首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding methane emissions from natural sources is becoming increasingly important with future climactic uncertainty. Wetlands are the single largest natural source of methane; however, little attention has been given to how biota and interactions between aboveground and belowground communities may affect methane emission rates in these systems. To investigate the effects of vegetative disturbance and belowground biogeochemical alterations induced by biota on methane emissions in situ, we manipulated densities of Littoraria irrorata (marsh periwinkle snails) and Geukensia granosissima (gulf ribbed mussels) inside fenced enclosures within a Spartina alterniflora salt marsh and measured methane emissions and sediment extracellular enzyme activity (phosphatase, β-glucosidase, cellobiohydrolase, N-acetyl-β-D-glucosaminidase, peroxidase, and phenol oxidase) over the course of a year. Changes in snail density did not have an effect on methane emission; however, increased densities of ribbed mussels significantly increased the emission of methane. Sediment extracellular enzyme activities for phosphatase, cellobiohydrolase, N-acetyl-β-D-glucosaminidase, and phenol oxidase were correlated to methane emission, and none of the enzymes assayed were affected by the snail and mussel density treatments. While methane emissions from salt marsh ecosystems are lower than those from freshwater systems, the high degree of variability in emission rates and the potential for interactions with naturally occurring biota that increase emissions warrant further investigations into salt marsh methane dynamics.  相似文献   

2.
To test whether invasive Spartina alterniflora marshes were functionally equivalent to native Scirpus mariqueter marshes, the present study used bottomless lift nets (20 m2) during 12 high-tide events from August to October 2008 to compare nekton densities and biomass between the two marsh types in the Dongtan wetland. A total of eight species of fish, two species of shrimp, and three species of crab were collected. So-iny mullet Chelon haematocheilus, keeled mullet Liza carinata, Asian freshwater goby Acanthogobius ommaturus, and ridge-tail prawn Exopalaemon carinicauda dominated samples from the two marsh types and accounted for over 90% of the total catch. There were significantly greater densities and biomass (p < 0.05) of total nekton (all species combined) and two mullets (C. haematocheilus and L. carinata) in S. alterniflora marshes than in S. mariqueter marshes in August 2008, while no significant differences (p > 0.05) between the two marsh types were observed for densities and biomass of any species or total nekton in September and October 2008. Non-metric multidimensional scaling ordination did not show clear separation of samples between the two marsh types (r = 0.071, p = 0.159). Furthermore, there were no habitat-specific differences (p > 0.05) in the size distributions of the three numerically dominant species (C. haematocheilus, L. carinata, and A. ommaturus). We concluded that S. alterniflora marshes were utilized by nekton in a fashion similar to their utilization of native S. mariqueter marshes under similar physical conditions.  相似文献   

3.
Sudden vegetation dieback (SVD) is defined as the loss and lack of recovery of smooth cordgrass (Spartina alterniflora) in salt marshes. A new species of a moderately pathogenic fungus called Fusarium palustre is consistently found in SVD sites, but greenhouse tests revealed that it is not capable of causing mortality of healthy plants. Similarly, root-knot nematodes (Meloidogyne spartinae) are also found in SVD sites, but their incidence in marshes affected by SVD is not known. To understand more about the ecology of F. palustre and M. spartinae, salt marshes along Connecticut’s Long Island Sound and Massachusetts’ Cape Cod that exhibited SVD and those that did not, were visited during the summers of 2007, 2008, and 2009. Belowground and aboveground tissues of smooth cordgrass plants from 18 marshes were removed, washed, and assayed for Fusarium spp. to determine if patterns between the incidence of the different species of Fusarium, their virulence on S. alterniflora, root-knot nematodes (M. spartinae), and the health of the marsh could be revealed. There were significantly more colonies of Fusarium growing from plants in SVD sites (6.1%) than in healthy marshes where no SVD was present (<1.0%). The incidence of Fusarium spp. from plants at the perimeter of the SVD site was not statistically different from asymptomatic plants 10–20 m from the SVD edge. The majority of isolates could be assigned to one of two species, F. palustre or another slightly pathogenic group called Fusarium cf. incarnatum (88% in 2007, 62% in 2008, and 96% in 2009). The ratio of F. palustre to F. cf. incarnatum was 6.7, 2.7, or 2.1 for 2007, 2008, or 2009, respectively. Greenhouse tests on healthy S. alterniflora revealed that isolates of F. palustre were more virulent than F. cf. incarnatum, regardless of whether they were recovered from plants in healthy marshes or in SVD sites. Root-knot nematodes were found sporadically and could not be associated with SVD. Factorial greenhouse experiments did not demonstrate any interaction between F. palustre and M. spartinae providing no experimental evidence that combining Fusarium and root-knot nematodes could cause mortality. The presence of Fusarium on S. alterniflora in healthy marshes also suggests an endophytic relationship that may subsequently function in the breakdown of tissue when plants are compromised.  相似文献   

