首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
增厚大陆岩石层热边界层对流剥离的数值模拟   总被引:1,自引:1,他引:0       下载免费PDF全文
用数值模拟方法模拟了增厚大陆岩石层热边界层被对流地幔剥离并为软流层物质替代的动力学过程.结果表明,在初始温度分层分布、侧向均匀但存在微小热扰动的流场中,80km厚的增厚岩石层热边界层约需60Ma才能被完全剥离,剥离的速率微弱地依赖扰动的强度;在已建立好的流场中,同样厚度的增厚热边界层只需约10Ma就可被剥离.模拟结果暗示青藏高原地壳及岩石层在岩石层增厚和剥离以前就很热,其下伏地馒中可能已存在建立好的上地幔小尺度对流系统,而该尺度的对流系统很可能是由特提斯海洋岩石圈俯冲和消减诱发的  相似文献   

2.
华南陆缘是我国重要的矿产、地热资源区.晚中生代以来,在太平洋板块西向俯冲,地幔热对流活动共同作用下,该区出现多期岩浆-热事件和大规模爆发式成矿作用.在前人研究基础上,本文利用地表热流观测资料、地震剪切波资料、重力位球谐系数,计算了壳-幔温度结构,分析了动力学背景.计算结果表明:华南陆缘东南沿海地带,地壳10 km以浅温度达200℃以上,居里点温度475℃,莫霍面平均温度550℃.地壳浅层较热,花岗岩中放射性元素衰变放热是地壳浅层地下水热活动的重要热源,但地壳总体温度不高,为"冷壳热幔"型热结构.地幔中,90 km深度,温度950~1250℃;120 km深度,温度1050~1400℃;150 km深度,温度1200~1450℃;220 km深度,温度1500~1700℃."热"岩石圈底界深度在110~150 km之间,西深东浅.岩石圈内,地幔应力场为挤压-伸展相间格局;岩石圈之下,地幔应力场为一个以南昌为中心、长轴NE-SW向的椭圆.分析认为,晚中生代以来,太平洋板块的西向俯冲,导致华南陆缘在区域性SE向地幔对流背景上叠加局域性不稳定热扰动,在175~85Ma期间,上地幔物质向上流动,形成不同的岩浆活动高峰期.同时,岩石圈地幔受俯冲洋壳流体的影响,含水量高,黏度小,在地幔流切向应力场作用下,岩石圈底界由西向东"波浪"状减薄.现今岩石圈之下仍具备地幔小尺度热对流温度条件,但除地表浅层外,地壳整体温度不高,岩石圈构造稳定.  相似文献   

3.
The velocity of uplift in the Qinghai-Tibet plateau has been changed in a remarkable sense by the continental collision.In this paper the buoyancy variation,which occurred in the crustal shortening and thickening process,was used to explain the varied velocities.In the initial stage subcrustal material came from anomalous mantle with high temperature,then the density contrast between crust and mantle was small; in turn both the buoyancy and the surface uplift were gentle.When the thickened crust was squeezed into normal mantle in the later stage,the significant buoyancy would cause a rapid uplift.The variation of buoyancy also affected the stress regime around the plateau.  相似文献   

4.
Light continents and islands characterized by a crustal thickness of more than 30 km float over a convective mantle, while the thin basaltic oceanic crust sinks completely in subduction zones. The normal oceanic crust is 7 km thick. However, anomalously thick basaltic plateaus forming as a result of emplacement of mantle plumes into moving oceanic lithospheric plates are also pulled into the mantle. One of the largest basaltic plateaus is the Ontong Java plateau on the Pacific plate, which arose during the intrusion of a giant superplume into the plate ~100 Myr ago. Notwithstanding its large thickness (averaging ~30 km), the Ontong Java plateau is still experiencing slow subduction. On the basis of numerical modeling, the paper analyzes the oceanic crust subduction process as a function of the mantle convection vigorousness and the density, thickness, viscosity, and shape of the crust. Even a simplified model of thermocompositional convection in the upper mantle is capable of explaining the observed facts indicating that the oceanic crust and sediments are pulled into the mantle and the continental crust is floating on the mantle.  相似文献   

