首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
E. W. Cliver  A. G. Ling 《Solar physics》2011,274(1-2):285-301
Svalgaard and Cliver (Astrophys. J. Lett. 661, L203, 2007) proposed that the solar-wind magnetic-field strength [B] at Earth has a ??floor?? value of ??4.6 nT in yearly averages, which is approached but not broached at solar minima. They attributed the floor to a constant baseline solar open flux. In both 2008 and 2009, the notion of such a floor was undercut by annual B averages of ??4 nT. Here we present a revised view of both the level and the concept of the floor. Two independent correlations indicate that B has a floor of ??2.8 nT in yearly averages. These are i) a relationship between solar polar-field strength and yearly averages of B for the last four 11-year minima (B MIN), and ii) a precursor relationship between peak sunspot number for cycles 14??C?23 and B MIN at their preceding minima. These correlations suggest that at 11-year minima, B consists of i) a floor of ??2.8 nT, and ii) a component primarily due to the solar polar fields that varies from ??0 nT to ??3 nT. The solar polar fields provide the ??seed?? for the subsequent sunspot maximum. Removing the ??2.8 nT floor from B MIN brings the percentage decrease in B between the 1996 and 2009 minima into agreement with the corresponding decrease in solar polar-field strength. Based on a decomposition of the solar wind (from 1972??C?2009) into high-speed streams, coronal mass ejections, and slow solar wind, we suggest that the source of the floor in B is the slow solar wind. During 2009, Earth was in slow solar-wind flows ??70% of the time. We propose that the floor corresponds to a baseline (non-cyclic or ground state) open solar flux of ??8×1013 Wb, which originates in persistent small-scale (supergranular and granular) field.  相似文献   

2.
We compare the geoeffective parameters of halo coronal mass ejections (CMEs). We consider 50 front-side full-halo CMEs (FFH CMEs), which are from the list of Michalek, Gopalswamy, and Yashiro (Solar Phys. 246, 399, 2007), whose asymmetric-cone model parameters and earthward-direction parameter were available. For each CME we use its projected velocity [V p], radial velocity [V r], angle between cone axis and sky plane [γ] from the cone model, earthward-direction parameter [D], source longitude [L], and magnetic-field orientation [M] of its CME source region. We make a simple linear-regression analysis to find out the relationship between CME parameters and Dst index. The main results are as follows: i) The combined parameters [(V r D)1/2 and V r γ] have higher correlation coefficients [cc] with the Dst index than the other parameters [V p and V r]: cc=0.76 for (V r D)1/2, cc=0.70 for V r γ, cc=0.55 for V r, and cc=0.17 for V p. ii) Correlation coefficients between V r γ and Dst index depend on L and M; cc=0.59 for 21 eastern events [E], cc=0.80 for 29 western events [W], cc=0.49 for 17 northward magnetic-field events [N], and cc=0.69 for 33 southward magnetic-field events [S]. iii) Super geomagnetic storms (Dst≤?200 nT) only appear in the western and southward magnetic-field events. The mean absolute Dst values of geomagnetic storms (Dst≤?50 nT) increase with an order of E+N, E+S, W+N, and W+S events; the mean absolute Dst value (169 nT) of W+S events is significantly larger than that (75 nT) of E+N events. Our results demonstrate that not only do the cone-model parameters together with the earthward-direction parameter improve the relationship between CME parameters and Dst index, but also the longitude and the magnetic-field orientation of a FFH CME source region play a significant role in predicting geomagnetic storms.  相似文献   

3.
Auroral boundary variations and the interplanetary magnetic field   总被引:1,自引:0,他引:1  
This paper describes a DMSP data set of 150 auroral images during magnetically quiet times which have been analyzed in corrected geomagnetic local time and latitudinal coordinates and fit to offset circles. The fit parameters R (circle radius) and (X, Y) (center location) have been compared to the hourly interplanetary magnetic field (IMF) prior to the time of the satellite scan of the aurora. The results for variation of R with Bz, agree with previous works and generally show about a 1° increase of R with increase of southward Bz by 1 nT. The location of the circle center also has a clear statistical shift in the Southern Hemisphere with IMF By such that the southern polar cap moves towards dusk (dawn) with By > (By < 0).  相似文献   