4.
To predict the impacts of climate change, a better understanding is needed of the foundation species that build and maintain biogenic ecosystems. Spartina alterniflora Loisel (smooth cordgrass) is the dominant salt marsh-building plant along the US Atlantic coast. It maintains salt marsh elevation relative to sea level by the accumulation of aboveground biomass, which promotes sediment deposition and belowground biomass, which accretes as peat. Peat accumulation is particularly important in elevation maintenance at high latitudes where sediment supply tends to be limited. Latitudinal variation in S. alterniflora growth was quantified in eight salt marshes from Massachusetts to South Carolina. The hypothesis that allocation to aboveground and belowground biomass is phenotypically plastic was tested with transplant experiments among a subset of salt marshes along this gradient. Reciprocal transplants revealed that northern S. alterniflora decreased allocation to belowground biomass when grown in the south. Some northern plants also died when moved south, suggesting that northern S. alterniflora may be stressed by future warming. Southern plants that were moved north showed phenotypic plasticity in biomass allocation, but no mortality. Belowground biomass also decomposed more quickly in southern marshes. Our results suggest that warming will lead northern S. alterniflora to decrease belowground allocation and that belowground biomass will decompose more quickly, thus decreasing peat accumulation. Gradual temperature increases may allow for adaptation and acclimation, but our results suggest that warming will lower the ability of salt marshes to withstand sea-level rise.  相似文献   

5.
Salt spray is one of many abiotic factors that can influence plant productivity and species composition in coastal ecosystems. However, little is known about how marsh plants respond physiologically to the accumulation of sea aerosols on foliar tissues. In this study, experimental microcosms maintained in controlled greenhouse conditions were used to evaluate how low- (1.7 mg dm−2 day−1, weekly averages) and high- (8.6 mg dm−2 day−1) salt-spray loads would influence plant–water relations in Spartina alterniflora (Loisel.). While no differences in plant performance (e.g., changes in biomass and leaf area) were observed between the treatments and control plants, a number of physiological modifications attributed to salt spray were observed. In general, salt-treated plants underwent significant decreases in water potential (Ψ) and osmotic potential (Ψ π) and increases in leaf conductance (g) and bulk modulus of elasticity (ε). It is likely that these physiological responses were used to generate lower Ψ while maintaining osmotic and water homeostasis. That is, by decreasing Ψ π and increasing g and ε, more efficient water flow through the soil–plant–atmosphere continuum can be achieved, thus generating lower Ψ without promoting loss of turgor.  相似文献   

6.
The extensive spread ofPhragmites australis throughout brackish marshes on the East Coast of the United States is a major factor governing management and restoration decisions because it is assumed that biogeochemical functions are altered by the invasion. Microbial activity is important in providing wetland biogeochemical functions such as carbon and nitrogen cycling, but there is little known about sediment microbial communities inPhragmites marshes. Microbial populations associated with invasivePhragmites vegetation and with native salt marsh cordgrass,Spartina alterniflora, may differ in the relative abundance of microbial taxa (community structure) and in the ability of this biota to decompose organic substrates (community biogeochemical function). This study compares sediment microbial communities associated withPhragmites andSpartina vegetation in an undisturbed brackish marsh near Tuckerton, New Jersey (MUL), and in a brackish marsh in the anthropogenically affected Hackensack meadowlands (SMC). We use phospholipid fatty acid (PLFA) analysis and enzymataic activity to profile sediment microbial communities associated with both plants in each site. Sediment analyses include bulk density, total organic matter, and root biomass. PLFA profiles indicate that the microbial communities differ between sites with the undisturbed site exhibiting greater fatty acid richness (62 PLFA recovered from MUL versus 38 from SMC). Activity of the 5 enzymes analyzed (β-glucosidase, acid phosphatase, chitobiase, and 2 oxidases) was higher in the undisturbed site. Differences between vegetation species as measured by Principal Components Analysis were significantly greater at the undisturbed MUL site than at SMC, and patterns of enzyme activity and PLFAs did not correspond to patterns of root biomass. We suggest that in natural wetland sediments, macrophyte rhizosphere effects influence the community composition of sediment microbial populations. Physical and chemical site disturbances may impose limits on these rhizosphere effects, decreasing sediment microbial diversity and potentially, microbial biogeochemical functions.  相似文献   

