首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Power spectra based on Pioneer 6 interplanetary magnetic field data in early 1966 exhibit a frequency dependence of f –2 in the range 2.8 × 10–4 to 1.6 × 10–2 cps for periods of both quiet and disturbed field conditions. Both the shape and power levels of these spectra are found to be due to the presence of directional discontinuities in the microstructure (< 0.01 AU) of the interplanetary magnetic field. Power spectra at lower frequencies, in the range of 2.3 × 10–6 to 1.4 × 10–4 cps, reflect the field macrostructure (> 0.1 AU) and exhibit a frequency dependence roughly between f –1 and f –3/2. The results are related to theories of galactic cosmic-ray modulation and are found to be consistent with recent observations of the modulation.  相似文献   

2.
The masers of E-type methanol in orion KL and SGR B2   总被引:2,自引:0,他引:2  
Using a simplified model the statistical equilibrium and radiative transfer equations of E-type-CH3OH are solved for Orion KL and SgrB2. According to our calculation results and the observation data taken by Matsakiset al. (1980) and Morimotoet al. (1985a, b), the physical conditions of both sources are estimated. In theJ 2-J 1 E methanol maser region of Orion KL, the density, kinetic temperature, dust temperature, and the fractional abundance are 0.8–2×106 cm–3, 150, 30–90 K, 0.8–8×10–6. In the 4–1-30 E and 5–1-40 E methanol maser region of Sgr B2 the correspondance physical conditions above are 104 cm3, 45, 23 K, and 7×10–7, respectively.  相似文献   

3.
Sconzo has proposed that the continental drift of a land mass like Greenland can make a detect-able change in the Earth's rotation rate through a change in the Earth's moment of inertia. The correction of theoretical and numerical errors in his paper results in a change in the length of the day of only 3.5×10–8 s cy–1, a rate which is 6 orders of magnitude less than the value he gives. Continental drift does not appear to cause an important change in the length of the day.  相似文献   

4.
Strong absorption satellite lines of CaI 6572 were found on spectrograms taken on three successive days just after the fourth contact of the 1971–72 eclipse of Zeta Aurigae. The radial velocities of the satellite lines are –88 km s–1, –74 km s–1, and –180 km–1, respectively, relative to the K-type primary star (K4 Ib). These absorptions should be due to a circumstellar cloud in which the column density of neutral calcium atoms is 1×1017 cm–2 and the turbulent velocities come to 20–50 km s–1. It is suggested that the cloud may be formed by the rocket-effect of the Lyman quanta of the B-type component (B6 V). We estimate the density in the cloud to be 2×1011 atoms cm–3 fors=10R K and 2×1010 atoms cm–3 fors=102 R K, wheres denotes the distance of the cloud from the K star andR K the K star's radius. The mass loss rate of the K-type component is also estimated to be about 10–7 M yr–1, assuming that the expansion of the K star occurs isotropically.  相似文献   

5.
The properties of explosive events in the solar transition zone are presented by means of detailed examples and statistical analyses. These events are observed as regions of exceptionally high velocity ( 100 km s–1) in profiles of Civ, formed at 105 K, observed with the High Resolution Telescope and Spectrograph (HRTS). The following average properties have been determined from observations obtained during the third rocket flight of the HRTS: full width at half maximum extent along the slit - 1.6 × 103 km; maximum velocity - 110 km s–1; peak emission measure - 4 × 1041 cm–3; lifetime - 60 s; birthrate - 4 × 10–21 cm–2 s–1 in a coronal hole and 1 × 10–20 cm–2 s–1 in the quiet Sun; mass - 6 × 108 g; and, kinetic energy - 6 × 1022 erg. The 6 examples show that there are considerable variations from these average parameters in individual events. Although small, the events show considerable spatial structure and are not point-like objects. A spatial separation is often detected between the positions of the red and blue shifted components and consequently the profile cannot be explained by turbulence alone. Mass motions in the events appear to be isotropic because the maximum observed velocity does not show any correlation with heliographic latitude. Apparent motions of the 100 km s–1 plasmas during their 60 s lifetime should be detected but none are seen. The spatial frequency of occurrence shows a maximum near latitudes of 40–50°, but otherwise their sites seem to be randomly distributed. There is enough mass in the explosive events that they could make a substantial contribution to the solar wind. It is hard to explain the heating of typical quiet structures by the release of energy in explosive events.  相似文献   