4.
Ionospheric F2 peak electron densities (NmF2) measured at ten ionosonde stations have been analyzed to investigate ionospheric day-to-day variability around the Whole Heliosphere Interval (WHI) in 2008 (Day of Year (DOY) 50?–?140). The ionosonde data showed that there was significant global day-to-day variability in NmF2. This variability had 5-, 7-, 9-, 11-, 13.5-, and 16?–?21-day periodicities. At middle latitudes, the ionosphere appeared to respond directly to the solar-wind and interplanetary-magnetic-field (IMF) induced geomagnetic-activity forcing, with the day-to-day variability having the same periods as those in the solar-wind/IMF and geomagnetic activity. At the geomagnetic Equator, the ionosphere had a strong 7-day periodicity, corresponding to the same periodicity in the IMF B z component. In the equatorial anomaly region, the ionosphere showed more complicated day-to-day variability, dominated by the 9-day periodicity. In addition, there were also periodicities of 11 days and 16?–?21 days in the ionosonde data at some stations. The ionosonde data were compared with the Coupled Magnetosphere Ionosphere Thermosphere (CMIT) simulations that were driven by the observed solar-wind and IMF data during the WHI. The CMIT simulations showed similar ionospheric daily variability seen in the data. They captured the positive and negative responses of the ionosphere at middle latitudes during the first corotating interaction region (CIR) event in the WHI. The response of the model to the second CIR event, however, was relatively weak.  相似文献   

5.
We study the solar sources of an intense geomagnetic storm of solar cycle 23 that occurred on 20 November 2003, based on ground- and space-based multiwavelength observations. The coronal mass ejections (CMEs) responsible for the above geomagnetic storm originated from the super-active region NOAA 10501. We investigate the H?? observations of the flare events made with a 15 cm solar tower telescope at ARIES, Nainital, India. The propagation characteristics of the CMEs have been derived from the three-dimensional images of the solar wind (i.e., density and speed) obtained from the interplanetary scintillation data, supplemented with other ground- and space-based measurements. The TRACE, SXI and H?? observations revealed two successive ejections (of speeds ???350 and ???100 km?s?1), originating from the same filament channel, which were associated with two high speed CMEs (???1223 and ???1660 km?s?1, respectively). These two ejections generated propagating fast shock waves (i.e., fast-drifting type II radio bursts) in the corona. The interaction of these CMEs along the Sun?CEarth line has led to the severity of the storm. According to our investigation, the interplanetary medium consisted of two merging magnetic clouds (MCs) that preserved their identity during their propagation. These magnetic clouds made the interplanetary magnetic field (IMF) southward for a long time, which reconnected with the geomagnetic field, resulting the super-storm (Dst peak=?472 nT) on the Earth.  相似文献   

6.
We studied the relationship between the power-law exponent γ on the rigidity R of the spectrum of galactic cosmic-ray (GCR) intensity variation (δD(R)/D(R)∝R ?γ ) and the exponents ν y and ν z of the power spectral density (PSD) of the B y and B z components of the interplanetary magnetic field (IMF) turbulence (PSD~f ?ν , where f is the frequency). We used the data from neutron monitors and IMF for the period of 1968?–?2002. The exponents ν y and ν z were calculated in the frequency interval Δf=f 2?f 1=3×10?6 Hz of the resonant frequencies (f 1=1×10?6 Hz, f 2=4×10?6 Hz) that are responsible for the scattering of GCR particles with the rigidity range detected by neutron monitors. We found clear inverse correlations between γ and ν y or ν z when the time variations of the resonant frequencies were derived from in situ measurements of the solar wind velocity U sw and IMF strength B during 1968?–?2002. We argue that these inverse relations are a fundamental feature in the GCR modulation that is not restricted to the analyzed years of 1968?–?2002.  相似文献   

