首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We performed for the first time stereoscopic triangulation of coronal loops in active regions over the entire range of spacecraft separation angles (?? sep??6°,43°,89°,127°,and 170°). The accuracy of stereoscopic correlation depends mostly on the viewing angle with respect to the solar surface for each spacecraft, which affects the stereoscopic correspondence identification of loops in image pairs. From a simple theoretical model we predict an optimum range of ?? sep??22°??C?125°, which is also experimentally confirmed. The best accuracy is generally obtained when an active region passes the central meridian (viewed from Earth), which yields a symmetric view for both STEREO spacecraft and causes minimum horizontal foreshortening. For the extended angular range of ?? sep??6°??C?127° we find a mean 3D misalignment angle of ?? PF??21°??C?39° of stereoscopically triangulated loops with magnetic potential-field models, and ?? FFF??15°??C?21° for a force-free field model, which is partly caused by stereoscopic uncertainties ?? SE??9°. We predict optimum conditions for solar stereoscopy during the time intervals of 2012??C?2014, 2016??C?2017, and 2021??C?2023.  相似文献   

2.
Based on a second-order approximation of nonlinear force-free magnetic field solutions in terms of uniformly twisted field lines derived in Paper I, we develop here a numeric code that is capable to forward-fit such analytical solutions to arbitrary magnetogram (or vector magnetograph) data combined with (stereoscopically triangulated) coronal loop 3D coordinates. We test the code here by forward-fitting to six potential field and six nonpotential field cases simulated with our analytical model, as well as by forward-fitting to an exactly force-free solution of the Low and Lou (Astrophys. J. 352, 343, 1990) model. The forward-fitting tests demonstrate: i) a satisfactory convergence behavior (with typical misalignment angles of μ≈1°?–?10°), ii) relatively fast computation times (from seconds to a few minutes), and iii) the high fidelity of retrieved force-free α-parameters (α fit/α model≈0.9?–?1.0 for simulations and α fit/α model≈0.7±0.3 for the Low and Lou model). The salient feature of this numeric code is the relatively fast computation of a quasi-force-free magnetic field, which closely matches the geometry of coronal loops in active regions, and complements the existing nonlinear force-free field (NLFFF) codes based on photospheric magnetograms without coronal constraints.  相似文献   

3.
The Solar Terrestrial Relations Observatory (STEREO) provides the first opportunity to triangulate the three-dimensional coordinates of active region loops simultaneously from two different vantage points in space. Three-dimensional coordinates of the coronal magnetic field have been calculated with theoretical magnetic field models for decades, but it is only with the recent availability of STEREO data that a rigorous, quantitative comparison between observed loop geometries and theoretical magnetic field models can be performed. Such a comparison provides a valuable opportunity to assess the validity of theoretical magnetic field models. Here we measure the misalignment angles between model magnetic fields and observed coronal loops in three active regions, as observed with the Extreme Ultraviolet Imager (EUVI) on STEREO on 30 April, 9 May, and 19 May 2007. We perform stereoscopic triangulation of some 100?–?200 EUVI loops in each active region and compute extrapolated magnetic field lines using magnetogram information from the Michelson Doppler Imager (MDI) on the Solar and Heliospheric Observatory (SOHO). We examine two different magnetic extrapolation methods: (1) a potential field and (2) a radially stretched potential field that conserves the magnetic divergence. We find considerable disagreement between each theoretical model and the observed loop geometries, with an average misalignment angle on the order of 20°?–?40°. We conclude that there is a need for either more suitable (coronal rather than photospheric) magnetic field measurements or more realistic field extrapolation models.  相似文献   

4.
5.
To redetermine the Galactic spiral density wave parameters, we have performed a spectral (Fourier) analysis of the radial velocities for 44 masers with known trigonometric parallaxes, proper motions, and line-of-sight velocities. The masers are distributed in awide range of Galactocentric distances (3.5 kpc < R < 13.2 kpc) and are characterized by a wide scatter of position angles ?? in the Galactic XY plane. This has required an accurate allowance for the dependence of the perturbation phase both on the logarithm of the Galactocentric distances and on the position angles of the objects. To increase the significance of the extraction of periodicities from data series with large gaps, we have proposed and implemented a spectrum reconstruction method based on a generalized maximum entropy method. As a result, we have extracted a periodicity describing a spiral density wave with the following parameters from the maser radial velocities: the perturbation amplitude f R = 7.7 ?1.5 +1.7 km s?1, the perturbation wavelength ?? = 2.2 ?0.1 +0.4 kpc, the pitch angle of the spiral density wave i = ?5 ?0.9° +0.2° , and the phase of the Sun in the spiral density wave ?? ?? = ?147 ?17° +3° .  相似文献   