6.
The processes responsible for the emission of Na-D line in the Earth's atmosphere and laboratory are briefly reviewed. From the laboratory results of Ghoshet al. (1970), the rate coefficient of reactions exciting sodium D line is estimated to be 4.73×10–25 cm6/sec2, and its intensity in the nightglow is found to be about 114R in summer and 302R in winter.  相似文献   

7.
The lifetime of massive X-ray binaries is about 2–5×105 yr, close to the nuclear time scale. The lifetime of nonmassive X-ray binaries close to the thermal one is about 0.5–1×107 yr. Massive systems may be conserved at supernova explosion, the probability of the conservation of nonmassive systems being 1–3×10–3.  相似文献   

8.
Sudden phase anomalies (SPA's) observed in the phase of GBR 16 kHz VLF signals during the years 1977 to 1983 have been analysed in the light of their associated solar X-ray fluxes in the 0.5–4 Å and 1–8 Å bands. An attempt has been made to investigate the solar zenith angle () dependence of the integrated solar X-ray flux for producing SPA's. It is deduced from the observations for < 81° that the phase deviation increases linearly as a whole with increasing solar X-ray fluxes in these two bands. The threshold X-ray flux needed to produce a detectable SPA effect has been estimated to be 1.6 × 10–4 ergcm–2 s–1 and 1.8 × 10–3 ergcm–2 s–1 in the 0.5–4 Å and 1–8 Å bands, respectively. For both bands the average cross section for all atmospheric constituents at a height of 70 km is almost equal to the absorption cross section for the 3 Å X-ray emission.  相似文献   

9.
An ASCA observation of the Jovian impact of the comet Shoemaker-Levy 9 is reported. Four impacts of H, L, Q1 and R were observed and four impacts of B, C, G, and Q2 were observed within 60 minutes after their impacts. No significant flaring of X-ray emission was observed. Upper limit X-ray fluxes of 90 % confidence level, averaged 5 minutes just after the impacts, were 2.4 × 10–13 erg sec–1 cm–2, 3.5 × 10–13 erg sec–1 cm–2, 1.6 × 10–13 erg sec–1 cm–2 and 2.9 × 10–13 erg sec–1 cm–2 for the impacts of H, L, Q1 and R, respectively, in the 0.5(0.7 for H and Q1)–10 keV energy range. However, a hint of X-ray enhancement around Jupiter from July 17 to July 19 was detected with about 2 6 × 10–14 erg sec–1 cm–2 in the 0.5–10 keV energy range.  相似文献   

10.
In a previous paper Lyttleton (1976) has shown that the apparent secular accelerations of the Sun and Moon, as given by de Sitter, can be largely explained if the Earth is contracting at the rate required by the phase-change hypothesis for the nature of the core. More reliable values for these accelerations have since become available which warrant a redetermination of the various effects concerned on the basis of constantG, and this is first carried out in the present paper. The lunar tidal couple, which is the same whetherG is changing or not, is found to be (4.74±0.38)×1023 cgs, about three-quarters that yielded by the de Sitter values, while within the theory the Moon would take correspondingly longer to reach close proximity to the Earth at about 1.5×109 years ago.The more accurate values of the accelerations enable examination to be made of the effects that a decreasingG would have, and it is shown that a valueG/G=–3×10–11 yr–1 can be weakly satisfied compared with the close agreement found on the basis of constantG, while a value as large numerically asG/G=–6×10–11 yr–1 seems to be definitely ruled out. On the iron-core model, an intrinsic positive component of acceleration of the angular velocity cannot be reconciled at all with the secular accelerations even for constantG, and far less so ifG is decreasing at a rate suggested by any recent cosmological theory.ItG=0, the amount of contraction available for mountain-building would correspond to a reduction of surface area of about 49×106 km2 and a volume to be redistributed of 160×109 km3 if the time of collapse were 2.5×109 years ago. For earlier times, the values are only slightly reduced. IfG/G=–3×10–11 yr–1, the corresponding values are 44×106 km2 and 138×109 km3 for collapse at –2.5×109 yr, and not importantly smaller at 38×106 km2 and 122×109 km3 for collapse at –4.5×109 yr. Any of these values would suffice to account in order of magnitude for all the eras of mountain-building. An intense brief period of mountain-building on an immense scale would result from the Ramsey-collapse at whatever time past it may have occurred.  相似文献   