7.
We studied the occurrence and characteristics of geomagnetic storms associated with disk-centre full-halo coronal mass ejections (DC-FH-CMEs). Such coronal mass ejections (CMEs) can be considered as the most plausible cause of geomagnetic storms. We selected front-side full-halo coronal mass ejections detected by the Large Angle and Spectrometric Coronagraph onboard the Solar and Heliospheric Observatory (SOHO/LASCO) from the beginning of 1996 till the end of 2015 with source locations between solar longitudes E10 and W10 and latitudes N20 and S20. The number of selected CMEs was 66 of which 33 (50%) were deduced to be the cause of 30 geomagnetic storms with \(\mathrm{Dst} \leq- 50~\mbox{nT}\). Of the 30 geomagnetic storms, 26 were associated with single disk-centre full-halo CMEs, while four storms were associated, in addition to at least one disk-centre full-halo CME, also with other halo or wide CMEs from the same active region. Thirteen of the 66 CMEs (20%) were associated with 13 storms with \(-100~\mbox{nT} < \mbox{Dst} \leq- 50~\mbox{nT}\), and 20 (30%) were associated with 17 storms with \(\mbox{Dst}\leq- 100~\mbox{nT}\). We investigated the distributions and average values of parameters describing the DC-FH-CMEs and their interplanetary counterparts encountering Earth. These parameters included the CME sky-plane speed and direction parameter, associated solar soft X-ray flux, interplanetary magnetic field strength, \(B_{t}\), southward component of the interplanetary magnetic field, \(B_{s}\), solar wind speed, \(V_{sw}\), and the \(y\)-component of the solar wind electric field, \(E_{y}\). We found only a weak correlation between the Dst of the geomagnetic storms associated with DC-FH-CMEs and the CME sky-plane speed and the CME direction parameter, while the correlation was strong between the Dst and all the solar wind parameters (\(B_{t}\), \(B_{s}\), \(V_{sw}\), \(E_{y}\)) measured at 1 AU. We investigated the dependences of the properties of DC-FH-CMEs and the associated geomagnetic storms on different phases of solar cycles and the differences between Solar Cycles 23 and 24. In the rise phase of Solar Cycle 23 (SC23), five out of eight DC-FH-CMEs were geoeffective (\(\mbox{Dst} \leq- 50~\mbox{nT}\)). In the corresponding phase of SC24, only four DC-FH-CMEs were observed, three of which were nongeoeffective (\(\mbox{Dst} > - 50~\mbox{nT}\)). The largest number of DC-FH-CMEs occurred at the maximum phases of the cycles (21 and 17, respectively). Most of the storms with \(\mbox{Dst}\leq- 100~\mbox{nT}\) occurred at or close to the maximum phases of the cycles. When comparing the storms during epochs of corresponding lengths in Solar Cycles 23 and 24, we found that during the first 85 months of Cycle 23 the geoeffectiveness rate of the disk-centre full-halo CMEs was 58% with an average minimum value of the Dst index of \(- 146~\mbox{nT}\). During the corresponding epoch of Cycle 24, only 35% of the disk-centre full-halo CMEs were geoeffective with an average value of Dst of \(- 97~\mbox{nT}\).  相似文献   

8.
《Planetary and Space Science》1987,35(10):1301-1316
The magnetic field vector residuals observed from the Magsat satellite have been used to obtain the dependence of the polar cap boundary and the current system on IMF for quiet and mildly disturbed conditions (Kp ⩽ 3 +). The study has been carried out for the summer months in the Southern Hemisphere. “Shear reversals” (SRs) in vector residuals indicative of the infinite current sheet approximation of the field-aligned currents (FACs) indicate roughly the polar cap boundary or the poleward boundary of the plasma sheet. This is also the poleward edge of the region 1 FACs. The SR is defined to occur at the latitude where the vector goes to minimum and changes direction by approximately 180°.It is found that SRs mainly occur when the interplanetary magnetic field (IMF) has a southward-directed Bz- component and in the latitude range of about 70°–80°. SRs in the dusk sector occur predominantly when the azimuthal component By is positive and in the dawn sector when By is negative, irrespective of the sign of Bz These results agree with the known merging process of IMF with magnetopause field lines. When SRs occur on both dawn and dusk sectors, the residuals over the entire polar cap are nearly uniform in direction and magnitude, indicating negligible polar currents. Similar behaviour is observed during highly disturbed conditions usually associated with large negative values of Bz.Forty-one Magsat orbits with such SRs are quantitatively modelled for preliminary case studies of the resulting current distribution. It is found that SRs, in the plane perpendicular to the geomagnetic field, for the current vectors and the magnetic vector residuals (perturbations relative to the unperturbed field) occur at almost the same latitudes. The electrojet intensities range from 1.2 × 104 to 6.5 × 105 A (amperes). A preliminary classification of polar cap boundary crossings characterized by vector rotations rather than SRs also shows that they tend to occur mainly for negative Bz.  相似文献   

