paper.Based on the spectral integral form of the kernel function,the unbounded term can be isolated and extracted from the hyper-singular kernel function by using the method of subtracted and added back in wave number domain.Finally,based on the inverse transformation from the frequency domain to the time domain,the time histories of crack opening displacement under constant stress drop can be determined.Three rupture models(simultaneous rupture model,symmetric bilaterally-propagating model and unilaterally propagating model) with specified time histories of stress drop are considered in this paper.Even though these three models will cause the same final slip shapes because of the same constant stress drop,the associated slip time functions differ significantly from each other during the rupture process.  相似文献   

17.
An integral equation technique to calculate the dynamic response of foundations embedded in a layered viscoelastic half-space when subjected to external forces and moments is presented. The technique is based on representing the radiated field as resulting from a set of sources distributed over a surface internal to the actual boundary of the foundation and by imposing the boundary conditions in an integral sense. The resulting non-singular integral equation with symmetric kernel is solved by discretization and reduction to a system of linear algebraic equations. The technique is validated by comparison with previous results for cylindrical foundations with different embedment ratios.  相似文献   

18.
层状半空间中周期分布凸起地形对平面SH波的散射   总被引:1,自引:0,他引:1       下载免费PDF全文
提出了一种新的以层状半空间中周期分布斜线荷载动力格林函数为基本解的间接边界元方法,研究了周期分布凸起地形对平面SH波的散射问题.方法将散射波场分解为凸起内部散射波场和凸起外部散射波场.凸起内部散射波场通过在凸起闭合边界上施加虚拟斜线荷载产生的动力响应来模拟,而凸起外部散射波场则通过在凸起与半空间交界面上施加虚拟周期分布斜线荷载产生的动力响应来模拟.周期分布斜线荷载动力格林函数的引入,使得本文方法仅需针对一个凸起进行边界单元的离散和求解,便可完成问题的求解,避免了通过截断无限边界求解而引入的误差,方法具有较高精度的同时显著降低了求解自由度.文中通过与已有结果的比较,验证了方法的正确性,并以均匀半空间和基岩上单一土层中周期分布凸起为例进行了数值计算分析.研究表明,凸起间距对凸起地形间的动力相互作用有着显著的影响,同时层状半空间中周期分布凸起地形对SH波的散射与均匀半空间情况也有着显著的差别.  相似文献   

19.
We consider the exterior Neumann problem of the Laplacian with boundary condition on spheroids. We propose to use spherical radial basis functions in the solution of the boundary integral equation arising from the Dirichlet-to-Neumann map. Our meshless approach with radial basis functions is particularly suitable for handling scattered satellite data. We also propose a preconditioning technique based on an overlapping domain decomposition method to deal with ill-conditioned matrices arising from the approximation problem.  相似文献   

20.
弹性波边界元法正演模拟   总被引:10,自引:4,他引:10       下载免费PDF全文
弹性波边界元地震模型方法(BEESM),实现了二维和三维问题的纵、横波及转换波的同时模拟,并且能模拟任意复杂构造的地震声波正演模型.根据地震模型的特点,本文发展了数值积分计算与矩阵消元同步进行的块状高斯消元法;用解析法处理奇异积分;用无限元法处理边界吸收问题;采用单元长度随介质速度和计算频率变化的变单元算法,及自动剖分单元等技术,提高了计算精度,节省了内存,缩短了计算时间.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号