11.
An empirically derived lunar gravity field   总被引:1,自引:0,他引:1  
The heat-flow experiment is one of the Apollo Lunar Surface Experiment Package (ALSEP) instruments that was emplaced on the lunar surface on Apollo 15. This experiment is designed to make temperature and thermal property measurements in the lunar subsurface so as to determine the rate of heat loss from the lunar interior through the surface. About 45 days (1 1/2 lunations) of data has been analyzed in a preliminary way. This analysis indicates that the vertical heat flow through the regolith at one probe site is 3.3 × 10–6 W/cm2 (±15%). This value is approximately one-half the Earth's average heat flow. Further analysis of data over several lunations is required to demonstrate that this value is representative of the heat flow at the Hadley Rille site. The mean subsurface temperature at a depth of 1 m is approximately 252.4K at one probe site and 250.7K at the other. These temperatures are approximately 35K above the mean surface temperature and indicate that conductivity in the surficial layer of the Moon is highly temperature dependent. Between 1 and 1.5m, the rate of temperature increase as a function of depth is 1.75K/m (±2%) at the probe 1 site. In situ measurements indicate that the thermal conductivity of the regolith increases with depth. Thermal-conductivity values between 1.4 × 10–4 and 2.5 × 10–4 W/cm K were determined; these values are a factor of 7 to 10 greater than the values of the surface conductivity. If the observed heat flow at Hadley Base is representative of the moonwide rate of heat loss (an assumption which is not fully justified at this time), it would imply that overall radioactive heat production in the Moon is greater than in classes of meteorites that have formed the basis of Earth and Moon bulk composition models in the past.Lamont-Doherty Geological Observatory Contribution Number 1800.  相似文献   

12.
We use theoretical results derived in a previous paper (Lanzano, 1986) to numerically evaluate the temperature profile and radial deformation within a spherical, elastic Earth due to heat generated by the decay of radiogenic elements.We consider only the Uranium family and have assumed the diffusivity of the silicate mantle to be K = 8 × 10–3 cm2 s–1, the Poisson elastic ratio to be = 0.25 and the coefficient of thermal expansion to be = 2 × 10–5 (deg)–1. Our series solutions when applied to the interiors of the Moon, Mercury, and Mars yield results in agreement with Kopal's (1963) evaluations.  相似文献   

13.
In this article, our previous Hamiltonian theory for the rotation of an Earth whose elastic mantle is deformed by rotation and linisolar attraction is applied to the study of the secular acceleration of the Earth's rotation. Since it is a result of the inelasticity, the theory is extended to include a phase lag. So, we obtain, in a theoretical way, a value of –5.6 × 10–22 rd sec–2, which agrees perfectly with the latest observational results.  相似文献   

14.
We describe an imaging telescope for observations of celestial sources in the energy range between 30 keV and 1.8 MeV onboard stratospheric balloons. The detector is a 41 cm diameter, 5 cm thick NaI(Tl) crystal coupled to 19 photomultipliers in an Anger camera configuration. It is surrounded by a plastic scintillator 15 cm thick on the sides, 0.2 cm thick at the top and 20 cm thick at the bottom. The imaging device is based upon a 19 × 19 element square MURA (Modified Uniformly Redundant Array) coded mask mounted in an one-piece mask-antimask configuration. The detector's spatial resolution is about 10 mm at 100 keV. This is the first experiment to use such a mask pattern and configuration for astrophysical purposes. The expected 3 sensitivity for an on-axis source observed for 104 s at a residual atmosphere of 3.5 g cm–2 is 1.44 × 10–5 photons cm–2 s–1 keV–1 at 100 keV and 1.00 × 10–6 photons cm–2 s–1 keV–1 at 1 MeV. The angular resolution is approximately 14 arcminutes over a 13°field of view. The instrument is mounted in an automatic platform with a capability for pointing and stabilization in both azimuth and elevation axis with 2 arcmin accuracy.Presented at the 2nd UN/ESA Workshop, held in Bogotá, Colombia, 9-13 November, 1992.  相似文献   

