首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Throughout months of extremely low solar activity during the recent extended solar-cycle minimum, structural evolution continued to be observed from the Sun through the solar wind and to the Earth. In 2008, the presence of long-lived and large low-latitude coronal holes meant that geospace was periodically impacted by high-speed streams, even though solar irradiance, activity, and interplanetary magnetic fields had reached levels as low as, or lower than, observed in past minima. This time period, which includes the first Whole Heliosphere Interval (WHI 1: Carrington Rotation (CR) 2068), illustrates the effects of fast solar-wind streams on the Earth in an otherwise quiet heliosphere. By the end of 2008, sunspots and solar irradiance had reached their lowest levels for this minimum (e.g., WHI 2: CR 2078), and continued solar magnetic-flux evolution had led to a flattening of the heliospheric current sheet and the decay of the low-latitude coronal holes and associated Earth-intersecting high-speed solar-wind streams. As the new solar cycle slowly began, solar-wind and geospace observables stayed low or continued to decline, reaching very low levels by June??C?July 2009. At this point (e.g., WHI 3: CR 2085) the Sun?CEarth system, taken as a whole, was at its quietest. In this article we present an overview of observations that span the period 2008??C?2009, with highlighted discussion of CRs 2068, 2078, and 2085. We show side-by-side observables from the Sun??s interior through its surface and atmosphere, through the solar wind and heliosphere and to the Earth??s space environment and upper atmosphere, and reference detailed studies of these various regimes within this topical issue and elsewhere.  相似文献   

2.
G. de Toma 《Solar physics》2011,274(1-2):195-217
We analyze coronal holes present on the Sun during the extended minimum between Cycles 23 and 24, study their evolution, examine the consequences for the solar wind speed near the Earth, and compare it with the previous minimum in 1996. We identify coronal holes and determine their size and location using a combination of EUV observations from SOHO/EIT and STEREO/EUVI and magnetograms. We find that the long period of low solar activity from 2006 to 2009 was characterized by weak polar magnetic fields and polar coronal holes smaller than observed during the previous minimum. We also find that large, low-latitude coronal holes were present on the Sun until 2008 and remained important sources of recurrent high-speed solar wind streams. By the end of 2008, these low-latitude coronal holes started to close down, and finally disappeared in 2009, while smaller, mid-latitude coronal holes formed in the remnants of Cycle 24 active regions shifting the sources of the solar wind at the Earth to higher latitudes.  相似文献   

3.
The peculiar development of solar activity in the current cycle resulted in an asynchronous reversal of the Sun’s polar fields. The asymmetry is also observed in the formation of polar coronal holes. A stable coronal hole was first formed at the South Pole, despite the later polar-field reversal there. The aim of this study is to understand the processes making this situation possible. Synoptic magnetic maps from the Global Oscillation Network Group and corresponding coronal-hole maps from the Extreme ultraviolet Imaging Telescope onboard the Solar and Heliospheric Observatory and the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory are analyzed here to study the causal relationship between the decay of activity complexes, evolution of large-scale magnetic fields, and formation of coronal holes. Ensembles of coronal holes associated with decaying active regions and activity complexes are presented. These ensembles take part in global rearrangements of the Sun’s open magnetic flux. In particular, the south polar coronal hole was formed from an ensemble of coronal holes that came into existence after the decay of multiple activity complexes observed during 2014.  相似文献   

4.
An analysis has been made of the origin of long-term variations in flux density of solar wind particles (nv) for different velocity regimes. The study revealed a relationship of these variations to the area of the polar coronal holes (CH). It is shown that within the framework of the model under development, the main longterm variations of nv are a result of the latitude redistribution of the solar wind mass flux in the heliosphere and are due to changes in the large-scale geometry of the solar plasma flow in the corona.

A study has been made of the variations of nv for high speed solar wind streams. It is found that nv in high speed streams which are formed in CH, decreases from minimum to maximum solar activity. The analysis indicates that this decrease is attributable to the magnetic field strength increase in coronal holes.

