共查询到19条相似文献,搜索用时 83 毫秒
1.
热带印度洋海温异常不同模态对南海夏季风爆发的可能影响 总被引:7,自引:6,他引:7
热带印度洋海温异常两种主要的模态分别是春季最强的全区一致型海温变化和秋季发展成熟的东西反位相偶极型模态, 本文主要分析了这两种海温模态对当年南海夏季风爆发的不同影响机制。对热带印度洋全区一致增暖和变冷年份的合成分析表明: 热带印度洋的增暖 (变冷) 通过海气相互作用激发印度洋-西太平洋异常的Walker环流圈, 加强 (减弱) 西太平洋副热带高压的强度, 进而有利于南海夏季风爆发的推迟 (提早)。由于热带印度洋全区一致型海温变化滞后响应于前冬ENSO事件, 因此, 作者提出热带印度洋的这种海温模态对维持ENSO对第二年南海夏季风爆发的影响起到了重要的传递作用。作者进一步通过1994年个例研究了热带印度洋偶极型海温模态对南海夏季风爆发的可能影响。1994年的热带印度洋偶极子在初夏就表现出很强的强度, 显著削弱了印度洋的夏季风环流, 尤其是索马里急流和赤道印度洋西风气流的强度。南海上游季风气流的减弱以及热带印度洋异常反气旋的发展阻碍了印度洋西南季风向南海的推进, 从而使得这一年南海夏季风爆发偏晚大约2候。 相似文献
2.
印度洋海温异常对亚洲季风区天气气候影响的数值模拟研究 总被引:34,自引:9,他引:34
利用中国科学院大气物理研究所IAP9L大气环流模式,模拟研究了印度洋SSTA对亚洲季风区大气环流和天气气候异常的影响。结果表明,印度洋赤道低纬地区的暖(冷)SSTA,可以在北半球中高纬度地区激发产生与PNA和EAP类似的冬季型或夏季遥相关型波列,对亚洲季风区中低纬度地区的环流异常或天气气候异常有重要作用。当印度洋暖(冷)SSTA强迫时,亚洲夏季风建立较正常偏晚(偏早),撤退较早(较晚),季风季节长 相似文献
3.
热带太平洋-印度洋海温异常综合模的数值模拟 总被引:1,自引:0,他引:1
通过数值模拟及结果的合成分析,对热带太平洋-印度洋异常海温综合模态的三维热力结构、动力结构及其发生发展的可能机制进行了研究.数值模拟结果的分析表明,太平洋、印度洋海温异常的综合模态在表层、次表层的表现都很明显,即在赤道西印度洋、中东太平洋的海温偏高(低)时,赤道西太平洋、东印度洋的海温偏低(高),该模态还存在着显著的年变化特征、年际变化特征以及年代际变化特征.数值模拟的合成分析结果表明,异常的海表风应力引起表层洋流异常,表层洋流异常及由其引起的海表高度异常可导致次表层海水环流的异常,海洋环流异常导致的平流热输送异常是海温形成异常综合模态的主要原因之一,垂直输送是形成次表层海温综合模态的主要原因.平流热输送过程对海表温度变异的贡献是:在事件发生到盛期阶段促进了次表层海温异常综合模态的形成,在盛期到消亡阶段次表层的平流过程阻碍其进一步发展;短波辐射是海洋的主要热力来源,海表面异常的净短波辐射通量、潜热通量是表层海温形成异常模态的主要热力学原因,异常的海表面净短波辐射通量、潜热通量、感热通量在到达盛期阶段后抑制其进一步发展. 相似文献
4.
热带太平洋-印度洋海温异常综合模对南亚高压的影响 总被引:15,自引:5,他引:15
从综合考虑热带太平洋和印度洋海温异常特征出发,研究了热带太平洋-印度洋海温异常综合模对南亚高压的影响.当热带太平洋-印度洋海温异常综合模为正位相(西印度洋和东太平洋海温距平为正,东印度洋-西太平洋海温距平为负),南亚高压偏弱,位置偏东偏南;当热带太平洋-印度洋海温异常综合模为负位相(西印度洋和东太平洋海温距平为负,东印度洋-西太平洋海温距平为正),南亚高压偏强,位置偏西偏北.热带太平洋-印度洋海温异常综合模影响南亚高压主要通过三种机制:一是通过影响亚洲季风从而影响了降水潜热形成的大气加热场分布,在正(负)位相年,青藏高原大气热源为负(正)异常,因此青藏高原上空空气上升减弱(加强),南亚高压偏弱(偏强);南海季风和热带辐合带加强(减弱),菲律宾附近的大气热源加强(减弱),有利于上空青藏高原东南侧反气旋(气旋)式的距平环流,因此南亚高压偏东偏南(偏西偏北).二是热带太平洋-印度洋海温的纬向热力对比引起赤道纬向垂直(Walker)环流异常,必将引起高空纬向风异常,在正(负)位相年,南亚高压南部的印度洋高空会出现西(东)风异常,导致南亚高压偏弱(偏强).三是综合模的正(负)异常加强(减小)西印度洋经度范围的区域Hadley环流,其北侧伊朗高原上的异常下沉(上升)支,造成南亚高压偏弱(偏强),位置偏东偏南(偏西偏北). 相似文献
5.