9.
The activity of Solar Cycle 24 has been extraordinarily low. The yearly averaged solar-wind speed is also lower in Cycle 24 than in Cycles 22 and 23. The yearly averaged speed in the rising phase of Cycle 21 is as low as that of Cycle 24, although the solar activity of Cycle 21 is higher than that of Cycle 24. The relationship between the solar-wind temperature and its speed is preserved under the solar-wind conditions of Cycle 24. Previous studies have shown that only a few percent of intense geomagnetic storms (minimum \(\mathrm{Dst} < -100\) nT) were caused by high-speed solar-wind flows from coronal holes. We identify two geomagnetic storms associated with coronal holes within the 19 intense geomagnetic storms that took place in Cycle 24.  相似文献   

10.
Taking the 32 storm sudden commencements (SSCs) listed by the International Service of Geomagnetic Indices (ISGI) of the Observatory de l’Ebre during 2002 (solar activity maximum in Cycle 23) as a starting point, we performed a multi-criterion analysis based on observations (propagation time, velocity comparisons, sense of the magnetic field rotation, radio waves) to associate them with solar sources, identified their effects in the interplanetary medium, and looked at the response of the terrestrial ionized and neutral environment. We find that 28 SSCs can be related to 44 coronal mass ejections (CMEs), 15 with a unique CME and 13 with a series of multiple CMEs, among which 19 (68%) involved halo CMEs. Twelve of the 19 fastest CMEs with speeds greater than 1000 km?s?1 are halo CMEs. For the 44 CMEs, including 21 halo CMEs, the corresponding X-ray flare classes are: 3 X-class, 19 M-class, and 22 C-class flares. The probability for an SSC to occur is 75% if the CME is a halo CME. Among the 500, or even more, front-side, non-halo CMEs recorded in 2002, only 23 could be the source of an SSC, i.e. 5%. The complex interactions between two (or more) CMEs and the modification of their trajectories have been examined using joint white-light and multiple-wavelength radio observations. The detection of long-lasting type IV bursts observed at metric–hectometric wavelengths is a very useful criterion for the CME–SSC events association. The events associated with the most depressed Dst values are also associated with type IV radio bursts. The four SSCs associated with a single shock at L1 correspond to four radio events exhibiting characteristics different from type IV radio bursts. The solar-wind structures at L1 after the 32 SSCs are 12 magnetic clouds (MCs), 6 interplanetary coronal mass ejections (ICMEs) without an MC structure, 4 miscellaneous structures, which cannot unambiguously be classified as ICMEs, 5 corotating or stream interaction regions (CIRs/SIRs), one CIR caused two SSCs, and 4 shock events; note than one CIR caused two SSCs. The 11 MCs listed in 3 or more MC catalogs covering the year 2002 are associated with SSCs. For the three most intense geomagnetic storms (based on Dst minima) related to MCs, we note two sudden increases of the Dst, at the arrival of the sheath and the arrival of the MC itself. In terms of geoeffectiveness, the relation between the CME speed and the magnetic-storm intensity, as characterized using the Dst magnetic index, is very complex, but generally CMEs with velocities at the Sun larger than 1000 km?s?1 have larger probabilities to trigger moderate or intense storms. The most geoeffective events are MCs, since 92% of them trigger moderate or intense storms, followed by ICMEs (33%). At best, CIRs/SIRs only cause weak storms. We show that these geoeffective events (ICMEs or MCs) trigger an increased and combined auroral kilometric radiation (AKR) and non-thermal continuum (NTC) wave activity in the magnetosphere, an enhanced convection in the ionosphere, and a stronger response in the thermosphere. However, this trend does not appear clearly in the coupling functions, which exhibit relatively weak correlations between the solar-wind energy input and the amplitude of various geomagnetic indices, whereas the role of the southward component of the solar-wind magnetic field is confirmed. Some saturation appears for Dst values \(< -100\) nT on the integrated values of the polar and auroral indices.  相似文献   