6.
We derive an analytical approximation of nonlinear force-free magnetic field solutions (NLFFF) that can efficiently be used for fast forward-fitting to solar magnetic data, constrained either by observed line-of-sight magnetograms and stereoscopically triangulated coronal loops, or by 3D vector-magnetograph data. The derived NLFFF solutions provide the magnetic field components B x (x), B y (x), B z (x), the force-free parameter α(x), the electric current density j(x), and are accurate to second-order (of the nonlinear force-free α-parameter). The explicit expressions of a force-free field can easily be applied to modeling or forward-fitting of many coronal phenomena.  相似文献   

7.
Numerical reconstruction/extrapolation of the coronal nonlinear force-free magnetic field (NLFFF) usually takes the photospheric vector magnetogram as input at the bottom boundary. The magnetic field observed at the photosphere, however, contains a force that is in conflict with the fundamental assumption of the force-free model. It also contains measurement noise, which hinders the practical computation. Wiegelmann, Inhester, and Sakurai (Solar Phys. 233, 215, 2006) have proposed to preprocess the raw magnetogram to remove the force and noise to provide better input for NLFFF modeling. In this paper we develop a new code of magnetogram preprocessing that is consistent with our extrapolation method CESE–MHD–NLFFF (Jiang, Feng, and Xiang in Astrophys. J. 755, 62, 2012; Jiang and Feng in Astrophys. J. 749, 135, 2012a). Based on the magnetic-splitting rule that a magnetic field can be split into a potential-field part and a non-potential part, we split the magnetogram and dealt with the two parts separately. The preprocessing of the magnetogram’s potential part is based on a numerical potential-field model, and the non-potential part is preprocessed using the similar optimization method of Wiegelmann, Inhester, and Sakurai (2006). The code was applied to the SDO/HMI data, and results show that the method can remove the force and noise efficiently and improve the extrapolation quality.  相似文献   

8.
The Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) is designed to study oscillations and the magnetic field in the solar photosphere. It observes the full solar disk in the Fe?i absorption line at 6173 Å. We use the output of a high-resolution, 3D, time-dependent, radiation-hydrodynamic simulation based on the CO 5 BOLD code to calculate profiles F(??,x,y,t) for the Fe?i 6173 Å line. The emerging profiles F(??,x,y,t) are multiplied by a representative set of HMI filter-transmission profiles R i (??, 1??i??6) and filtergrams I i (x,y,t; 1??i??6) are constructed for six wavelengths. Doppler velocities V HMI(x,y,t) are determined from these filtergrams using a simplified version of the HMI pipeline. The Doppler velocities are correlated with the original velocities in the simulated atmosphere. The cross-correlation peaks near 100 km, suggesting that the HMI Doppler velocity signal is formed rather low in the solar atmosphere. The same analysis is performed for the SOHO/MDI Ni?i line at 6768 Å. The MDI Doppler signal is formed slightly higher at around 125 km. Taking into account the limited spatial resolution of the instruments, the apparent formation height of both the HMI and MDI Doppler signal increases by 40 to 50 km. We also study how uncertainties in the HMI filter-transmission profiles affect the calculated velocities.  相似文献   

9.
We investigate the possibility to diagnose the ??-distributions from the EUV spectra observed by the Hinode/EIS spectrometer. Observable lines of the most abundant elements except Fe are considered. Synthetic spectra for the ??-distributions with ??=2??C?10 and the Maxwellian distribution were calculated for a range of temperatures and electron densities. We find that only a small number of O, S, Ca, and Ni line ratios are sensitive to???. A?list of the best diagnostic options using transition region and coronal lines is provided. Usually, the line ratios sensitive to ?? are also sensitive to electron density. Weak O?iv lines are a notable exception. These lines offer greatest sensitivity to ?? from all the lines observed by Hinode/EIS. Density diagnostics using lines of the non-Fe elements is discussed and the influence of ?? on the diagnostics of electron density is presented. The density diagnostics using these non-Fe EIS lines are strongly affected by both known and unknown blends. Therefore, we performed the density diagnostics using the Fe?xii??C?xiv lines. Subsequently, these proposed diagnostic methods for ??-distributions are tested using the spectral atlas obtained by Brown et?al. (Astrophys. J. Suppl. 176, 511, 2008). These data do not provide conclusive evidence for the presence of ??-distributions due to possible plasma multitermality, a low observed signal-to-noise ratio, and unremovable or unknown blends.  相似文献   