6.
热带太平洋和印度洋海温异常对东亚冬季风影响的一个物理机制 总被引:3,自引:0,他引:3
本文利用NCEP/NCAR提供的大气环流资料和海表温度异常资料,在分析热带太平洋和印度洋海温异常与冬季大气环流之间关系的基础上提出了一个综合反映热带太平洋和印度洋海温异常的综合指数。分析表明,冬季太平洋和印度洋海温异常指数的值越大(小),东亚冬季风指数的值越大(小),东亚地区将出现异常的南(北)风的响应,东亚冬季风将越弱(强)。应用加热强迫影响热带环流的简单模式研究r热带太平洋印度洋异常海温对东亚冬季风影响的物理机制。结果表明,当冬季热带太平洋和印度洋海温异常指数处于正(负)位相时,西太平洋区域强迫出异常南(北)风。这是使得东亚冬季风偏弱(强)的重要原因之一。冬季热带太平洋和印度洋海温异常对东亚冬季风影响最为显著的关键区是赤道西太平洋。 相似文献
7.
8.
热带太平洋和印度洋海温年际变化的均方差分析 总被引:5,自引:0,他引:5
运用1951~1997年热带(20°N~20°S,50°E~80°W)海温(SST)资料求出其各月的均方差,结果表明:太平洋海温变化相对印度洋海温变化要明显,特别是赤道中东太平洋附近 (165~90°W,6°N~6°S)的海温变化比较显著,其海温的变化范围在2~4°C左右,3~4月份海温年际变化小,11~12月海温年际变化大;“暖池”附近洋面海温年际变化也小。而印度洋海域的海温变化范围在1~2°C左右,在印度洋南半球洋面海温变化比北半球洋面海温变化相对较大。同时,根据上述海温变化特征确定了几个海温年际变化最大的关键区。 相似文献
9.
采用中国科学院大气物理研究所大气环流模式的持续积分方案,模拟了4,5,6三个月大气环流对正常,异常海温强迫的响应。结果表明,持续积分结果较通常积分结果约提前一个月,蓁特点保持不变,因此,提出了利用GCM制作月预报的可能途径。 相似文献
10.
利用多成员集合试验结果,比较分析了热带印度洋和太平洋增暖各自对东亚夏季风趋势变化的影响。试验所用模式是GFDLAM2大气环流模式,增暖是通过在气候平均海洋表面温度(SST)基础上,叠加随时间线性增加的、相当于实际50a左右达到的SST异常来实现的。结果表明:热带印度洋和太平洋共同增暖有使东亚夏季风减弱的趋势。相比较而言,单独印度洋增暖有使东亚夏季风增强、华北降水增多的趋势,而单独太平洋增暖有使东亚夏季风减弱的趋势,即印度洋增暖与太平洋增暖对东亚夏季风存在相反的、竞争性影响。进一步分析指出,热带太平洋特别是热带中东太平洋的增温可能对20世纪70年代末期开始的夏季风年代际减弱有更重要的贡献;在未来热带印度洋和太平洋持续增暖、但增暖强度纬向差异减小的新情况下,东亚夏季风减弱的趋势可能还将持续。 相似文献
11.