11.
One year of magnetic field data from the geostationary spacecraft ATS 6 have been analysed for effects associated with the equatorial plane components of the interplanetary magnetic field (IMF). It is shown that perturbation fields in the Y (dawn to dusk) direction appear in association with the Y component of the IMF, in agreement with previous theoretical suggestions. On average a fraction 0.28 ± 0.02 of the IMF Y field appears at geostationary orbit, such that the average ATS 6 By field is 1.9 ± 0.4 nT larger when IMF By is positive than when it is negative. The perturbation field magnitudes are also found to depend strongly on local time, however, with largest effects appearing in the midnight and dawn quadrants, where the average perturbation fields are nearly half the simultaneous IMF Bv. field. At noon this fraction drops to one fifth, and no average effect occurs in the dusk quadrant. Both the daily mean perturbation fields and the diurnal modulation are also found to depend upon the level of magnetic disturbance as measured by KP, or equivalently upon IMF Bz, and upon season of the year. Overall stronger daily mean perturbation fields occur when KP is low or when IMF Bz is positive, than when KP is high or when IMF Bz is negative. This effect is not linear, however, and there is also a trend in the data towards increasing perturbation fields with IMF Bz negative and decreasing. On dividing the data according to season, increasingly strong daily mean effects are found in the order winter, summer and equinox for both quiet and disturbed magnetospheres. Diurnal modulations of the perturbation field magnitudes for low KP (IMF Bz > 0) take the form of large amplitude quasi-sinusoidal variations about mean values which are very marked in the equinox data, are present to a lesser degree during summer and are absent during winter conditions. When Kp is high (IMF Bz < 0) significant deviations from mean perturbation field values occur generally only during nightside hours and little seasonal dependence is evident. Finally, it is shown that the highest correlation between the IMF data and the ATS 6 perturbation fields occurs with zero time delay between the two data sets, showing that a prompt response to IMF conditions occurs at geostationary orbit within the 1 h time resolution available in this study. Although many details of the above ATS 6 response remain to be understood, these results overall demonstrate in a very direct manner the magnetically “open” nature of the Earth's magnetosphere.  相似文献   

12.
The aim of this paper is to investigate the association of the geomagnetic storms with the magnitude of interplanetary magnetic field IMF (B), solar wind speed (V), product of IMF and wind speed (\(V \cdot B)\), Ap index and solar wind plasma density (\(n_{\mathrm{p}})\) for solar cycles 23 and 24. A Chree analysis by the superposed epoch method has been done for the study. The results of the present analysis showed that \(V \cdot B\) is more geoeffective when compared to V or B alone. Further the high and equal anti-correlation coefficient is found between Dst and Ap index (? 0.7) for both the solar cycles. We have also discussed the relationship between solar wind plasma density (\(n_{\mathrm{p}})\) and Dst and found that both these parameters are weakly correlated with each other. We have found that the occurrence of geomagnetic storms happens on the same day when IMF, V, Ap and \(V \cdot B\) reach their maximum value while 1 day time lag is noticed in case of solar wind plasma density with few exceptions. The study of geomagnetic storms with various solar-interplanetary parameters is useful for the study of space weather phenomenon.  相似文献   

13.
The pressure corrected hourly data from the global network of cosmic ray detectors, measurements of the interplanetary magnetic field (IMF) intensity (B) at Earth’s orbit and its components B x , B y , B z (in the geocentric solar ecliptic coordinates) are used to conduct a comprehensive study of the galactic cosmic ray (GCR) intensity fluctuations caused by the halo coronal mass ejection of 13 May 2005. Distinct differences exist in GCR timelines recorded by neutron monitors (NMs) and multidirectional muon telescopes (MTs), the latter respond to the high rigidity portion of the GCR differential rigidity spectrum. The Forbush decrease (FD) onset in MTs is delayed (~5 h) with respect to the onset of a geomagnetic storm sudden commencement (SSC) and a large pre-increase is present in MT data before, during, and after the SSC onset, of unknown origin. The rigidity spectrum, for a range of GCR rigidities (≤200 GV), is a power law in rigidity (R) with a negative exponent (γ=?1.05) at GCR minimum intensity, leading us to infer that the quasi-linear theory of modulation is inconsistent with observations at high rigidities (>1 GV); the results support the force field theory of modulation. At present, we do not have a comprehensive model for the FD explaining quantitatively all the observational features but we present a preliminary model listing physical processes that may contribute to a FD timeline. We explored the connections between different phases of the FD and the power spectra of IMF components but did not find a sustained relationship.  相似文献   

