首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We discuss the effects of certain dynamic features of space environment in the heliosphere, the geo-magnetosphere, and the earth’s atmosphere. In particular, transient perturbations in solar wind plasma, interplanetary magnetic field, and energetic charged particle (cosmic ray) fluxes near 1 AU in the heliosphere have been discussed. Transient variations in magnetic activity in geo-magnetosphere and solar modulation effects in the heliosphere have also been studied. Emphasis is on certain features of transient perturbations related to space weather effects. Relationships between geomagnetic storms and transient modulations in cosmic ray intensity (Forbush decreases), especially those caused by shock-associated interplanetary disturbances, have been studied in detail. We have analysed the cosmic ray, geomagnetic and interplanetary plasma/field data to understand the physical mechanisms of two phenomena namely, Forbush decrease and geomagnetic storms, and to search for precursors to Forbush decrease (and geomagnetic storms) that can be used as a signature to forecast space weather. It is shown that the use of cosmic ray records has practical application for space weather predictions. Enhanced diurnal anisotropy and intensity deficit of cosmic rays have been identified as precursors to Forbush decreases in cosmic ray intensity. It is found that precursor to smaller (less than 5%) amplitude Forbush decrease due to weaker interplanetary shock is enhanced diurnal anisotropy. However, larger amplitude (greater than 5%) Forbush decrease due to stronger interplanetary shock shows loss cone type intensity deficit as precursor in ground based intensity record. These precursors can be used as inputs for space weather forecast.  相似文献   

2.
Various phenomena with solar origin and their mutual dependence must be studied in order to predict behaviors in solar – terrestrial system. Linear statistical methods prevalent in analyzing natural systems may not be able to detect nonlinear dependencies among solar and geomagnetic processes. When relations, whether linear or nonlinear, between indices and their changes over time are revealed, better predictions can be made through appropriate modeling techniques. Selection of nonredundant input variables to build suitable models for prediction of solar and geomagnetic activity is of utmost importance. Mutual information is a tool that is capable of capturing all dependencies for detecting nonlinear relations and selecting the best subset of input variables by means of an applicable algorithm that maximizes information about the output and minimizes the shared information between inputs. High generalization power and improved interpretability of the selected inputs are the consequences of this analysis.  相似文献   

3.
行星际磁云研究新进展   总被引:2,自引:1,他引:1  
从飞船的观测结果、磁云形态及演化的理论模型、磁流体动力学(MHD)数值模拟、激波对磁云的作用、多重磁云等5个方面,评述了行星际磁云的研究成果及最新进展。在太阳峰年,大部分的非重现性地磁暴都与磁云有关。最近的研究表明,压缩后的磁云往往能产生更大的地磁效应。深入研究磁云对空间天气研究有着特殊的价值,特别是对提高大磁暴的预报水平有着重要帮助。  相似文献   

4.
Series of 110 years of sunspot numbers and indices of geomagnetic activity are used with 17 years of solar wind data in order to study through solar cycles both stream and shock event solar activity. According to their patterns on Bartels diagrams of geomagnetic indices, stable wind streams and transient solar activities are separated from each other. Two classes of stable streams are identified: equatorial streams occurring sporadically, for several months, during the main phase of sunspot cycles and both polar streams established, for several years, at each cycle, before sunspot minimum. Polar streams are the first activity of solar cycles. For study of the relationship between transient geomagnetic phenomena and sunspot activity, we raise the importance of the contribution, at high spot number, of severe storms and, at low spot number, of short lived and unstable streams. Solar wind data are used to check and complete the above results. As a conclusion, we suggest a unified scheme of solar activity evolution with a starting point every eleventh year, a total duration of 17 years and an overlapping of 6 years between the first and the last phase of both successive series of phenomena: first, from polar field reversal to sunspot minimum, a phase of polar wind activity of the beginning cycle is superimposed on the weak contribution of shock events of the ending cycle; secondly, an equatorial phase mostly of shock events is superimposed on a variable contribution of short lived and sporadic stable equatorial stream activities; and thirdly a phase of low latitude shock events is superimposed on the polar stream interval of the following cycle.  相似文献   

5.
Halo coronal mass ejections (HCMEs) are responsible of the most severe geomagnetic storms. A prediction of their geoeffectiveness and travel time to Earth’s vicinity is crucial to forecast space weather. Unfortunately, coronagraphic observations are subjected to projection effects and do not provide true characteristics of CMEs. Recently, Michalek (Solar Phys. 237, 101, 2006) developed an asymmetric cone model to obtain the space speed, width, and source location of HCMEs. We applied this technique to obtain the parameters of all front-sided HCMEs observed by the SOHO/LASCO experiment during a period from the beginning of 2001 until the end of 2002 (solar cycle 23). These parameters were applied for space weather forecasting. Our study finds that the space speeds are strongly correlated with the travel times of HCMEs to Earth’s vicinity and with the magnitudes related to geomagnetic disturbances.  相似文献   

