首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Cosmic Origins Spectrograph (COS) was installed in the Hubble Space Telescope in May, 2009 as part of Servicing Mission 4 to provide high sensitivity, medium and low resolution spectroscopy at far- and near-ultraviolet wavelengths (FUV, NUV). COS is the most sensitive FUV/NUV spectrograph flown to date, spanning the wavelength range from 900 Å to 3200 Å with peak effective area approaching 3000 cm2. This paper describes instrument design, the results of the Servicing Mission Orbital Verification (SMOV), and the ongoing performance monitoring program.  相似文献   

2.
We present new ultraviolet spectra of the hottest known, peculiar white dwarf H1504+65, obtained with the Cosmic Origins Spectrograph on the Hubble Space Telescope. H1504+65 is the hottest known white dwarf (T eff=200 000 K) and has an atmosphere mainly composed by carbon and oxygen, augmented with high amounts of neon and magnesium. This object is unique and the origin of its surface chemistry is completely unclear. We probably see the naked core of either a C–O white dwarf or even a O–Ne–Mg white dwarf. In the latter case, this would be the first proof that such white dwarfs can be the outcome of single-star evolution. The new observations were performed to shed light on the origin of this mysterious object.  相似文献   

3.
《New Astronomy Reviews》2000,44(7-9):555-557
We present some early results on AGN from the Chandra X-ray Observatory, highlighting high resolution spectroscopy using the High Energy Transmission Grating Spectrometer (HETGS). The quasar PKS 0637–752 was found to have a very bright X-ray jet whose shape is remarkably similar to that of the radio jet on a size scale of 100 kpc, but the X-ray emission is still inexplicably bright. Two BL Lac objects, PKS 2155–304 and Mrk 421, observed with the spectrometer were found to have no strong absorption or emission features. Other radio loud AGN observed with the HETGS show simple power law spectra without obvious features.  相似文献   

4.
We examine the possibility that recent data on cosmic ray anisotropies presented by the AGASA group may lead to the conclusion that our Galactic Center is a major source of the highest energy cosmic rays in our galaxy. We discuss how such a source would contribute to the magnitude and directional properties of the observed flux when measured against a background of extragalactic cosmic rays. We do this using the results of previous propagation calculations and our own more recent calculations which are specifically for a Galactic Center source.We find that the AGASA data can indeed be plausibly interpreted in this way and also that an argument can be made that the Galactic Center has the appropriate physical properties for acceleration to energies of the order of 1018 eV. We show that data from the SUGAR array are compatible with the AGASA result.  相似文献   

5.
6.
We examine the acceleration of cosmic rays in the magnetospheres of collapsing stars with initial dipole magnetic fields and various initial energy distributions of charged particles in their magnetospheres (the exponential, relativistic Maxwellian, and Boltzmann distributions were considered). When a magnetized star contracts at the gravitational collapse stage, its magnetic field grows considerably. Such a variable magnetic field generates an eddy electric field. Our calculations suggest that this electric field can accelerate charged particles to relativistic energies. In this way collapsing stars can be sources of high-energy cosmic rays in our Galaxy as well as in other galaxies.  相似文献   

7.
Within the more than 30 yr of cosmic ray astrophysics, neither their origin nor their precise mode of propagation have found undisputable explanations. Among the favoured boosters have been point sources, like supernovae and pulsars, as well as extended sources, like cosmic clouds and supernova remnants. Extended sources have been proposed by Fermi (1949), and pushed more recently by a number of investigators because of the huge available reservoirs, and because repetitive shock acceleration can generate power law spectra which are similar to the ones observed (Axfordet al., 1977; Bell, 1978; Blandford and Ostriker, 1978; Krymsky, 1977). Yet the shock acceleration model cannot easily be adjusted to achieve particle energies in excess of some critical energy, of order 104±1 GeV (Völket al., 1981). For this and several other reasons, the suggestion is revived that neutron stars are the dominant source of high-energy cosmic rays. To be more precise: the (relativistic) ionic component of the cosmic rays is argued to be injected by young binary neutron stars (?105 yr) whose rotating magnetospheres act like grindstones in the wind of their companion (Kundt, 1976). The high-energy (?30 GeV) electron-positron component may be generated by young pulsars (?105 yr) and by collision processes, and the electron component below 30 GeV predominantly by supernova remnants.  相似文献   

8.
We construct a phenomenological theory of gravitation based on a second order gauge formulation for the Lorentz group. The model presents a long-range modification for the gravitational field leading to a cosmological model provided with an accelerated expansion at recent times. We estimate the model parameters using observational data and verify that our estimative for the age of the Universe is of the same magnitude than the one predicted by the standard model. The transition from the decelerated expansion regime to the accelerated one occurs recently (at ∼9.3 Gyr).  相似文献   