15.
C. U. Keller 《Solar physics》1996,164(1-2):243-252
Recent instrumental developments in imaging polarimetry allow array detectors to reach a polarimetric sensitivity of 1 × 10–4 of the intensity. New instrumental effects appear at these levels of sensitivity and generate spurious polarization signals with amplitudes of up to 5 × 10–4. Here I discuss these effects and present methods to avoid them. Polarized spectra with an rms noise of 6 × 10–6 may then be obtained. Furthermore a method is brought to the reader's attention that allows polarization measurements at the 1 × 10–4 level with regular array detectors, e.g. in the near-infrared.  相似文献   

16.
By processing 494 observations of Comet Harrington–Abell, we obtained a unified system of elements that includes its turn around the Sun during which it closely approached Jupiter to a minimum distance of 0.037 AU in 1974. A study of the cometary orbit before and after the approach showed that, probably, at the approach of the comet to Jupiter, apart from the well-known gravitational perturbations, its motion was affected by an additional force. An improvement of the cometary orbit by assuming that an additional acceleration inversely proportional to the square of the distance to Jupiter exists in its motion yielded the following values: (4.57 ± 0.42) × 10–10 and (–7.20 ± 0.42) × 10–10 AU day–2 for the radial and transversal acceleration components, respectively. As a plausible explanation of the changes in the cometary orbit, we additionally considered a model based on the hypothesis of partial disintegration of the cometary nucleus. The parameter that characterizes the instant displacement of the center of inertia along the jovicentric radius vector was estimated to be –1.83 ± 0.75 km. Based on a unified numerical theory of cometary motion, we determined the nongravitational parameters using Marsden's model for two periods: A 1 = (11.68 ± 1.74) × 10–10 AU day–2, A 2 = (0.53 ± 0.0357) × 10–10 AU day–2 for 1975–1999 and A 1 = (5.92 ± 5.86) × 10–10 AU day–2, A 2 = (0.08 ± 0.028) × 10–10 AU day–2 for 1955–1969, under the assumption that the nongravitational acceleration changed at the approach of the comet to Jupiter.  相似文献   

17.
On December 15, 1978, an omnidirectional gamma-ray detector for the energy range 0.3 to 10 MeV was flown from São José dos Campos, Brazil at a latitude of about -23°. Around noon time, when the Sun was in the field of view of the detector, various solar flares of importance SN and SF occurred. The 2.2 MeV line flux was monitored during this time. A statistically significant line flux of (1.55 ± 0.50) × 10–2 photons cm–2 s–1 and (9.97 ± 4.85) × 10–3 photons cm–2 s–1 was observed within a few minutes of t maxima of the two long-duration SN flares respectively, whereas during SF flares only upper limits were obtained.  相似文献   

18.
Unbound planets     
Current protostellar theory has determined a lower limit to the mass of a pre-stellar gas cloud fragment of ~0.01 M. This suggests that isolated interstellar bodies in the mass range ~10 M-710-2 M must have originated within a planetary system. Two possible mechanisms whereby planets are lost from their parental systems to interstellar space are discussed and the abundance and distribution of such unbound planets within the Galaxy is examined. It is found that, except within the central regions of the Galaxy, unbound planets are expected to be scarce. In the solar neighbourhood for instance, the number density ratio of unbound planets to stars is estimated to range between extremes of ~4 × 10–4–3 × 10–2 with a most probable value of ~6 x 10–3. The faint possibility that the hypothetical Planet X might be of extra-solar origin is also discussed.  相似文献   