7.
8.
Vegetable tannins are complex polyphenols, which occur widely in nature. Traditionally, natural tannins have been used for tanning leather. In Brazil, the main tannin-based products are obtained from Acacia mearnsii, which is a leguminous tree native to Southeastern of Australia, and the first seeds were brought to Brazil in 1928. The main cultivation of acacia was established in Rio Grande do Sul state due to the possibility of raw material for charcoal, adhesives to fuel and for tanning leather. The leather tanning processes based on plant tannins are thought to be less harmful than chromium-based tanning, and it has been used as a sustainable alternative. However, there is scarce information about the environmental impact of the leather tanning processes, with most studies reporting inhibitory effects against microorganisms at high doses and stimulatory and positive health effects at low concentrations. The aim of this study was to evaluate the toxicity of tannin preparations extracted from A. mearnsii in Saccharomyces cerevisiae. Vegetable tannin toxicity in yeast was tested using two tannin treatments in different concentrations. In general, the results showed toxicity of vegetable in yeast, BY4741 and gsh1Δ strains.  相似文献   

9.
To offer an insight into the toxicity of nanomaterials (NM) on the growth of bacteria, Escherichia coli (E. coli), Bacillus subtilis (B. subtilis) and Agrobacterium tumefaciens (A. tumefaciens) were exposed to nano-Au, nano-Ag, nano-Fe and fullerene (C60) in this study. As an effective bactericide, nano-Ag induced high toxicity on these three bacteria; C60 could inhibit their growth; however, B. subtilis and E. coli could recover as exposure time extended. Nano-Au and nano-Fe had hardly any effect on three bacteria. A. tumefaciens showed the lowest resistance and slowest growth rate during exposure. Images obtained by scanning electron microscope (SEM) revealed that nano-Ag could cause damage to the cell structure of three bacteria at 1 μg/mL. Slight damage on E. coli was found when exposed to C60, whereas no obvious physical damage was found after exposure to nano-Au or nano-Fe. It is assumed that surface activities of NM might be responsible for the different toxic effects on these bacteria.  相似文献   

10.
Phragmites australis has been invading Spartina-alterniflora-dominated salt marshes throughout the mid-Atlantic. Although, Phragmites has high rates of primary production, it is not known whether this species supports lower trophic levels of a marsh food web in the same manner as Spartina. Using several related photochemical and biological assays, we compared patterns of organic matter flow of plant primary production through a key salt marsh metazoan, the ribbed mussel (Geukensia demissa), using a bacterial intermediate. Dissolved organic matter (DOM) was derived from plants collected from a Delaware Bay salt marsh and grown in the laboratory with 14C-CO2. Bacterial utilization of plant-derived DOM measured as carbon mineralization revealed that both species provided bioavailable DOM to native salt marsh bacteria. Total carbon mineralization after 19 days was higher for Spartina treatments (36% 14CO2 ± 3 SE) compared with Phragmites treatments (29% ±2 SE; Wilcoxon–Kruskal–Wallis rank sums test, P < 0.01). Pre-exposing DOM to natural sunlight only enhanced or decreased bioavailability of the DOM to the bacterioplankton during initial measurements (e.g., 7 days or less) but these differences were not significant over the course of the incubations. Mixtures of 14C-labeled bacterioplankton (and possibly organic flocs) from 14C-DOM treatments were cleared by G. demissa at similar rates between Spartina and Phragmites treatments. Moreover, 14C assimilation efficiencies for material ingested by mussels were high for both plant sources ranging from 74% to 90% and not significantly different between plant sources. Sunlight exposure did not affect the nutritional value of the bacterioplankton DOM assemblage for mussels. There are many possible trophic and habitat differences between Spartina- and Phragmites-dominated marshes that could affect G. demissa but the fate of vascular plant dissolved organic carbon in the DOM to bacterioplankton to mussel trophic pathway appears comparable between these marsh types.  相似文献   