14.
This paper presents a correlative study between the peak values of geomagnetic activity indices (Dst, Kp, ap and AE) and the peak values of various interplanetary field (Bt, Bz, E and σB) and plasma (T, D, V, P and β) parameters along with their various products (BV, BzV and B2V) during intense geomagnetic storms (GMSs) for rising, maximum and decay phases as well as for complete solar cycle 23. The study leads to the conclusion that the peak values of different geomagnetic activity indices are in good correlation with Bt, Bz, σB, V, E, BV, BzV and B2V, therefore these parameters are most useful for predicting GMSs and substorms. These parameters are also reliable indicators of the strength of GMSs. We have also presented the lag/lead time analysis between the maximum of Dst and peak values of geomagnetic activity indices, various interplanetary field/plasma parameters for all GMSs. We have found that the average of peak values of geomagnetic activity indices and various field/plasma parameters are larger in decay phase compare to rising and maximum phases of cycle 23. Our analyses show that average values of lag/lead time lie in the ≈?4.00 h interval for Kp, ap and AE indices as well as for Bt, Bz, σB, E, D and P. For a more meaningful analysis we have also presented the above study for two different groups G1 (CME-driven GMSs) and G2 (CIR-driven GMSs) separately. Correlation coefficients between various interplanetary field/plasma parameters, their various products and geomagnetic activity indices for G1 and G2 groups show different nature. Three GMSs and associated solar sources observed during three different phases of this solar cycle have also been studied and it is found that GMSs are associated with large flares, halo CMEs and their active regions are close to the solar equator.  相似文献   

15.
The geomagnetic activity is the result of the solar wind–magnetosphere interaction. It varies following the basic 11-year solar cycle; yet shorter time-scale variations appear intermittently. We study the quasi-periodic behavior of the characteristics of solar wind (speed, temperature, pressure, density) and the interplanetary magnetic field (B x , B y , B z , β, Alfvén Mach number) and the variations of the geomagnetic activity indices (D ST, AE, A p and K p). In the analysis of the corresponding 14 time series, which span four solar cycles (1966?–?2010), we use both a wavelet expansion and the Lomb/Scargle periodograms. Our results verify intermittent periodicities in our time-series data, which correspond to already known solar activity variations on timescales shorter than the sunspot cycle; some of these are shared between the solar wind parameters and geomagnetic indices.  相似文献   

16.
Jordanova  V.K.  Thorne  R.M.  Farrugia  C.J.  Dotan  Y.  Fennell  J.F.  Thomsen  M.F.  Reeves  G.D.  McComas  D.J. 《Solar physics》2001,204(1-2):361-375
We study the development of the terrestrial ring current during the time interval of 13–18 July, 2000, which consisted of two small to moderate geomagnetic storms followed by a great storm with indices Dst=−300 nT and Kp=9. This period of intense geomagnetic activity was caused by three interplanetary coronal mass ejecta (ICME) each driving interplanetary shocks, the last shock being very strong and reaching Earth at ∼ 14 UT on 15 July. We note that (a) the sheath region behind the third shock was characterized by B z fluctuations of ∼35 nT peak-to-peak amplitude, and (b) the ICME contained a negative to positive B z variation extending for about 1 day, with a ∼ 6-hour long negative phase and a minimum B z of about −55 nT. Both of these interplanetary sources caused considerable geomagnetic activity (Kp=8 to 9) despite their disparity as interplanetary triggers. We used our global ring current-atmosphere interaction model with initial and boundary conditions inferred from measurements from the hot plasma instruments on the Polar spacecraft and the geosynchronous Los Alamos satellites, and simulated the time evolution of H+, O+, and He+ ring current ion distributions. We found that the O+ content of the ring current increased after each shock and reached maximum values of ∼ 60% near minimum Dst of the great storm. We calculated the growth rate of electromagnetic ion cyclotron waves considering for the first time wave excitation at frequencies below O+ gyrofrequency. We found that the wave gain of O+ band waves is greater and is located at larger L shells than that of the He+ band waves during this storm interval. Isotropic pitch angle distributions indicating strong plasma wave scattering were observed by the imaging proton sensor (IPS) on Polar at the locations of maximum predicted wave gain, in good agreement with model simulations.  相似文献   