It has been found that periods of rapid global changes of background magnetic fields on the Sun are accompanied by a reconfiguration of coronal magnetic fields, rapid changes in the length of quiescent filaments, and by an increase in the density of the particle flux of a high speed solar wind. It has been established that these periods precede the formation of CH, corresponding to the increase in solar wind velocity near the Earth and to enhancement of the level of geomagnetic disturbance.  相似文献   


5.
Launched in October 1990, the ESA-NASA Ulysses mission has conducted the very first survey of the heliosphere within 5 AU of the Sun over the full range of heliolatitudes. With polar passes taking place in 1994 and 1995, the timing of the mission has enabled Ulysses to characterise the global structure of the heliosphere at solar minimum, when the corona adopts its simplest configuration. The most important findings to date include a confirmation of the uniform nature of the high-speed (∼ 750 km/s)solar wind flow from the polar coronal holes, filling two-thirds of the volume of the inner heliosphere; the sharp boundary, existing from the chromosphere through the corona, between fast and slow solar wind streams; the latitude independence of theradial component of the heliospheric magnetic field; the lower-than-expected latitude gradient of galactic and anomalous cosmic rays; the continued existence of recurrent increases in the flux of low-energy ions and electrons up to the highest latitudes. Without doubt, the Ulysses mission has provided a unique set of observations of the heliosphere at solar minimum, resulting in a good understanding of many aspects of its behaviour. In this review, we will highlight some of the key findings to date, and also look ahead to the challenges that await as Ulysses returns to high latitudes to explore the heliosphere at solar maximum and beyond. Finally, a brief summary is given of the prospects for heliospheric research in the post-Ulysses era. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
As the observational signature of the footprints of solar magnetic field lines open into the heliosphere, coronal holes provide a critical measure of the structure and evolution of these lines. Using a combination of Solar and Heliospheric Observatory/Extreme ultraviolet Imaging Telescope (SOHO/EIT), Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA), and Solar Terrestrial Relations Observatory/Extreme Ultraviolet Imager (STEREO/EUVI A/B) extreme ultraviolet (EUV) observations spanning 1996?–?2015 (nearly two solar cycles), coronal holes are automatically detected and characterized. Coronal hole area distributions show distinct behavior in latitude, defining the domain of polar and low-latitude coronal holes. The northern and southern polar regions show a clear asymmetry, with a lag between hemispheres in the appearance and disappearance of polar coronal holes.  相似文献   

7.
Flux ropes ejected from the Sun may change their geometrical orientation during their evolution, which directly affects their geoeffectiveness. Therefore, it is crucial to understand how solar flux ropes evolve in the heliosphere to improve our space-weather forecasting tools. We present a follow-up study of the concepts described by Isavnin, Vourlidas, and Kilpua (Solar Phys. 284, 203, 2013). We analyze 14 coronal mass ejections (CMEs), with clear flux-rope signatures, observed during the decay of Solar Cycle 23 and rise of Solar Cycle 24. First, we estimate initial orientations of the flux ropes at the origin using extreme-ultraviolet observations of post-eruption arcades and/or eruptive prominences. Then we reconstruct multi-viewpoint coronagraph observations of the CMEs from ≈?2 to 30 R with a three-dimensional geometric representation of a flux rope to determine their geometrical parameters. Finally, we propagate the flux ropes from ≈?30 R to 1 AU through MHD-simulated background solar wind while using in-situ measurements at 1 AU of the associated magnetic cloud as a constraint for the propagation technique. This methodology allows us to estimate the flux-rope orientation all the way from the Sun to 1 AU. We find that while the flux-ropes’ deflection occurs predominantly below 30 R, a significant amount of deflection and rotation happens between 30 R and 1 AU. We compare the flux-rope orientation to the local orientation of the heliospheric current sheet (HCS). We find that slow flux ropes tend to align with the streams of slow solar wind in the inner heliosphere. During the solar-cycle minimum the slow solar-wind channel as well as the HCS usually occupy the area in the vicinity of the solar equatorial plane, which in the past led researchers to the hypothesis that flux ropes align with the HCS. Our results show that exceptions from this rule are explained by interaction with the Parker-spiraled background magnetic field, which dominates over the magnetic interaction with the HCS in the inner heliosphere at least during solar-minimum conditions.  相似文献   