6.
Geomagnetic super-storms of October and November 2003 are compared in order to identify solar and interplanetary variables that influence the magnitude of geomagnetic storms. Although these superstorms (DST < -300 nT) are associated with high speed CMEs, their DST indices show large variation. The most intense storm of November 20, 2003 (DSt∼ - 472 nT) had its source in a comparatively small active region and was associated with a relatively weaker, M-class flare, while the others had their origins in large active regions and were associated with strong X-class flares. An attempt has been made to implement a logistic regression model for the prediction of the occurrence of intense/superintense geomagnetic storms. The model parameters (regression coefficients) were estimated from a training data-set extracted from a data-set of 64 geo-effective CMEs observed during 1996–2002. The results indicate that logistic regression models can be effectively used for predicting the occurrence of major geomagnetic storms from a set of solar and interplanetary factors. The model validation shows that 100% of the intense storms (-200 nT < DSt < -100 nT) and only 50% of the super-intense (DST < -200 nT) storms could be correctly predicted.  相似文献   

7.
Knowles  S.H.  Picone  J.M.  Thonnard  S.E.  Nicholas  A.C. 《Solar physics》2001,204(1-2):387-397
Geomagnetic storms driven by solar eruptions are known to have significant effects on the total density of the upper atmosphere in the altitude range 250–1000 km. This in turn causes a measurable effect on the orbits of resident space objects in this altitude range. We analyzed a sample of these orbits, both from sensor data and from orbital element sets, during the period surrounding the 14 July 2000 solar activity. We present information concerning the effects of this event on the orbits of resident space objects and how well accepted atmospheric models were able to represent it. As part of this analysis, we describe a technique for extracting atmospheric density information from orbital element sets. On daily time scales, the effect of geomagnetic activity appears to be more important than that of prompt radiation. However, the limitations in time and amplitude quantization of the accepted solar indices are evident. A limited comparison is also made with previous solar storm events.  相似文献   

8.
The main idea of the International Cosmic Ray Service (ICRS) is to combine satellite and spaceprobe cosmic rays, magnetic and plasma data with groundbased cosmic ray data (exchanged in real time) for obtaining continuous information on the electromagnetic and radiation situation in the interplanetary space and Earth's magnetosphere: prediction of great geomagnetic storms, big increases of radiation hazards and other dangerous phenomena in space and on the Earth for people and technology. ICRS can predict not only geomagnetic storms and unfavorable days in the environment (especially important for old people and people with some diseases), but, in combination with astrophysical methods, can predict big increases of radiation hazards very dangerous for the Earth's civilization and big changes in the environment due to extremely powerful solar flares and local supernova explosions. We hope that, after some additional investigation of high energy cosmic-ray distribution function outside the heliosphere, it could be possible to solve by ICRS more complicated problems: to determine in combination with astrophysical methods the location and velocity of nearest dust-molecular galactic clouds with frozen-in magnetic fields and predict the expected time of the Sun capturing by some clouds with possible changes of Earth's global climate. The foundation of ICRS could bring a new possibility of development to the cosmic ray observatories, release scientists from a lot of routine work and increase the fundamental and applied research efficiency.  相似文献   

9.
The solar flares, the speeds of shocks propagated in the solar-terrestrial space and driven by coronal mass ejections (CMEs), the heliographic longitudes and Carrington longitudes of source regions, and the geomagnetic storms, which are accompanied by the super solar proton events with a peak ?ux equal to or exceeding 10 000 pfu, have been studied by using the data of ground-based and space observations. The results show that the heliographic longitudes of source regions of super solar proton events distributed in the range from E30? to W75°. The Carrington longitudes of source regions of super solar proton events distributed in the two longitudinal belts, 130°∼220° and 260°∼320°, respectively. All super solar proton events were accompanied by major solar flares and fast CMEs. The averaged speeds of shocks propagated from the sun to the Earth were greater than 1 200 km/s. Eight super solar proton events were followed by major geomagnetic storms (Dst≤−100 nT), except that one super solar proton event was followed by a geomagnetic storm with the geomagnetic activity index Dst=−96 nT, a little smaller than that of major geomagnetic storms.  相似文献   

10.
Solar cycle distribution of great geomagnetic storms   总被引:1,自引:0,他引:1  
The distribution properties of great geomagnetic storms (Dst≤−200 nT) and super geomagnetic storms (Dst≤−300 nT) across the solar cycles (19–23) are investigated. The results show that 73.2% of the great geomagnetic storms took place in the descending phase of the solar cycles. 72.7% of super geomagnetic storms occurred in the descending phase of the solar cycles. About 83% of the great geomagnetic storms appeared during the period from the two years before solar cycle peak and the three years after solar cycle peak time. 90.9% of the super geomagnetic storms appeared between the two years before solar cycle peak and the three years after solar cycle peak. When a solar cycle is very strong, the phenomenon that great geomagnetic storms concentrated during the period from the two years before the solar cycle peak time to the three years after the solar cycle peak time is very prominent. The launch time of space science satellite is suggested according to the distribution properties of great geomagnetic storms and super geomagnetic storms in solar cycles.  相似文献   