11.
The responses of Spartina alterniflora above- and belowground biomass to various combinations of N, P, and Fe were documented in a 1-year field experiment in a Louisiana salt marsh. Five levels of N additions to 0.25 m2 plots resulted in 18% to 138% more live aboveground biomass compared to the control plots and higher stem densities, but had no effect on the amount of live belowground biomass (roots and rhizomes; R&R). There was no change in the aboveground biomass when P or Fe was added as part of a factorial experiment of +P, +N, and +Fe additions, but there was a 40% to 60% decrease in the live belowground biomass, which reduced the average R&R:S ratio by 50%. The addition of various combinations of nutrients had a significant affect on the belowground biomass indicating that the addition of P, not N, eased the need for root foraging activity. The end-of-the-growing-season N:P molar ratios in the live above- and belowground tissues of the control plot was 16.4 and 32.7, respectively. The relative size of the belowground standing stocks of N and P was higher than in the aboveground live tissues, but shifted downwards to about half that in fertilized plots. We conclude that the aboveground biomass was directly related to N availability, but not P, and that the accumulation of belowground biomass was not limited by N. We suggest that the reduction in belowground biomass with increased P availability, and the lower absolute and relative belowground standing stocks of P as plant tissue N:P ratios increased, is related to competition with soil microbes for P. One implication for wetland management and restoration is that eutrophication may be detrimental to long-term salt marsh maintenance and development, especially in organic-rich wetland soils.  相似文献   

12.
There is currently limited research available on the secondary metabolites of moulds in workplaces. The aim of this study was to determine the mould contamination in museums (N = 4), composting plants (N = 4) and tanneries (N = 4) and the secondary metabolite profiles of Alternaria, Aspergillus and Penicillium isolates from these workplaces. Alternaria, Aspergillus and Penicillium species were identified using the ITS1/2 sequence of the rDNA region. Mould metabolites were quantitatively analysed on standard laboratory medium and mineral medium containing materials specific to each workplace using liquid chromatography-mass spectrometry. We also examined the cytotoxicity of the moulds using MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) assays. Air microbiological contamination analyses showed a number of microorganisms, ranging from 2.4 × 103 CFU m?3 (composting plants) to 6.8 × 104 CFU m?3 (tanneries). We identified high percentages of Alternaria, Aspergillus and Penicillium moulds (air 57–59%, surfaces 10–65%) in all workplaces. The following moulds were the most cytotoxic (>90%): Alternaria alternata, A. limoniasperae, Aspergillus flavus, Penicillium biourgeianum, P. commune and P. spinulosum. The same mould species isolated from different working environments exhibited varying toxigenic and cytotoxic properties. Modifying the culture medium to simulate environmental conditions most often resulted in the inhibition of secondary metabolite production. Moulds isolated from the working environments produced the following mycotoxins (ng g?1): chanoclavines (0.28–204), cyclopiazonic acid (27.1–1045), fumigaclavines (0.33–10,640,000), meleagrin (0.57–13,393), roquefortins (0.01–16,660), rugulovasines (112–220), viridicatin (0.12–957), viridicatol (4.23–2753) and quinocitrinines (0.07–1104), which may have a negative impact on human health.  相似文献   

13.
The compressibility at room temperature and the thermal expansion at room pressure of two disordered crystals (space group C2/c) obtained by annealing a natural omphacite sample (space group P2/n) of composition close to Jd56Di44 and Jd55Di45, respectively, have been studied by single-crystal X-ray diffraction. Using a Birch–Murnaghan equation of state truncated at the third order [BM3-EoS], we have obtained the following coefficients: V 0 = 421.04(7) Å3, K T0 = 119(2) GPa, K′ = 5.7(6). A parameterized form of the BM3 EoS was used to determine the axial moduli of a, b and c. The anisotropy scheme is β c  ≤ β a  ≤ β b , with an anisotropy ratio 1.05:1.00:1.07. A fitting of the lattice variation as a function of temperature, allowing for linear dependency of the thermal expansion coefficient on the temperature, yielded αV(1bar,303K) = 2.64(2) × 10−5 K−1 and an axial thermal expansion anisotropy of α b  ≫ α a  > α c . Comparison of our results with available data on compressibility and thermal expansion shows that while a reasonable ideal behaviour can be proposed for the compressibility of clinopyroxenes in the jadeite–diopside binary join [K T0 as a function of Jd molar %: K T0 = 106(1) GPa + 0.28(2) × Jd(mol%)], the available data have not sufficient quality to extract the behaviour of thermal expansion for the same binary join in terms of composition.  相似文献   