10.
This work demonstrates the possibility of magnetic-field topology investigations using microwave polarimetric observations. We study a solar flare of GOES M1.7 class that occurred on 11 February, 2014. This flare revealed a clear signature of spatial inversion of the radio-emission polarization sign. We show that the observed polarization pattern can be explained by nonthermal gyrosynchrotron emission from the twisted magnetic structure. Using observations of the Reuven Ramaty High Energy Solar Spectroscopic Imager, Nobeyama Radio Observatory, Radio Solar Telescope Network, and Solar Dynamics Observatory, we have determined the parameters of nonthermal electrons and thermal plasma and identified the magnetic structure where the flare energy release occurred. To reconstruct the coronal magnetic field, we use nonlinear force-free field (NLFFF) and potential magnetic-field approaches. Radio emission of nonthermal electrons is simulated by the GX Simulator code using the extrapolated magnetic field and the parameters of nonthermal electrons and thermal plasma inferred from the observations; the model radio maps and spectra are compared with observations. We have found that the potential-magnetic-field approach fails to explain the observed circular polarization pattern; on the other hand, the Stokes-\(V\) map is successfully explained by assuming nonthermal electrons to be distributed along the twisted magnetic structure determined by the NLFFF extrapolation approach. Thus, we show that the radio-polarization maps can be used for diagnosing the topology of the flare magnetic structures where nonthermal electrons are injected.  相似文献   

11.
12.
The RESIK instrument on the CORONAS-F spacecraft obtained solar flare and active-region X-ray spectra in four channels covering the wavelength range 3.8?–?6.1 Å in its operational period between 2001 and 2003. Several highly ionized silicon lines were observed within the range of the long-wavelength channel (5.00?–?6.05 Å). The fluxes of the Si?xiv Ly-β line (5.217 Å) and the Si?xiii 1s 2?–?1s3p line (5.688 Å) during 21 flares with optimized pulse-height analyzer settings on RESIK have been analyzed to obtain the silicon abundance relative to hydrogen in flare plasmas. As in previous work, the emitting plasma for each spectrum is assumed to be characterized by a single temperature and emission measure given by the ratio of emission in the two channels of GOES. The silicon abundance is determined to be A(Si)=7.93±.21 (Si?xiv) and 7.89±.13 (Si?xiii) on a logarithmic scale with H=12. These values, which vary by only very small amounts from flare to flare and times within flares, are 2.6±1.3 and 2.4±0.7 times the photospheric abundance, and are about a factor of three higher than RESIK measurements during a period of very low activity. There is a suggestion that the Si/S abundance ratio increases from active regions to flares.  相似文献   

13.
The majority of flare activity arises in active regions which contain sunspots, while Coronal Mass Ejection (CME) activity can also originate from decaying active regions and even so-called quiet solar regions which contain a filament. Two classes of CME, namely flare-related CME events and CMEs associated with filament eruption are well reflected in the evolution of active regions. The presence of significant magnetic stresses in the source region is a necessary condition for CME. In young active regions magnetic stresses are increased mainly by twisted magnetic flux emergence and the resulting magnetic footpoint motions. In old, decayed active regions twist can be redistributed through cancellation events. All the CMEs are, nevertheless, caused by loss of equilibrium of the magnetic structure. With observational examples we show that the association of CME, flare and filament eruption depends on the characteristics of the source regions:
  • ?the strength of the magnetic field, the amount of possible free energy storage,
  • ?the small- and large-scale magnetic topology of the source region as well as its evolution (new flux emergence, photospheric motions, cancelling flux), and
  • ?the mass loading of the configuration (effect of gravity). These examples are discussed in the framework of theoretical models.
  •   相似文献   

    14.
    On 21 September 2012, we carried out spectral observations of a solar facula in the Si?i 10827 Å, He?i 10830 Å, and H\(\upalpha\) spectral lines. Later, in the process of analyzing the data, we found a small-scale flare in the middle of the time series. Based on the anomalous increase in the absorption of the He?i 10830 Å line, we identified this flare as a negative flare.The aim of this article is to study the influence of the negative flare on the oscillation characteristics in the facular photosphere and chromosphere.We measured the line-of-sight (LOS) velocity and intensity of all the three lines as well as the half-width of the chromospheric lines. We also used the Helioseismic and Magnetic Imager (HMI) magnetic field data. The flare caused a modulation of all these parameters. In the location of the negative flare, the amplitude of the oscillations increased four times on average. In the adjacent magnetic field local maxima, the chromospheric LOS velocity oscillations appreciably decreased during the flare. The facular region oscillated as a whole with a 5-minute period before the flare, and this synchronicity was disrupted after the flare. The flare changed the spectral composition of the LOS magnetic field oscillations, causing an increase in the low-frequency oscillation power.  相似文献   