8.
The earth is immersed in a hot, rarefied, energetic flow of particles and electromagnetic fields originating from the Sun and engulfing the entire solar system, forming the heliosphere. The existence of the solar wind has been established for almost 50 years now, and abundant data has been accumulated concerning both its average properties and the intermittent, violent energetic manifestations known as Coronal Mass Ejections which often impact the earth’s magnetosphere (causing geomagnetic storms and aurorae). The mystery of how the solar corona is heated and the solar wind is accelerated remains unsolved, however, because of the large gap in our knowledge of the inner region of the heliosphere, inside the orbit of mercury. The PHOIBOS mission, with a perihelion at 4 Rs, by accessing the regions where energy in the coronal plasma is channeled from internal, magnetic and turbulent energy into bulk energy of the solar wind flow aims to solve the question of why the Sun has a hot corona and produces a solar wind. The PHOIBOS mission builds on previous Solar Probe studies, but provides an alternative orbit scenario avoiding a Jupiter encounter in favor of multiple Venus encounters and SEP systems to work its way close to the Sun in a gradual manner, providing a much vaster data return.  相似文献   

9.
The solar wind parameters were analyzed using the concept which is being developed by the authors and assumes the existence of several systems of magnetic fields of different scales on the Sun. It was demonstrated that the simplest model with one source surface and a radial expansion does not describe the characteristics of the quiet solar wind adequately. Different magnetic field subsystems on the Sun affect the characteristics of the solar wind plasma in a different way, even changing the sign of correlation. New multiparameter schemes were developed to compute the velocity and the magnetic field components of the solar wind. The radial component of the magnetic field in the solar corona and the tilt of the heliospheric current sheet, which determines the degree of divergence of field lines in the heliosphere, were taken into account when calculating the magnetic field in the solar wind. Both the divergence of field lines in the corona and the strength of the solar magnetic field are allowed for in calculating the solar wind speed. The suggested schemes provide a considerably higher computation accuracy than that given by commonly used one-parameter models.  相似文献   

10.
The declining phases of solar cycles are known for their high speed solar wind streams that dominate the geomagnetic responses during this period. Outstanding questions about these streams, which can provide the fastest winds of the solar cycle, concern their solar origins, persistence, and predictability. The declining phase of cycle 23 has lasted significantly longer than the corresponding phases of the previous two cycles. Solar magnetograph observations suggest that the solar polar magnetic field is also ~?2?–?3 times weaker. The launch of STEREO in late 2006 provided additional incentive to examine the origins of what is observed at 1 AU in the recent cycle, with the OMNI data base at the NSSDC available as an Earth/L1 baseline for comparisons. Here we focus on the year 2007 when the solar corona exhibited large, long-lived mid-to-low latitude coronal holes and polar hole extensions observed by both SOHO and STEREO imagers. STEREO provides in situ measurements consistent with rigidly corotating solar wind stream structure at up to ~?45° heliolongitude separation by late 2007. This stability justifies the use of magnetogram-based steady 3D solar wind models to map the observed high speed winds back to their coronal sources. We apply the WSA solar wind model currently running at the NOAA Space Weather Prediction Center with the expectation that it should perform its best at this quiet time. The model comparisons confirm the origins of the observed high speed streams expected from the solar images, but also reveal uncertainties in the solar wind source mapping associated with this cycle’s weaker solar polar fields. Overall, the results illustrate the importance of having accurate polar fields in synoptic maps used in solar wind forecast models. At the most fundamental level, they demonstrate the control of the solar polar fields over the high speed wind sources, and thus one specific connection between the solar dynamo and the solar wind character.  相似文献   