YANG Mingzhu DING Yihui LI Weijing MAO Hengqing HUANG Changxing 《Acta Meteorologica Sinica》2008,22(1):31-41
The Indian Ocean (IO) sea surface temperature (SST) was analyzed by using empirical orthogonal function (EOF), and the leading mode of Indian Ocean (LMIO) SST was extracted. The major spatial and temporal characters of LMIO were discussed, and the relationships between LMIO with Indian summer monsoon (ISM) and with China summer rainfalls (CSR) were investigated, then the impacts of LMIO on Asian summer monsoon (ASM) circulation were explored. Some notable results are obtained: The significant evolutional characters of LMIO are the consistent warming trend of almost the whole IO basin, the distinctive quasi-3- and quasi-ll-yr oscillations and remarkably interdecadal warming in 1976/1977 and 1997/1998, respectively. The LMIO impaired the lower level circulation of ISM and was closely related with the climate trend of CSR. It was associated with the weakening of South Asian high, the easterly winds south of the Tibetan Plateau, and the cross-equatorial flows over 10°-20°N, 40°-110°E at the upper level; with the strengthening of Somali cross-equatorial jet but the weakening of the circulation of ISM in the sector of India, the strengthening of south wind over the middle and lower reaches of Yangtze River and South China but the weakening of southwesterly winds over North China at lower level and with the increasing of surface pressure over the Asian Continent. Changes in the moisture flux transports integrated vertically over the whole troposphere associated with LMIO are similar to those in the lower level circulation. To sum up, the significant SST increasing trend of IO basin was one of the important causes for weakening of the ASM circulation and the southwards shifting of China summer rainband. 相似文献
12.
热带印度洋春季海表温度异常与南海夏季风强度变化的关系 总被引:2,自引:0,他引:2
利用50年的Reynolds月平均海表温度资料和NCEP/NCAR全球大气再分析资料,分析了热带印度洋春季海温异常对南海夏季风强度变化的影响。结果表明:1)热带印度洋春季海表温度距平(SSTA)的模态主要是全区一致型(USBM)和热带南印度洋偶极型(SIODM),USBM模态既有年际时间尺度的变化特征,又有年际以上时间尺度的变化特征,既包含有对冬季ENSO信号响应的变化特征,又有独立于ENSO的变化特征;SIODM模态主要表现为独立于ENSO的年际时间尺度变化。2)USBM模态与南海夏季风强度变化呈显著负相关关系,且二者都是对冬季ENSO信号的响应,USBM模态的年际变化不能独立于ENSO信号影响南海夏季风的强度变化。3)经(1~8年)带通滤波及去除ENSO信号的热带印度洋春季SSTA的SIODM型分布是影响南海夏季风强度变化的主要模态,表现为热带东南印度洋为负(正)、其他海区为正(负)时,南海夏季风强度增强(减弱),大气环流对热带东南印度洋SSTA热力作用的响应是造成这一关系的直接原因,SIODM型的SSTA分布与南海夏季风年际异常关系在热带印度洋长期变化趋势的暖位相期显著,在长期变化趋势的冷位相期不显著。 相似文献
13.
14.
中国南方夏季降水与热带印度洋偶极型海温异常的联系 总被引:4,自引:1,他引:4
利用1979-1999年GISST和CMAP月平均资料,用线性回归滤除印度洋偶极子(IOD)指数和ENSO的相互干扰,定义纯IOD指数和纯Nino3指数,将海温距平处理为相对独立的3个部分,通过相关和合成分析得到:6-8月印度洋偶极型海温及热带中印度洋海温异常与中国南方夏季降水都有很好的正相关关系,并且二者对南方夏季降水序列的拟合方差贡献显著,表明热带印度洋海温异常与中国南方夏季降水的关系密切;5月份热带印度洋海温年际变化可以解释60 %左右的南方夏季降水异常,这对南方降水的预测具有非常好的指导意义.在正(负)IOD年,热带印度洋SSTA引起我国南方地区大气异常上升(下沉)运动,中国南方为整层水汽的异常辐合(辐散)区,从而使中国南方夏季降水异常偏多(偏少). 相似文献
15.
High-resolution satellite-derived data and NCEP-NCAR reanalysis data are used to investigate intraseasonal oscillations (ISO) over the tropical Indian Ocean.A composite evolution of the ISO life cycle is constructed,including the initiation,development,and propagation of rainfall anomalies over the tropical Indian Ocean.The characteristics of ISO over the tropical Indian Ocean are profoundly different before and after the onset of the Indian summer monsoon.Positive precipitation anomalies before monsoon onset appear one phase earlier than those after monsoon onset.Before monsoon onset,precipitation anomalies associated with ISO first initiate in the western tropical Indian Ocean and then propagate eastward along the equator.After monsoon onset,convective anomalies propagate northward over the Indian summer monsoon region after an initial eastward propagation over the equatorial Indian Ocean.Surface wind convergence and air-sea interaction play critical roles in initiating each new cycle of ISO convection. 相似文献
16.