    15.
    Multi-wavelength studies of energetic solar flares with seismic emissions have revealed interesting common features between them. We studied the first GOES X-class flare of Solar Cycle 24, as detected by the Solar Dynamics Observatory (SDO). For context, seismic activity from this flare (SOL2011-02-15T01:55-X2.2, in NOAA AR 11158) has been reported by Kosovichev (Astrophys. J. Lett., 734, L15, 2011) and Zharkov et?al. (Astrophys. J. Lett., 741, L35, 2011). Based on Dopplergram data from the Helioseismic and Magnetic Imager (HMI), we applied standard methods of local helioseismology in order to identify the seismic sources in this event. RHESSI hard X-ray data are used to check the correlation between the location of the seismic sources and the particle-precipitation sites in during the flare. Using HMI magnetogram data, the temporal profile of fluctuations in the photospheric line-of-sight magnetic field is used to estimate the magnetic-field change in the region where the seismic signal was observed. This leads to an estimate of the work done by the Lorentz-force transient on the photosphere of the source region. In this instance, this is found to be a significant fraction of the acoustic energy in the attendant seismic emission, suggesting that Lorentz forces can contribute significantly to the generation of sunquakes. However, there are regions in which the signature of the Lorentz force is much stronger, but from which no significant acoustic emission emanates.  相似文献   

    16.
    Thomas N. Woods 《Solar physics》2014,289(9):3391-3401
    The solar extreme-ultraviolet (EUV) observations from the Solar Dynamics Observatory (SDO) have revealed interesting characteristics of warm coronal emissions, such as Fe xvi 335 Å emission, which peak soon after the hot coronal X-ray emissions peak during a flare and then sometimes peak for a second time hours after the X-ray flare peak. This flare type, with two warm coronal emission peaks but only one X-ray peak, has been named the EUV late phase (Woods et al., Astrophys. J. 739, 59, 2011). These flares have the distinct properties of i) having a complex magnetic-field structure with two initial sets of coronal loops, with one upper set overlaying a lower set, ii) having an eruptive flare initiated in the lower set and disturbing both loop sets, iii) having the hot coronal emissions emitted only from the lower set in conjunction with the X-ray peak, and iv) having the first peak of the warm coronal emissions associated with the lower set and its second peak emitted from the upper set many minutes to hours after the first peak and without a second X-ray enhancement. The disturbance of the coronal loops by the eruption is at about the same time, but the relaxation and cooling down of the heated coronal loops during the post-flare reconnections have different time scales with the longer, upper loops being significantly delayed from the lower loops. The difference in these cooling time scales is related to the difference between the two peak times of the warm coronal emission and is also apparent in the decay profile of the X-ray emissions having two distinct decays, with the first decay slope being steeper (faster) and the delayed decay slope being smaller (slower) during the time of the warm-coronal-emission second peak. The frequency and relationship of the EUV late-phase decay times between the Fe xvi 335 Å two flare peaks and X-ray decay slopes are examined using three years of SDO/EUV Variability Experiment (EVE) data, and the X-ray dual-decay character is then exploited to estimate the frequency of EUV late-phase flares during the past four solar cycles. This study indicates that the frequency of EUV late-phase flares peaks before and after each solar-cycle minimum.  相似文献   

    17.
    A statistical study is carried out on the photospheric magnetic nonpotentiality in solar active regions and its relationship with associated flares. We select 2173 photospheric vector magnetograms from 1106 active regions observed by the Solar Magnetic Field Telescope at Huairou Solar Observing Station, National Astronomical Observatories of China, in the period of 1988??C?2008, which covers most of the 22nd and 23rd solar cycles. We have computed the mean planar magnetic shear angle ( $\overline{\Delta\phi}$ ), mean shear angle of the vector magnetic field ( $\overline{\Delta\psi}$ ), mean absolute vertical current density ( $\overline{|J_{z}|}$ ), mean absolute current helicity density ( $\overline{|h_{\mathrm{c}}|}$ ), absolute twist parameter (|?? av|), mean free magnetic energy density ( $\overline{\rho_{\mathrm{free}}}$ ), effective distance of the longitudinal magnetic field (d E), and modified effective distance (d Em) of each photospheric vector magnetogram. Parameters $\overline{|h_{\mathrm{c}}|}$ , $\overline{\rho_{\mathrm{free}}}$ , and d Em show higher correlations with the evolution of the solar cycle. The Pearson linear correlation coefficients between these three parameters and the yearly mean sunspot number are all larger than 0.59. Parameters $\overline {\Delta\phi}$ , $\overline{\Delta\psi}$ , $\overline{|J_{z}|}$ , |?? av|, and d E show only weak correlations with the solar cycle, though the nonpotentiality and the complexity of active regions are greater in the activity maximum periods than in the minimum periods. All of the eight parameters show positive correlations with the flare productivity of active regions, and the combination of different nonpotentiality parameters may be effective in predicting the flaring probability of active regions.  相似文献   