11.
An updated catalog is created of 303 well-defined high-speed solar wind streams that occurred in the time period 2009?–?2016. These streams are identified from solar and interplanetary measurements obtained from the OMNIWeb database as well as from the Solar and Heliospheric Observatory (SOHO) database. This time interval covers the deep minimum observed between the last two Solar Cycles 23 and 24, as well as the ascending, the maximum, and part of the descending phases of the current Solar Cycle 24. The main properties of solar-wind high-speed streams, such as their maximum velocity, their duration, and their possible sources are analyzed in detail. We discuss the relative importance of all those parameters of high-speed solar wind streams and especially of their sources in terms of the different phases of the current cycle. We carry out a comparison between the characteristic parameters of high-speed solar wind streams in the present solar cycle with those of previous solar cycles to understand the dependence of their long-term variation on the cycle phase. Moreover, the present study investigates the varied phenomenology related to the magnetic interactions between these streams and the Earth’s magnetosphere. These interactions can initiate geomagnetic disturbances resulting in geomagnetic storms at Earth that may have impact on technology and endanger human activity and health.  相似文献   

12.
We examine the near-Earth Interplanetary Coronal Mass Ejection (ICME) apparently related to the intense Solar Energetic Particle (SEP) event of 20 January 2005. Our purpose is to contribute to the understanding of the macroscopic structure, evolution and dynamics of the solar corona and heliosphere. Using Cluster, ACE and Wind data in the solar wind, and Geotail data in the magnetosheath, we perform a multi-spacecraft analysis of the ICME-driven shock, post-shock magnetic discontinuities and ejecta. Traversals by the well-separated near-Earth spacecraft provide a coherent picture of the ICME geometry. Following the shock, the ICME sequence starts with a hot pileup, i.e.,? a sheath, followed by a fast ejecta characterised by a non-compressive density enhancement (NCDE), which is caused essentially by an enrichment in helium. The plasma and magnetic observations of the ejecta are consistent with the outskirts of a structure in strong expansion, consisting of nested magnetic loops still connected to the Sun. Within the leading edge of the ejecta, we establish the presence of a tilted current sheet substructure. An analysis of the observations suggests that the tilted current sheet is draped within the overlying cloud canopy, ahead of a magnetic cloud-like structure. The flux rope interpretation of this structure near L1, confirmed by observations of the corresponding magnetic cloud, provided by Ulysses at 5.3 AU and away from the Sun?–?Earth line, indicates that the bulk of the cloud is in the northwest sector as seen from the Earth, with its axis nearly perpendicular to the ecliptic. This is consistent with the primary direction of travel of the fast halo CME observed at the Sun. Moreover, the NCDE and helium enrichment are consistent with the position near the streamer belt of the flaring active region NOAA 10720 associated with the CME. However, differences between interplanetary and solar observations indicate a large rotation of the erupting filament and overlying arcade, which can be attributed to the flux rope being subject to the helical kink instability.  相似文献   

13.
In this paper, we consider the implications of the observed inverse correlation between solar wind speed at Earth and the expansion rate of the Sun-Earth flux tube as it passes through the corona. We find that the coronal expansion rate depends critically on the large-scale photospheric field distribution around the footpoint of the flux tube, with the smallest expansions occurring in tubes that are rooted near a local minimum in the field. This suggests that the fastest wind streams originate from regions where large coronal holes are about to break apart and from the facing edges of adjacent like-polarity holes, whose field lines converge as they transit the corona. These ideas lead to the following predictions:
  1. Weak holes and fragmentary holes can be sources of very fast wind.
  2. Fast wind with steep latitudinal gradients may be generated where the field lines from the polar hole and a lower-latitude hole of like polarity converge to form a mid-latitude ‘apex’.
  3. The fastest polar wind should occur shortly after sunspot maximum, when trailing-polarity flux converges onto the poles and begins to establish the new polar fields.
  相似文献   

14.
We search for persistent and quasi-periodic release events of streamer blobs during 2007 with the Large Angle Spectrometric Coronagraph on the Solar and Heliospheric Observatory and assess the velocity of the slow solar wind along the plasma sheet above the corresponding streamer by measuring the dynamic parameters of blobs. We find ten quasi-periodic release events of streamer blobs lasting for three to four days. In each day of these events, we observe three – five blobs. The results are in line with previous studies using data observed near the last solar minimum. Using the measured blob velocity as a proxy for that of the mean flow, we suggest that the velocity of the background slow solar wind near the Sun can vary significantly within a few hours. This provides an observational manifestation of the large velocity variability of the slow solar wind near the Sun.  相似文献   