亚洲夏季风环流结构与热带印度洋偶极型海温异常 总被引:1,自引:0,他引:1
使用T42L28大气环流模式就夏季风时期大气对印度洋海温偶极子型异常的响应进行了数值试验研究,结果表明,印度洋偶极子型海温异常可以引起感热和潜热加热异常并进而形成异常辐合辐散,导致热带印度洋及其邻近地区夏季降水异常。同时此热带扰动可激发或造成中纬度异常波列。通过改变季风区温度场分布,偶极子型海温强迫可以影响大气的正/斜压环流结构和斜压性强弱。强的纬向风垂直切变趋向于靠近海洋异常偏暖的地区。不论是正偶极子型强迫或负偶极子型强迫,西太平洋暖池和东亚地区的大气环流均出现异常并激发出中纬度的异常波列,但异常类型并未显著反相。 相似文献
17.
QIAN Yongfu ZHANG Yan JIANG Jing YAO Yonghong XU Zhongfeng 《Acta Meteorologica Sinica》2005,19(2):129-142
The multi-yearly averaged pentad meteorological fields at 850 hPa of the NCEP/NCAR reanalysis dada and the TBB fields of the Japan Meteorological Agency during 1980-1994 are analyzed. It is found that if the pentad is taken as the time unit of the monsoon onset, then the tropical Asian summer monsoon (TASM) onsets earliest, simultaneously and abruptly over the whole area in the Bay of Bengal (BOB), the Indo-China Peninsula (ICP), and the South China Sea (SCS), east of 90°E, in the 27th to 28th pentads of a year (Pentads 3 to 4 in May), while it onsets later in the India Peninsula (IP) and the Arabian Sea (AS), west of 90°E. The TASM bursts first at the south end of the IP in the 30th to 31st pentads near 10°N, and advances gradually northward to the whole area, by the end of June. Analysis of the possible mechanism depicts that the rapid changes of the surface sensible heat flux, air temperature, and pressure in spring and early summer in the middle to high latitudes of the East Asian continent between 100°E and 120癊are crucially responsible for the earliest onset of the TASM in the BOB to the SCS areas. It is their rapid changes that induce a continental depression to form and break through the high system of pressure originally located in the above continental areas. The low depression in turn introduces the southwesterly to come into the BOB to the SCS areas, east of 90°E, and thus makes the SCS summer monsoon (SCSSM) burst out earliest in Asia. In the IP to the AS areas, west of 90°E, the surface sensible heat flux almost does not experience obvious change during April and May, which makes the tropical Indian summer monsoon (TISM) onset later than the SCSSM by about a month. Therefore, it is concluded that the meridian of 90°E is the demarcation line between the South Asian summer monsoon (SASM, i.e., the TISM) and the East Asian summer monsoon (EASM, including the SCSSM). Besides, the temporal relations between the TASM onset and the seasonal variation of the South Asian high (SAH) are discussed, too, and it is found that there are good relations between the monsoon onset time and the SAH center positions. When the SAH center advances to north of 20°N, the SCSSM onsets, and to north of 25°N, the TISM onsets at its south end. Comparison between the onset time such determined and that with other methodologies shows fair consistency in the SCS area and some differences in the IP area. 相似文献
18.
19.
Observational and reanalysis data are used to investigate the different relationships between boreal spring sea surface temperature (SST) in the Indian and Pacific oceans and summer precipitation in China. Partial correlation analysis reveals that the effects of spring Indian Ocean SST (IO SST) and Pacific SST (PSST) anomalies on summer precipitation in China are qualitatively opposite. When IO SST anomalies are considered independently of PSST anomalies, precipitation decreases south of the Yangtze River, in most areas of Inner Mongolia, and in some parts of Liaoning Province, and increases in the Yangtze River valley, parts of southwestern and northern China, northeastern Inner Mongolia, and Heilongjiang Province. This results in a negative-positive-negative-positive pattern of precipitation anomalies in China from south to north. When PSST anomalies (particularly those in the Nin o3.4 region) are considered independently of IO SST anomalies, the pattern of precipitation anomalies in China is positive-negative-positive-negative from south to north. The genesis of summer precipitation anomalies in China is also examined when El Nin o-Southern Oscillation (ENSO) signals are removed from the ocean and atmosphere. An anticyclonic low-level wind anomaly forms in the South China Sea-Northwest Pacific area when the IO SST anomaly (SSTA) is warm and the Northwest Pacific SSTA is cold. This anticyclonic anomaly substantially influences summer precipitation in China. Anomalous warming of tropical IO SST induces positive geopotential height anomalies in the subtropics and an east-west dipole pattern in midlatitudes over Asia. These anomalies also affect summer precipitation in China. 相似文献