14.
The native Olympia oyster, Ostrea lurida, was once abundant in many US Pacific Northwest (PNW) estuaries, but was decimated by human activity in the late nineteenth early to twentieth centuries. Having been the subject of only few modern, detailed studies, a dearth of basic physiological information surrounded O. lurida and how it compared to the now dominant, non-native Pacific oyster, Crassostrea gigas. Utilizing laboratory and in situ studies in Yaquina Bay, OR, we explored the clearance rates of both species across a wide range of conditions. Pacific oysters not only had greater size-specific clearance rates than Olympia oysters, but also had a lower optimum temperature. Clearance rates for both species were reduced at lower salinity, at lower organic content, and at higher turbidity. Clearance rate models were constructed for each species using three approaches: (1) a single mechanistic model that incorporated feeding response functions of each species to the effects of temperature, salinity, turbidity, and seston organic content based on laboratory studies; (2) another additive model in which the number and type of response functions from laboratory studies were allowed to vary; and (3) a statistical model that utilized environmental data collected during in situ feeding trials. Clearance rate models that correlated feeding activity with in situ environmental data were found to often better predict oyster clearance rates (based on Adj R 2) for both species in Yaquina Bay, OR, than mechanistic, additive models based on laboratory feeding response functions; however, in situ correlative models varied in accuracy by species and season. This work represents important first steps towards better understanding the physiological ecology of the native Olympia oyster and how it differs from introduced and now dominant Pacific oyster.  相似文献   

15.
We have obtained 26 372 CCD frames in the B, V, and I c filters for 81 RR Lyrae stars in 2008–2010, using the 76-cm telescope of the South African Astronomical Observatory and the 40-cm telescope of the Cerro Armazones Observatory, North Catholic University (Chile) using an SBIG ST-10XME CCD camera. For 12 of these RR Lyrae stars, we also obtained 337 brightness measurements in the B and V bands in 2000–2001 using the 60-cm telescope of the High Altitude Mt. Maidanak Observatory (Republic of Uzbekistan). We present tables of observations, light curves, and improved light-curve elements for all these RR Lyrae stars. The Blazhko effect was detected for SU Hor.  相似文献   

16.
Coastal wetlands, well recognized for their ecosystem services, have faced many threats throughout the USA and elsewhere. While managers require good information on the net impact of these combined stressors on wetlands, little such information exists. We conducted a 4-month mesocosm study to analyze the multiple stressor effects of precipitation changes, sea level rise, and eutrophication on the salt marsh plant Spartina alterniflora. Pots containing plants in an organic soil matrix were positioned in tanks and received Narragansett Bay (RI, USA) water. The study simulated three precipitation levels (ambient daily rain, biweekly storm, and drought), three levels of tidal inundations (high (15 cm below mean high water (MHW)), mean (MHW), and low (15 cm above MHW)), and two nutrient enrichment levels (unenriched and nutrient-enriched bay water). Our results demonstrate that storm and drought stressors led to significantly less above- and belowground biomass than those in ambient rain conditions. Plants that were flooded at high inundation had less belowground biomass, fine roots, and shoots. Nutrients had no detectable effect on aboveground biomass, but the enriched pots had higher stem counts and more fine roots than unenriched pots, in addition to greater CO2 emission rates; however, the unenriched pots had significantly more coarse roots and rhizomes, which help to build peat in organogenic marshes. These results suggest that multiple stressors of altered precipitation, sea level rise, and nutrient enrichment would lead to reduced marsh sustainability.  相似文献   