5.
Li  Wei  Chen  Yun  Tan  Ping  Yuan  Xiaohui 《中国科学:地球科学(英文版)》2020,63(5):649-661
The Pamir plateau, located north of the western syntaxis of the India-Eurasia collision system, is regarded as one of the most possible places of the ongoing continental deep subduction. Based on a N-S trending linear seismic array across the Pamir plateau, we use the methods of the harmonic analysis of receiver functions and the cubic spline interpolation of surface wave dispersions to coordinate their resolutions, and perform a joint inversion of these datasets to construct a 2-D S-wave velocity model of the crust and uppermost mantle there. A spatial configuration among the intermediate-depth seismicity, Moho topography, and low-velocity anomalies within the crust and upper mantle is revealed, which provides new seismological constraints on the geodynamic processes of the continental subduction. These results not only further confirm the deep subduction of the Asian continental lower crust beneath the Pamir plateau, but also indicate the importance of the metamorphic dehydration of the subducting continental crustal material in the genesis of the intermediate-depth seismicity and the crustal deformation.  相似文献   

6.
青藏高原东缘地壳运动与深部过程的研究   总被引:26,自引:9,他引:26       下载免费PDF全文
由于青藏高原东部地区记录了高原约50 Ma演化历史中物质东流的构造史,因此受到地学界的广泛重视. 现代大地测量与地质研究结果给出了该区现代地壳运动的图像,为地球动力学数值模拟提供了重要的边界约束条件. 利用重力异常计算的高原及邻区地幔对流应力场与地表地壳运动格局的明显差异表征了高原东部地壳与地幔物质的运动解耦. 基于随深度变化地壳蠕变率的动力学模拟结果显示,高原东部地壳增厚与高原内部存在很大差异,高原东部地壳增厚主要表现为下地壳的增厚,并且地幔形变过程与地表变化也不一致,同样显示出地壳、地幔运动的解耦. 研究表明,下地壳低强度分布可能是导致这种解耦的重要原因,而了解高原东部地壳及上地幔物理力学性质对我们认识高原物质东流至关重要.  相似文献   

7.
大陆下地壳层流作用及其大陆动力学意义   总被引:15,自引:0,他引:15       下载免费PDF全文
大量的地质和地球物理资料表明 ,年轻的大陆构造活动区的下地壳可能因热软化而出现透入性非地震式顺层韧性流动 ,这种下地壳层流作用驱动大陆上地壳发生地震式脆性断块运动 ,形成盆山格局 ,发生圈层耦合。大陆下地壳低粘度物质顺层流动可能是在地幔岩浆底侵作用为下地壳提供热能和添加幔源物质的基础上 ,并在地幔上升派生的重力和剪切力作用下 ,造成大陆下地壳热软化物质从盆地下部的幔隆区顺层流向相邻造山带之下的幔拗区。在下地壳层流过程中 ,地温场和速度场发生变  相似文献   

8.
本文以多孔介质中大尺度传热问题为基础,结合热平衡理论分析与数值计算,探讨了上通流对大陆岩石圈地幔-地壳热结构模式的潜在影响.根据大陆岩石圈中孔隙波传热概念模型的初步理论分析结果,指出了采用理论分析和数值模拟相结合的方法在研究大陆岩石圈地幔-地壳热结构模式时的重要性.理论分析方法可用来确定岩石圈尺度范围内大陆岩石圈的厚度和大陆地壳相关的边界条件,从而为地壳范围内数值模型的建立提供一些重要信息.数值模拟方法可以用来模拟地壳尺度范围内地壳的详细结构和复杂几何形状.如果地壳内的热分布是所考虑的主要因素,采用具有地壳尺度的合理数值模型可以有效减少计算机工作量.利用理论分析方法求出的岩石圈尺度范围内大陆岩石圈厚度与地幔传导热流之间关系的理论解,不仅可以用来验证模拟大陆岩石圈内传热问题所采用的数值方法, 而且可以用来初步研究大陆岩石圈内热分布的基本规律,为研究岩石圈地幔热事件中大陆岩石圈热减薄过程提供相应的边界条件.本文从理论分析的观点初步探讨了中国大陆不同构造背景下大陆岩石圈的热结构模式,其结果与从地球物理和地质资料中获得的大陆岩石圈热结构模式十分吻合.研究结果表明由大陆岩石圈中孔隙波传播所导致的上通流是影响大陆岩石圈地幔-地壳热结构模式及大陆岩石圈地幔与地壳之间物质和能量交换的可能机制之一.  相似文献   