9.
Nonlinear propagation of cylindrical and spherical dust-acoustic solitons in an unmagnetized dusty plasma consisting of cold dust grains, superthermal ions and electrons are investigated. For this purpose, the standard reductive perturbation method is employed to derive the cylindrical/spherical Korteweg-de-Vries equation which governs the dynamics of dust-acoustic solitons. The effects of nonplanar geometry and superthermal distributions on the cylindrical and spherical dust acoustic solitons structures are also studied by numerical calculation of the cylindrical/spherical Korteweg-de-Vries equation.  相似文献   

10.
The antiproton flux measured by PAMELA experiment might have originated from Galactic sources of cosmic rays. These antiprotons are expected to be produced in the interactions of cosmic ray protons and nuclei with cold protons. Gamma rays are also produced in similar interactions inside some of the cosmic accelerators. We consider a few nearby supernova remnants observed by Fermi LAT. Many of them are associated with molecular clouds. Gamma rays have been detected from these sources which most likely originate in decay of neutral pions produced in hadronic interactions. The observed gamma ray fluxes from these SNRs are used to find out their contributions to the observed diffuse cosmic ray antiproton flux near the earth.  相似文献   

11.
12.
We have analyzed the Cassini Ultraviolet Imaging Spectrometer (UVIS) observations of the Jupiter aurora with an auroral atmosphere two-stream electron transport code. The observations of Jupiter by UVIS took place during the Cassini Campaign. The Cassini Campaign included support spectral and imaging observations by the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS). A major result for the UVIS observations was the identification of a large color variation between the far ultraviolet (FUV: 1100-1700 Å) and extreme ultraviolet (EUV: 800-1100 Å) spectral regions. This change probably occurs because of a large variation in the ratio of the soft electron flux (10-3000 eV) responsible for the EUV aurora to the hard electron flux (∼15-22 keV) responsible for the FUV aurora. On the basis of this result a new color ratio for integrated intensities for EUV and FUV was defined (4πI1550-1620 Å/4πI1030-1150 Å) which varied by approximately a factor of 6. The FUV color ratio (4πI1550-1620 Å/4πI1230-1300 Å) was more stable with a variation of less than 50% for the observations studied. The medium resolution (0.9 Å FWHM, G140M grating) FUV observations (1295-1345 Å and 1495-1540 Å) by STIS on 13 January 2001, on the other hand, were analyzed by a spectral modeling technique using a recently developed high-spectral resolution model for the electron-excited H2 rotational lines. The STIS FUV data were analyzed with a model that considered the Lyman band spectrum (B ) as composed of an allowed direct excitation component (X ) and an optically forbidden component (X followed by the cascade transition ). The medium-resolution spectral regions for the Jupiter aurora were carefully chosen to emphasize the cascade component. The ratio of the two components is a direct measurement of the mean secondary electron energy of the aurora. The mean secondary electron energy of the aurora varies between 50 and 200 eV for the polar cap, limb and auroral oval observations. We examine a long time base of Galileo Ultraviolet Spectrometer color ratios from the standard mission (1996-1998) and compare them to Cassini UVIS, HST, and International Ultraviolet Explorer (IUE) observations.  相似文献   

13.
Cho  K.-S.  Kim  K.-S.  Moon  Y.-J.  Dryer  M. 《Solar physics》2003,212(1):151-163
A new solar radio spectrograph to observe solar radio bursts has been installed at the Ichon branch of the Radio Research Laboratory, Ministry of Information and Communication, Korea. The spectrograph consists of three different antennas to sweep a wide band of frequencies in the range of 30 MHz ∼ 2500 MHz. Its daily operation is fully automated and typical examples of solar radio bursts have been successfully observed. In this paper we describe briefly its hardware and data processing methods. Then we present coronal shock speeds estimated for 34 type II bursts from May 1998 to November 2000 and compare them with those from other observatories. We also present the close relationship between onset time of type II bursts and X-ray flares as well as their associations with coronal mass ejections.  相似文献   

14.
云南暗弱天体光谱及成像仪(Yunnan Faint-Object Spectrograph and Camera,YFOSC)是一台能够快速切换工作模式,进行天文成像及光谱观测的仪器。其中长缝光谱作为该仪器的主要光谱观测模式广泛应用于点源以及面源的分光测量研究。通过测量该模式下YFOSC系统的波长响应曲线,各块光栅的波长范围,并对定标灯谱进行波长证认,同时在考虑大气吸收以及望远镜效率的情况下给出了曝光时间曲线,为观测者更好地使用该仪器提供参考。最后以近期拍摄的一条超新星光谱为例,介绍长缝光谱模式的实际观测能力。  相似文献   