19.
Torsti  J.  Valtonen  E.  Anttila  A.  Vainio  R.  Mäkelä  P.  Riihonen  E.  Teittinen  M. 《Solar physics》1997,170(1):193-204
The energy spectra of the anomalous components of helium, nitrogen and oxygen have been measured by the ERNE experiment on board the SOHO spacecraft. During February 28–April 30, 1996, the maximum intensity of anomalous helium was found to be 3.8 × 10-5 cm-2 sr-1 s-1 (MeV nucl-1)-1 in the energy range 10–15 MeV nucl-1. During the period January 26–April 30, 1996, the maximum oxygen intensity was 1.2 × 10-5 cm-2 sr-1 s-1 (MeV nucl-1)-1 at 4–7 MeV nucl-1, and the maximum nitrogen intensity 1.7 × 10-6 cm-2 sr-1 s-1 (MeV nucl-1)-1 at 4–9 MeV nucl-1. These peak intensities are at the same level as two solar cycles ago in 1977, but significantly higher than in 1986. This gives observational evidence for a 22-year solar modulation cycle. A noteworthy point is that the spectra of anomalous nitrogen and oxygen appear to be somewhat broader than in 1977.  相似文献   

20.
Three years of regular weekly/biweekly monitoring of seasonal changes in temperature, transparency, chlorophyll a (CHL) and bacteria [erythrosine-stained microscopic counts and cultivable colony forming units (CFUs)] at the vertical profile in the South basin of Lake Baikal (51°54′195″N, 105°04′235″E, depth 800 m) were evaluated. In more detail, the structure and function of phytoplankton and the microbial loop in the euphotic layer at the same site were investigated during the late-winter–early-spring period under the ice. The depth of euphotic zone (up to 1% of surface irradiation) was 35 to 40 m. Primary production was measured three times a week with the 14C method in 2, 10, 20, 30 and 40 m. Maximum production was found in 10 m, with lower values towards the surface (light inhibition) and towards the lower layers. The total production in cells larger than 1 μm in the column (0–40 m) was 204–240 mg C d−1 m−2, 30–40% of it being in cells 1–3 μm (mostly picocyanobacteria), which represented roughly 9% of the total chlorophyll a (estimated from pigment analyses). A major part of phytoplankton biomass was formed by diatoms (Synedra acus Hust., Asterionella formosa Hass. and Stephanodiscus meyerii Genkal & Popovskaya). Total production (including extracellular, dissolved organic matter) was 235–387 mg C day−1 m−2, and the exudates were readily used by bacteria (particles 0.2–1 μm). This part amounted to 1–5% of cellular production in 2 to 20 m and 11–77% of cellular production in 20–40 m, i.e., in light-limited layers. From 0 to 30 m, chlorophyll a concentration was 0.8 to 1.3 μg l−1, wherefrom it decreased rapidly to 0.1 μg l−1 towards the depth of 40 m. Bacteria (DAPI-stained microscopic counts) reached 0.5–1.4×106 ml−1; their cell volumes measured via image analysis were small (average 0.05 μm−3), often not well countable when erythrosine stain was used. Bacterial biomasses were in the range of 6–21 μg C l−1. Numbers of colony forming units (CFUs) on nutrient fish-agar were c. 3–4 orders lower than DAPI counts. The amounts of heterotrophic protists were low, whereby flagellates reached 6 to 87 ml−1 and ciliates, 0.2–1.2 ml−1 (mostly Oligotrichida). Bacterial production was measured in the same depths as primary production using 3H-thymidine (Thy) and 14C-leucine (Leu) uptake. Consistently, bacterial abundances, biomasses, thymidine and leucine production were higher by 30–50% in layers 2, 10 and 20 m compared with that in the deeper 30 and 40 m, where cellular primary production was negligible. Leucine uptake in the deeper layers was even three times lower than in the upper ones. From the comparison of primary and bacterial production, bacteria roughly use 20–40% of primary production during 24 h in the layers 2 to 20 m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号