9.
10.
青藏高原东缘的地壳流及动力过程   总被引:13,自引:6,他引:7       下载免费PDF全文
黏滞性地壳流对地壳及上地幔变形作用及动力机制,是大陆新生代造山带的一个重要研究内容.青藏高原中下地壳存在部分熔融或含水物质的黏滞性流体,已为一系列地球物理及岩石学研究所证实.为研究青藏高原东缘地壳流的动力作用,本文用密集的被动源宽频带地震台的观测数据,反演了地壳上地幔精细速度结构和泊松比.研究表明,川西及滇西北高原的中地壳内普遍存在低速层,而高泊松比的地壳只分布在川西北地区.位于中地壳的黏滞性地壳流从青藏高原腹地羌塘高原流出,自北西向南东流入青藏高原东缘.这些黏滞性地壳流带动了上地壳块体水平移动,当它们受到刚强的四川盆地及华南地块阻挡时将发生分层作用,地壳流将分为二或更多分支不同方向的分流,向上的一支地壳流将对上地壳产生挤压,引起地面隆升,向下的一支地壳流将使莫霍面下沉加厚下地壳·黏滞性地壳流的运动在地壳中产生应变破裂发生强烈地震活动,地震的空间分布与震源机制也受到地壳流动力作用控制.  相似文献   

11.
The formation of the thermal cross section of the lithosphere and mantle upon the interaction between the mantle convection and the immobile continent surrounded by the oceanic lithosphere is studied by numerical modeling. The convective temperature and velocity fields and then the averaged geotherms for subcontinental and suboceanic regions up to the boundary with the core are calculated from the solution of convection equations with a jump in viscosity in the continental zone. Using the experimental data on the solidus temperature in the rocks of the upper mantle, the average thickness of the continental and oceanic lithosphere is estimated at 190 and 30 km, respectively. The effect of a hot spot formed in the subcontinental upper mantle at a depth of 250–500 km, which has not been previously noted, is revealed. Although the temperature in this zone is typically assumed to be close to adiabatic, the calculations show that it is actually higher than adiabatic by up to 200°C. The physical mechanism responsible for this effect is associated with the accumulation of convective heat beneath the thermally insulating layer of the continental lithosphere. The revealed anomalies can be important in studying the phase and mineral transformations at the base of the lithosphere and in the regional geodynamical reconstructions.  相似文献   

12.
利用地下流体氦同位素比值估算大陆壳幔热流比例   总被引:12,自引:2,他引:10  
汪洋 《地球物理学报》2000,43(6):762-770
地下流体中的氦同位素 3He来自地幔的排气作用 ,4He则是铀、钍衰变的产物 .由于铀、钍元素在大陆地壳中富集 ,4He通量与地壳热流呈正相关关系 ;同时 3He通量与地幔热流之间呈正相关 .所以地下流体的氦同位素比值 (3He / 4 He)与大陆壳幔热流比值 (qc/qm)呈反相关关系 .根据欧亚大陆和加拿大地盾的地下流体氦同位素比值数据和相应的壳幔热流比值数据 ,统计出 qc/ qm 与 3He / 4 He之间的回归关系 :qc/ qm =0 81 5- 0 30 0ln(3He / 4 He) ;此处 3He/ 4 He的单位是RA(大气的 3He/ 4 He比值 ) .有了地表热流值和壳幔热流比值即可得到地壳热流和地幔热流 .利用该公式以及热流值估算了中国主要盆地的壳幔热流值 ;根据这些数值得出的热岩石圈厚度和地壳平均生热率结果与地震学研究成果一致 .氦同位素比值是区分大陆热流中地壳热流值和地幔热流值的有用参数 .  相似文献   