15.
We study solar modulation of galactic cosmic rays (GCRs) during the deep solar minimum, including the declining phase, of solar cycle 23 and compare the results of this unusual period with the results obtained during similar phases of the previous solar cycles 20, 21, and 22. These periods consist of two epochs each of negative and positive polarities of the heliospheric magnetic field from the north polar region of the Sun. In addition to cosmic-ray data, we utilize simultaneous solar and interplanetary plasma/field data including the tilt angle of the heliospheric current sheet. We study the relation between simultaneous variations in cosmic ray intensity and solar/interplanetary parameters during the declining and the minimum phases of cycle 23. We compare these relations with those obtained for the same phases in the three previous solar cycles. We observe certain peculiar features in cosmic ray modulation during the minimum of solar cycle 23 including the record high GCR intensity. We find, during this unusual minimum, that the correlation of GCR intensity is poor with sunspot number (correlation coefficient R=?0.41), better with interplanetary magnetic field (R=?0.66), still better with solar wind velocity (R=?0.80) and much better with the tilt angle of the heliospheric current sheet (R=?0.92). In our view, it is not the diffusion or the drift alone, but the solar wind convection that is the most likely additional effect responsible for the record high GCR intensity observed during the deep minimum of solar cycle 23.  相似文献   

16.
Using in situ observations from the Advanced Composition Explorer (ACE), we have identified 70 Earth-affecting interplanetary coronal mass ejections (ICMEs) in Solar Cycle 24. Because of the unprecedented extent of heliospheric observations in Cycle 24 that has been achieved thanks to the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) instruments onboard the Solar Terrestrial Relations Observatory (STEREO), we observe these events throughout the heliosphere from the Sun to the Earth, and we can relate these in situ signatures to remote sensing data. This allows us to completely track the event back to the source of the eruption in the low corona. We present a summary of the Earth-affecting CMEs in Solar Cycle 24 and a statistical study of the properties of these events including the source region. We examine the characteristics of CMEs that are more likely to be strongly geoeffective and examine the effect of the flare strength on in situ properties. We find that Earth-affecting CMEs in the first half of Cycle 24 are more likely to come from the northern hemisphere, but after April 2012, this reverses, and these events are more likely to originate in the southern hemisphere, following the observed magnetic asymmetry in the two hemispheres. We also find that as in past solar cycles, CMEs from the western hemisphere are more likely to reach Earth. We find that Cycle 24 lacks in events driving extreme geomagnetic storms compared to past solar cycles.  相似文献   

17.
Solar five-minute oscillations have been detected in the power spectra of two six-day time intervals from soft X-ray measurements of the Sun observed as a star using the Extreme Ultraviolet Spectrophotometer (ESP) onboard the Solar Dynamics Observatory (SDO)/Extreme Ultraviolet Variability Experiment (EVE). The frequencies of the largest amplitude peaks were found to match the known low-degree (?=0?–?3) modes of global acoustic oscillations within 3.7 μHz and can be explained by a leakage of the global modes into the corona. Due to the strong variability of the solar atmosphere between the photosphere and the corona, the frequencies and amplitudes of the coronal oscillations are likely to vary with time. We investigated the variations in the power spectra for individual days and their association with changes of solar activity, e.g. with the mean level of the EUV irradiance, and its short-term variations caused by evolving active regions. Our analysis of samples of one-day oscillation power spectra for a 49-day period of low and intermediate solar activity showed little correlation with the mean EUV irradiance and the short-term variability of the irradiance. We suggest that some other changes in the solar atmosphere, e.g., magnetic fields and/or inter-network configuration may affect the mode leakage to the corona.  相似文献   