17.
We employ annually averaged solar and geomagnetic activity indices for the period 1960??C?2001 to analyze the relationship between different measures of solar activity as well as the relationship between solar activity and various aspects of geomagnetic activity. In particular, to quantify the solar activity we use the sunspot number R s, group sunspot number R g, cumulative sunspot area Cum, solar radio flux F10.7, and interplanetary magnetic field strength IMF. For the geomagnetic activity we employ global indices Ap, Dst and Dcx, as well as the regional geomagnetic index RES, specifically estimated for the European region. In the paper we present the relative evolution of these indices and quantify the correlations between them. Variations have been found in: i) time lag between the solar and geomagnetic indices; ii) relative amplitude of the geomagnetic and solar activity peaks; iii) dual-peak distribution in some of solar and geomagnetic indices. The behavior of geomagnetic indices is correlated the best with IMF variations. Interestingly, among geomagnetic indices, RES shows the highest degree of correlation with solar indices.  相似文献   

18.
Magnetic clouds (MCs) have been identified for the period 2007??C?2009 (at/near the recent solar minimum) from Wind data, then confirmed through MC parameter fitting using a force-free model. A dramatic increase in the frequency of occurrence of these events took place from the two early years of 2007 (with five MCs) and 2008 (one MC) compared to 2009 (12 MCs). This pattern approximately mirrors the occurrence-frequency profile that was observed over a three-year interval 12 years earlier, with eight events in 1995, four in 1996, and 17 in 1997, but decreased overall by a factor of 0.62 in number. However, the average estimated axial field strength [??|B O|??] taken over all of the 18 events of 2007??C?2009 (called the ??recent period?? here) was only 11.0 nT, whereas ??|B O|?? for the 29 events of 1995??C?1997 (called the ??earlier period??) was 16.5 nT. This 33% average drop in ??|B O|?? is more or less consistent with the decreased three-year average interplanetary magnetic field intensity between these two periods, which shows a 23% drop. In the earlier period, the MCs were clearly of mixed types but predominantly of the South-to-North type, whereas those in the recent period are almost exclusively the North-to-South type; this change is consistent with global solar field changes predicted by Bothmer and Rust (Geophys. Monogr. Ser. 99, 139, 1997). As we have argued in earlier work (Lepping and Wu, J. Geophys. Res. 112, A10103, 2007), this change should make it possible to carry out (accurate short-term) magnetic storm forecasting by predicting the latter part of an MC from the earlier part, using a good MC parameter-fitting model with real-time data from a spacecraft at L1, for example. The recent set??s average duration is 15.2 hours, which is a 27% decrease compared to that of the earlier set, which had an average duration of 20.9 hours. In fact, all physical aspects of the recent MC set are shown to drop with respect to the earlier set; e.g., as well as the average internal magnetic field drop, the recent set had a somewhat low average speed of 379 km?s?1 (5% drop), and the average diameter had a 24% drop. Hence, compared to the earlier set, the recent set consists of events that are smaller, slightly slower, and weaker in every respect (and fewer in number), but in a relative sense the two three-year sets have similar frequency-of-occurrence profiles. It is also interesting that the two sets have almost the same average axial inclinations, i.e., axial latitude ??31° (in GSE). These MC characteristics are compared to relevant solar features and their changes. A preliminary assessment of the statistics on possible shocks and pressure pulses upstream of these recent MCs yields the following: About 28% of the MCs, at most, had shocks, and 33% had shocks and/or pressure pulses. These are low values, since typically the percentage of cases with shocks is about 50%, and the percentage with shocks and/or pressure pulses is usually about 75%.  相似文献   

19.
The characteristics of latitudinal angles of solar wind flow (θv) observed near earth have been studied during the period 1973-2003. The average magnitude of θv shows distinct enhancements during the declining and maximum phases of the sunspot cycles. A close association of Bz component of IMF in the GSE system and the orientation of meridional flows in the solar wind is found which depends on the IMF sector polarity. This effect has been studied in typical geomagnetic storm periods. The occurrence of non-radial flows is also found to exhibit heliolatitudinal dependence during the years 1975 and 1985 as a characteristic feature of non-radial solar wind expansion from polar coronal holes.  相似文献   

20.
The variation of the geomagnetic activity index Ap at the IMF sector boundaries (+ to ? and ? to +) has been studied for three solar cycles, separating data into vernal and autumnal equinoxes. It was found that a reported increase in Ap as an effect of a Hale boundary can be better attributed to the occurrence of a negative IMF Bz component in the geocentric solar magnetospheric coordinate system and to the occurrence of high speed solar wind streams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号