13.
The theory of three-dimensional and finite-amplitude convection in a viscous spherical shell with temperature and pressure dependent physical parameters is developed on the basis of a modified Boussinesq fluid assumption. The lateral dependences of the variables are resolved through their spherical harmonic representations, whereas their radial and time dependences are determined by numerical procedures. The theory is then applied to produce thermal evolution models for Venus. The emphasis is on illustrating the effects of certain physical parameters on the thermal evolution rather than proposing a specific thermal history for the planet. The main conclusions achieved in this paper are (1) a significant portion of the present temperature in the mantle and heat flux at the surface of Venus is probably owing to the decay of a high temperature established in the planet at the completion of its core formation, (2) the effective Rayleigh number of the mantle is so high that even the lower order modes of convection cool the planet sufficiently and maintain an almost adiabatic temperature gradient in the convecting region and high temperature gradients in the thermal boundary layers, (3) the convection is oscillatory with avalanche type properties which induces oscillatory features to the surface heat flux and the thickness of the crustal layer, and (4) a planetary model with a recycling crust cools much faster than those with a permanently buoyant crust.The models presented in this paper suggest that Venus has been highly convective during its history until ~ 0.5 Ga ago. The vigorous convection was bringing hot and fresh material from the deep interior to the surface and dragging down the crustal slags, floating on the surface, in to the mantle. The rate of cooling of the planet was so high that its core has solidified. In the last 0.5 Ga the vigour of convection diminished considerably and the crustal slags developed into a global and permanently buoyant crustal layer. The tectonic style on Venus has, consequently, changed from the recycling of crustal plates to hot spot volcanics. At the present time the planet is completely solid, except in the upper part of its mantle where partial melting may occur.  相似文献   

14.
杨亭  傅容珊  黄川  班磊 《地球物理学报》2014,57(4):1049-1061
在地球表层存在着占地表面积约30%的具有低固有密度、高黏度的大陆岩石圈.由于其特殊的物理化学性质,大陆岩石圈通常不直接参与下方的地幔对流,但其与地幔对流格局有着重要的相互影响.大量研究显示,在中太平洋和非洲的下地幔底部,存在着两块占核幔边界(CMB)面积约20%的高密度热化学异常体(由于其剪切波速度较低,常称作低剪切波速度省(LSVPs)).LSVPs的演化既受地幔对流的影响,同时也影响地幔物质运动的格局和动力学过程.本文系统研究了存在大陆岩石圈,下地幔LSVPs的地幔对流模型.模拟结果显示:(1)当大陆体积较小时,其边缘常伴随着俯冲,大陆区域地幔常处于下涌状态,其上地幔温度较低,大陆岩石圈在水平方向处于压应力状态.随着大陆体积的增大,大陆边缘的俯冲逐渐减弱,大陆区域地幔由下涌转为上涌,其上地幔温度较高,大陆岩石圈水平方向处于拉应力状态.(2) 岩石圈与软流圈边界(LAB)在大陆下方较深,温度较低;在海洋区域较浅,温度较高.随着大陆体积的增大,陆洋之间LAB深度、温度的差异逐渐减小.(3)大陆区域地幔底部LSVPs物质的丰度与大陆的体积呈正相关.当大陆体积较小时,大陆下方的LSVPs丰度比海洋区域少.随着大陆体积的增大,大陆下方LSVPs的丰度逐渐增大.(4)海洋地区地表热流高,且随时间波动大,大陆地区地表热流低,随时间波动较小;LSVPs区域的核幔边界热流低.  相似文献   

15.
Andesites of both island arc and continental margin environments contain petrologic evidence of mixing of mantle and crustal melts. Andesitic volcanism appears to involve addition of mantle-derived basaltic magma to the crust and fractionation of preexisting crustal material. Changes in andesitic volcanism with increasingly continental character of the crust reflect changes in a rhyolitic component derived from increasingly aged and fractionated crust. The initial stage in development of continental crust is partial melting of oceanic crust.  相似文献   