18.
K. P. Raju 《Solar physics》2009,255(1):119-129
Relative Doppler velocities and spectral linewidths in a coronal hole and in the quiet Sun region outside have been obtained from Solar and Heliospheric Observatory (SOHO)/Coronal Diagnostic Spectrometer (CDS) observations. Five strong emission lines in the CDS wavelength range (namely, O? iii 599 Å, O?v 630 Å, Ne?vi 562.8 Å, He?ii 304 Å, and Mg?ix 368 Å), whose formation temperatures represent different heights in the solar atmosphere from the lower transition region to the inner corona, have been used in the study. As reported earlier, relative velocities in the coronal hole are generally blueshifted with respect to the quiet Sun, and the magnitude of the blueshifts increases with height. It has been found that the polar coronal hole has larger relative velocities than the equatorial extension in the inner corona. Several localized velocity contours have been found mainly on network brightenings and in the vicinity of the coronal hole boundary. The presence of velocity contours on the network may represent network outflows whereas the latter could be due to localized jets probably arising from magnetic reconnection at the boundary. All spectral lines have larger widths in the coronal hole than in the quiet Sun. In O?v 630 Å an extended low-linewidth region is seen in the coronal hole?–?quiet Sun boundary, which may indicate fresh mass transfer across the boundary. Also polar coronal holes have larger linewidths in comparison with the equatorial extension. Together with larger relative velocities, this suggests that the solar wind emanating from polar hole regions is faster than that from equatorial hole regions.  相似文献   

19.
The Sun is enveloped by a hot, tenuous million-degree corona that expands to create a continuous solar wind that sweeps past all the planets and fills the heliosphere. The solar wind is modulated by strong gusts that are initiated by powerful explosions on the Sun, including solar flares and coronal mass ejections. This dynamic, invisible outer atmosphere of the Sun is currently under observation with the soft X-ray telescope aboard the Yohkoh spacecraft, whose results are presented. We also show observations from the Ulysses spacecraft that is now passing over the solar pole, sampling the solar wind in this region for the first time. Two other spacecraft, Voyager 1 and 2, have recently detected the outer edge of the invisible heliosphere, roughly halfway to the nearest star. Magnetic solar activity, the total radiative output from the Sun, and the Earth's mean global surface temperature all vary with the 11-year sunspot cycle in which the total number of sunspots varies from a maximum to a minimum and back to a maximum again in about 11 years. The terrestrial magnetic field hollows out a protective magnetic cavity, called the magnetosphere, within the solar wind. This protection is incomplete, however, so the Sun feeds an unseen world of high-speed particles and magnetic fields that encircle the Earth in space. These particles endanger spacecraft and astronauts, and also produce terrestrial aurorae. An international flotilla of spacecraft is now sampling the weak points in this magnetic defense. Similar spacecraft have also discovered a new radiation belt, in addition to the familiar Van Allen belts, except fed by interstellar ions instead of electrons and protons from the Sun.  相似文献   

20.
We have extended our previous study of coronal holes, solar wind streams, and geomagnetic disturbances from the declining phase (1973–1975) of sunspot cycle 20 through sunspot minimum (1976) into the rising phase (1977) of cycle 21. Using daily He I 10830 Å spectroheliograms and photospheric magnetograms, we found the following results:
  1. As the magnetic field patterns changed, the solar atmosphere evolved from a structure having a few, large, long-lived, low-latitude coronal holes to one having numerous small, short-lived, high-latitude holes (in addition to the polar holes which persisted throughout this 5-year interval).
  2. The high-latitude holes recurred with a synodic rotation period of 28–29 days instead of the 27-day period already known to be characteristic of low-latitude holes.
  3. During 1976–1977 many coronal holes were intrinsically ‘weak’ in the sense that their average intensities did not differ greatly from the intensity of their surroundings. Such low-contrast holes were rare during 1973–1975.
An updated Bartels display of the occurrence of holes, wind speed, and geomagnetic activity summarizes the evolution of their characteristics and interrelations as the sunspot cycle has progressed. Long-lived, low-latitude holes have become rare but remain terrestrially effective. The more common high-latitude holes are effective only when the Earth lies at a relatively high heliographic latitude in the same solar hemisphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号