    18.
    The corona associated with an active region is structured by high-temperature, magnetically dominated closed and open loops. The projected 2D geometry of these loops is captured in EUV filtergrams. In this study using SDO/AIA 171 Å filtergrams, we expand our previous method to derive the 3D structure of these loops, independent of heliostereoscopy. We employ an automated loop recognition scheme (Occult-2) and fit the extracted loops with 2D cubic Bézier splines. Utilizing SDO/HMI magnetograms, we extrapolate the magnetic field to obtain simple field models within a rectangular cuboid. Using these models, we minimize the misalignment angle with respect to Bézier control points to extend the splines to 3D (Gary, Hu, and Lee 2014). The derived Bézier control points give the 3D structure of the fitted loops. We demonstrate the process by deriving the position of 3D coronal loops in three active regions (AR 11117, AR 11158, and AR 11283). The numerical minimization process converges and produces 3D curves which are consistent with the height of the loop structures when the active region is seen on the limb. From this we conclude that the method can be important in both determining estimates of the 3D magnetic field structure and determining the best magnetic model among competing advanced magnetohydrodynamics or force-free magnetic-field computer simulations.  相似文献   

    19.
    We investigate multi-spacecraft observations of the 17 January 2010 solar energetic particle event. Energetic electrons and protons have been observed over a remarkable large longitudinal range at the two STEREO spacecraft and SOHO, suggesting a longitudinal spread of nearly 360 degrees at 1?AU. The flaring active region, which was on the backside of the Sun as seen from Earth, was separated by more than 100 degrees in longitude from the magnetic footpoints of each of the three spacecraft. The event is characterized by strongly delayed energetic particle onsets with respect to the flare and only small or no anisotropies in the intensity measurements at all three locations. The presence of a coronal shock is evidenced by the observation of a type II radio burst from the Earth and STEREO-B. In order to describe the observations in terms of particle transport in the interplanetary medium, including perpendicular diffusion, a 1D model describing the propagation along a magnetic field line (model 1) (Dr?ge, Astrophys. J. 589, 1027??C?1039, 2003) and the 3D propagation model (model 2) by Dr?ge et?al. (Astrophys. J. 709, 912??C?919, 2010) including perpendicular diffusion in the interplanetary medium have been applied. While both models are capable of reproducing the observations, model 1 requires injection functions at the Sun of several hours. Model 2, which includes lateral transport in the solar wind, reveals high values for the ratio of perpendicular to parallel diffusion. Because we do not find evidence for unusual long injection functions at the Sun, we favor a scenario with strong perpendicular transport in the interplanetary medium as an explanation for the observations.  相似文献   

    20.
    An observational study of maps of the longitudinal component of the photospheric fields in flaring active regions leads to the following conclusions:
    1. The broad-wing Hα kernels characteristic of the impulsive phase of flares occur within 10″ of neutral lines encircling features of isolated magnetic polarity (‘satellite sunspots’).
    2. Photospheric field changes intimately associated with several importance 1 flares and one importance 2B flare are confined to satellite sunspots, which are small (10″ diam). They often correspond to spot pores in white-light photographs.
    3. The field at these features appears to strengthen in the half hour just before the flares. During the flares the growth is reversed, the field drops and then recovers to its previous level.
    4. The magnetic flux through flare-associated features changes by about 4 × 1019 Mx in a day. The features are the same as the ‘Structures Magnétiques Evolutives’ of Martres et al. (1968a).
    5. An upper limit of 1021 Mx is set for the total flux change through McMath Regions 10381 and 10385 as the result of the 2B flare of 24 October, 1969.
    6. Large spots in the regions investigated did not evince flux changes or large proper motions at flare time.
    7. The results are taken to imply that the initial instability of a flare occurs at a neutral point, but the magnetic energy lost cannot yet be related to the total energy of the subsequent flare.
    8. No unusual velocities are observed in the photosphere at flare time.
      相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号