16.
Thermo-mechanical physical modelling of continental subduction is performed to investigate the exhumation of deeply subducted continental crust. The model consists of two lithospheric plates made of new temperature sensitive analogue materials. The lithosphere is underlain by liquid asthenosphere. The continental lithosphere contains three layers: the weak sedimentary layer, the crust made of a stronger material, and of a still stronger lithospheric mantle. The whole model is subjected to a constant vertical thermal gradient, causing the strength reduction with depth in each lithospheric layer. Subduction is driven by both push force and pull force. During subduction, the subducting lithosphere is heating and the strength of its layers reduces. The weakening continental crust reaches maximal depth of about 120 km and cannot subduct deeper because its frontal part starts to flow up. The subducted crust undergoes complex deformation, including indicated upward ductile flow of the most deeply subducted portions and localised failure of the subducted upper crust at about 50-km depth. This failure results in the formation of the first crustal slice which rises up between the plates under the buoyancy force. This process is accompanied by the delamination of the crustal and mantle layers of the subducting lithosphere. The delamination front propagates upwards into the interplate zone resulting in the formation of two other crustal slices that also rise up between the plates. Average equivalent exhumation rate of the crustal material during delamination is about 1 cm/year. The crust-asthenosphere boundary near the interplate zone is uplifted. The subducted mantle layer then breaks off, removing the pull force and thereby stopping the delamination and increasing horizontal compression of the lithosphere. The latter produces shortening of the formed orogen and the growth of relief. The modelling reveals an interesting burial/exhumation evolution of the sedimentary cover. During initial stages of continental subduction the sediments of the continental margin are dragged to the overriding plate base and are partially accreted at the deep part of the interplate zone (at 60-70 km-depth). These sediments remain there until the beginning of delamination during which the pressure between the subducted crust and the overriding plate increases. This results in squeezing the underplated sediments out. Part of them is extruded upwards along the interplate zone to about 30-km depth at an equivalent rate of 5-10 cm/year.  相似文献   

17.
南北构造带及邻域地壳、岩石层速度结构特征研究   总被引:4,自引:4,他引:0       下载免费PDF全文
本文利用重力数据采用Parker-Oldenburg方法反演了南北构造带及邻域地区的地壳厚度,同时采用体波地震层析成像方法反演了研究区的地壳至上地幔的三维速度结构.根据计算结果对研究区的地壳及岩石层结构进行了探讨,力图揭示南北构造带及邻域地壳、岩石层变形特征,并且对青藏高原边缘活动带壳幔构造演化的深部成因、研究区的上地幔流变性及其动力学意义进行了相应的讨论.通过分析研究表明南北构造带地区为地壳厚度剧变区,西侧为地壳增厚区,东侧的鄂尔多斯、四川盆地为地壳稳定区,而再向东为地壳逐渐减薄区.中国岩石层减薄与增厚的边界基本被限定在大兴安岭—太行山—秦岭—大巴山—武陵山一带,这也是东部陆缘带和中部扬子、鄂尔多斯克拉通地区深部构造边界的分界线,其两侧不仅浅层地质构造存在较大的差异,上地幔深部的物性状态和热活动也明显不同,这说明研究区的岩石层和软流层结构以及深部物质的分布存在横向非均匀性.中部地区和青藏高原深部构造边界的分界线位于东经100°—102°左右.  相似文献   

18.
Introduction Seismological observation and all kinds of ways of geodesy measurement imply that there is significant correlation between crustal movement and seismic activity (MEI, 1993). Therefore, it is very important to get the materials of the continental crust deformation and the patterns of stress field for the studying of the mechanism and prediction of the continental strong earthquake. Data of the continental deformation and patterns of stress field can be mainly obtained by the follo…  相似文献   

19.
The pattern and style of mantle convection govern the thermal evolution, internal dynamics, and large-scale surface deformation of the terrestrial planets. In order to characterize the nature of heat transport and convective behaviour at Rayleigh numbers, Ra, appropriate for planetary mantles (between 104 and 108), we perform a set of laboratory experiments. Convection is driven by a temperature gradient imposed between two rigid surfaces, and there is no internal heating. As the Rayleigh number is increased, two transitions in convective behaviour occur. First we observe a change from steady to time-dependent convection at Ra≈105. A second transition occurs at higher Rayleigh numbers, Ra≈5×106, with large-scale time-dependent flow being replaced by isolated rising and sinking plumes. Corresponding to the latter transition, the exponent β in the power law relating the Nusselt number Nu to the Rayleigh number (NuRaβ) is reduced. Both rising and sinking plumes always consist of plume heads followed by tails. There is no characteristic frequency for the formation of plumes.  相似文献   

20.
Lithosphere types in North China: Evidence from geology and geophysics   总被引:3,自引:0,他引:3  
Deep-seated materials from lithosphere are the ba- sic parameters and the foundation for geodynamic and continental dynamic studies. Division of lithosphere types and their deep-seated materials and structure can provide important evidence in interpreting the com- plex phenomena derived from the processes of forma- tion and evolution of continents, in evaluating the mineral resource potential, in predicting geological disasters and in the research of the continental dy- namic process. Huge lit…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号