17.
The role of positive and indirect interactions is often crucial in communities with intense abiotic stress such as salt marshes. The burrowing crab, Neohelice (=Chasmagnathus) granulata, is the dominant benthic macroinvertebrate of southwest Atlantic marshes (southern Brazil to Northern Argentinean Patagonia), having strong direct and indirect effects on marsh soil and, in consequence, on marsh vegetation and primary consumers. In this work, we investigate if this crab indirectly modifies habitat use by the granivorous rodents, Akodon azarae and Oligoryzomys flavescens, by increasing nutrient availability and thus enhancing seed production by the marsh plant Spartina densiflora. The study was conducted at the Mar Chiquita Coastal Lagoon, Argentina (37°32′ S). Rodent frequencies in S. densiflora were positively correlated with crab densities throughout the low and middle marsh. Additionally, the highest quality of S. densiflora and inflorescence density was recorded at the highest crab densities. Experimental manipulation of crab densities shows that N. granulata indirectly enhances the performance of S. densiflora (e.g., decreased fiber content and C/N ratios) and increases density of seeds. Moreover, N. granulata also facilitates S. densiflora seed availability to rodents by concentrating them in sediment mound at their burrows entrances. Experimental rodent exclusions showed that rodent species used S. densiflora seeds, a variable positively related to crab burrow density. Thus, our results show that N. granulata drives the granivorous rodent distribution and the intensity of seeds–rodent interaction trough facilitative and indirect interactions in marsh community.  相似文献   

18.
The feeding behavior of three species of mussels, the native Ischadium recurvum and the invasives Mytella charruana and Perna viridis, was studied in an invaded ecosystem in Florida (USA). In situ feeding experiments using the biodeposition method were performed along a salinity gradient in four different locations along the St. Johns River. Water characteristics, such as salinity, temperature, dissolved oxygen, and seston loads, were recorded to identify relationships between these variables and the feeding behavior of the mussels. Feeding behavior of the species varied by study site. Clearance, filtration, organic ingestion, and absorption rates of I. recurvum were negatively affected by salinity. For the invasive mussel, M. charruana, rejection was positively related to salinity while total ingestion, organic ingestion, and absorption rates were positively related to the percentage of organic matter in the seston. For P. viridis, total and organic ingestion rates were negatively affected by salinity but positively affected by total particulate matter. Condition indices for P. viridis and M. charruana were 13.16?±?0.64 and 6.63?±?0.43, respectively, compared to 4.82?±?0.41 for the native species I. recurvum, indicating that these mussels are well adapted to the environmental conditions in the area. This study indicates that the three species have different preferred habitats because of their specific responses to water characteristics. Thus, the invasive mussels will not totally occupy the niche of the native mussel in Florida despite overlapping zones. These data may help identify potential invaded areas and understand the extent of the invasion.  相似文献   

19.
Frequent blooms of the dinoflagellate Alexandrium catenella in southern Chile encouraged undertaking the present study which uses the oyster Ostrea chilensis as a model for evaluating the feeding, growth, lipid storage and mortality responses to diets containing paralytic shellfish poisoning (PSP) produced by A. catenella. Medium-term (30 days) physiological responses of two groups of juvenile oysters were measured every 10 days. Five replicates were exposed to diets containing A. catenella and other five replicates were fed with a diet containing the non-toxic algae Isochrysis galbana. Diets were continuously supplied at a concentration of 2 mg L?1, in which the feeding and metabolic activity was measured, and the scope for growth calculated. Lipids storage, actual growth and mortality were also measured every 10 days. The results showed that the toxic diet has dramatic negative effects on feeding and metabolism of the juvenile individuals of O. chilensis, with high reduction of the lipid storage and growth. Mortality was also increased in individuals fed with the contaminated diet. This study supports the conclusion that the toxic dinoflagellate A. catenella restricts the energy acquisition in the juvenile O. chilensis, an important fishery and aquaculture resource in southern Chile.  相似文献   

20.
An Inconvenient Truth (AIT) has earned Al Gore an Oscar and a share of the 2007 Nobel Peace Prize and has been widely acclaimed by the mass media. However, significant errors exist in the film, owing to alarmism and exaggeration. As this forum does not provide for a detailed examination of these errors, this paper will focus only on the portrayal of the hydrologic cycle by AIT—precipitation and floods, soil moisture and droughts, and storminess. AIT argues that precipitation and intense rainfalls, floods, droughts, and the total number, intensity, and duration of tropical cyclones have all increased due exclusively to anthropogenically-driven climate change; indeed, AIT paints a picture of near scientific certainty with an overwhelming bias toward catastrophe scenarios. A closer look at the science, however, reveals that the data do not support these claims and that the scientific community is divided as to what the impact of anthropogenic climate change on the hydrologic cycle will be. Thus, the film gives a false impression of both the current state of climate change and that ‘the science is settled’.
David R. LegatesEmail:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号