15.
The origin of cosmic rays is one of the key questions in high-energy astrophysics. Supernovae have been always considered as the dominant sources of cosmic rays below the energy spectrum knee. Multi-wavelength observations indeed show that supernova remnants are capable for accelerating particles into sub-PeV (1015 eV) energies. Diffusive shock acceleration is considered as one of the most efficient acceleration mechanisms of astrophysical high-energy particles, which may just operate effectively in the large-scale shocks of supernova remnants. Recently, a series of high-precision ground and space experiments have greatly promoted the study of cosmic rays and supernova remnants. New observational features challenge the classical acceleration model by diffusive shock and the application to the scenario of supernova remnants for the origin of Galactic cosmic rays, and have deepened our understanding to the cosmic high-energy phenomena. In combination with the time evolution of radiation energy spectrum of supernova remnants, a time-dependent particle acceleration model is established, which can not only explain the anomalies in cosmic-ray distributions around 200 GV, but also naturally form the cosmic-ray spectrum knee, even extend the contribution of supernova particle acceleration to cosmic ray flux up to the spectrum ankle. This model predicts that the high-energy particle transport behavior is dominated by the turbulent convection, which needs to be verified by future observations and plasma numerical simulations relevant to the particle transport.  相似文献   

16.
宇宙线的起源是高能天体物理的核心问题之一.一直以来,超新星爆发被认为是能谱膝区以下宇宙线的主要来源.多波段观测表明,超新星遗迹有能力加速带电粒子至亚PeV (10~(15)eV)能量.扩散激波加速被认为是最有效的天体高能粒子加速机制之一,而超新星遗迹的大尺度激波正好为这一机制提供平台.近年来,一系列较高精度的地面和空间实验极大地推动了对宇宙线以及超新星遗迹的研究.新的观测事实挑战着传统的扩散激波加速模型以及其在银河系宇宙线超新星遗迹起源学说上的应用,深化了人们对宇宙高能现象的认识.结合超新星遗迹辐射能谱的时间演化特性,构建的时间依赖的超新星遗迹粒子加速模型,不仅能够解释200 GV附近宇宙线的能谱反常,还自然地形成能谱膝区,甚至可以将超新星遗迹粒子加速对宇宙线能谱的贡献延伸至踝区.该模型预期超新星遗迹中粒子的输运行为表现为湍流扩散,这需要未来的观测以及与粒子输运相关的等离子体数值模拟工作来进一步验证.  相似文献   

17.
We estimate energy spectra and fluxes at the Earth’s surface of the cosmic and Galactic neutrino backgrounds produced by thermonuclear reactions in stars. The extra-galactic component is obtained by combining the most recent estimates of the cosmic star formation history and the stellar initial mass function with accurate theoretical predictions of the neutrino yields all over the thermonuclear lifetime of stars of different masses. Models of the structure and evolution of the Milky Way are used to derive maps of the expected flux generated by Galactic sources as a function of sky direction. The predicted neutrino backgrounds depend only slightly on model parameters. In the relevant 50 keV–10 MeV window, the total flux of cosmic neutrinos ranges between 20 and 65 cm−2 s−1. Neutrinos reaching the Earth today have been typically emitted at redshift z2. Their energy spectrum peaks at E0.1–0.3 MeV. The energy and entropy densities of the cosmic background are negligible with respect to the thermal contribution of relic neutrinos originated in the early universe. In every sky direction, the cosmic background is outnumbered by the Galactic one, whose integrated flux amounts to 300–1000 cm−2 s−1. The emission from stars in the Galactic disk contributes more than 95% of the signal.  相似文献   

18.
Charged dust grains of radiia3×10–63×10–5 cm may acquire relativistic energy (>1018 eV) in the intergalactic medium. In order to attain relativistic energy, dust grains have to move in and out (scattering) of the magnetic field of the medium. A relativistic grain of radiusa10–5 cm with Lorentz factor 103 approaching the Earth will break up either due to electrostatic charge or due to sputtering about 150100 km, and may scatter solar photons via a fluorescence process. Dust grains may also melt into droplets in the solar vicinity and may contribute towards observed gamma-ray bursts.  相似文献   

19.
Although kilometer-scale neutrino detectors such as IceCube are discovery instruments, their conceptual design is very much anchored to the observational fact that Nature produces protons and photons with energies in excess of 1020 eV and 1013 eV, respectively. The puzzle of where and how Nature accelerates the highest energy cosmic particles is unresolved almost a century after their discovery. From energetics considerations we anticipate on the order of 10–100 neutrino events per kilometer squared per year pointing back at the source(s) of both galactic and extragalactic cosmic rays. In this context, we discuss the results of the AMANDA and IceCube neutrino telescopes which will deliver a kilometer-square-year of data over the next 3 years.  相似文献   

20.
ODIN is an international consortium constituted to design and build a first-light multi-purpose optical intermediate dispersion spectrograph for the Gran Telescopio Canarias (GTC, 10-m) to be installed at the Observatorio del Roque de los Muchachos (La Palma). This instrument should fulfill an important fraction of the needs of the Spanish astronomical community in optical spectroscopy performed at large telescopes, and must be highly competitive in a variety of research fields. We are proposing a spectrograph that will be capable of providing multi-object observations by means of optical fibers, integral field spectroscopy, and also multi-integral fields. It will be mounted at the Nasmyth focus of the GTC. One of the main drivers of our proposal is to cover the whole visible range allowed by the atmospheric cut-off with the highest efficiency, particularly at the UV end. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号