11.
The atmospheric mass density of the upper atmosphere from the spherical Starlette satellite’s Precise Orbit Determination is first derived with Satellite Laser Ranging measurements at 815 to 1115 km during strong solar and geomagnetic activities. Starlette’s orbit is determined using the improved orbit determination techniques combining optimum parameters with a precise empirical drag application to a gravity field. MSIS-86 and NRLMSISE-00 atmospheric density models are compared with the Starlette drag-derived atmospheric density of the upper atmosphere. It is found that the variation in the Starlette’s drag coefficient above 800 km corresponds well with the level of geomagnetic activity. This represents that the satellite orbit is mainly perturbed by the Joule heating from geomagnetic activity at the upper atmosphere. This result concludes that MSIS empirical models strongly underestimate the mass density of the upper atmosphere as compared to the Starlette drag-derived atmospheric density during the geomagnetic storms. We suggest that the atmospheric density models should be analyzed with higher altitude acceleration data for a better understanding of long-term solar and geomagnetic effects.  相似文献   

12.
13.
DAGLIS  I. A.  AXFORD  W. I.  SARRIS  E. T.  LIVI  S.  WILKEN  B. 《Solar physics》1997,172(1-2):287-296
Particle acceleration is a prominent feature of the geomagnetic storm, which is the prime dynamic process in Geospace – the near-Earth space environment. Magnetic storms have their origin in solar events, which are transient disturbances of the solar atmosphere and radiation that propagates as variations of the solar wind fields and particles through interplanetary space to the Earth's orbit. During magnetic storms, ions of both solar wind origin and terrestrial origin are accelerated and form an energetic ring current in the inner magnetosphere. This current has global geomagnetic effects, which have both physical and technical implications. Recently, it has been shown that large magnetic storms, which exhibit an unusually energized ionospheric plasma component, are closely associated with coronal mass ejections (CMEs). This implies a cause/effect chain connecting solar events through CMEs and the solar wind with the acceleration of terrestrial ion populations which eventually constitute the main source of global geomagnetic disturbances. Here we present spacecraft observations related to storm-time particle acceleration and assess the observations within the framework of causes and effects of solar-terrestrial relationships.  相似文献   

14.
Watari  Shinichi  Kunitake  Manabu  Watanabe  Takashi 《Solar physics》2001,204(1-2):425-438
One of the large Sun–Earth connection events in solar cycle 23 occurred between 14 and 16 July 2000. Anomalies occurring on several satellites were reported in association with this event. Statistical study of extreme events is important not only for a view of space weather but for seeking ways to predict such kinds of large events. The Bastille Day event was characterized by a large flux (24 000 p.f.u. at its maximum) of solar energetic protons and a fast average transit speed of approximately 1500 km s−1 of the interplanetary disturbance. A geomagnetic Kp index of more than 9 was observed after an interval of approximately eleven years since 1989. We found that return periods of extreme space weather (e.g., large flares, solar energetic proton events, and large geomagnetic storms) satisfied the Weibull distribution.  相似文献   

15.
16.
Attention is drawn to the great statistical material on geomagnetic storms and solar activity, published mainly before the space age. By analyses of this material in connection with established correlations between geomagnetic activity and the interplanetary sector struc- ture, valuable information might be obtained that would significantly contribute to an increased understanding of solar and interplanetary sector magnetism.As an illustration of this, different analyses of solar-geomagnetic correlations have been considered in relation to the paper by Wilcox and Colburn (1972) on the observed sector struc- ture. Indications are found that (a) the interplanetary and solar sector pattern in the years 1919–1969 consisted of mainly 2 or 4 sectors per solar rotation, and (b) sector boundaries are related to bipolar magnetic regions on the Sun.  相似文献   

17.
This paper presents a correlative study between the peak values of geomagnetic activity indices (Dst, Kp, ap and AE) and the peak values of various interplanetary field (Bt, Bz, E and σB) and plasma (T, D, V, P and β) parameters along with their various products (BV, BzV and B2V) during intense geomagnetic storms (GMSs) for rising, maximum and decay phases as well as for complete solar cycle 23. The study leads to the conclusion that the peak values of different geomagnetic activity indices are in good correlation with Bt, Bz, σB, V, E, BV, BzV and B2V, therefore these parameters are most useful for predicting GMSs and substorms. These parameters are also reliable indicators of the strength of GMSs. We have also presented the lag/lead time analysis between the maximum of Dst and peak values of geomagnetic activity indices, various interplanetary field/plasma parameters for all GMSs. We have found that the average of peak values of geomagnetic activity indices and various field/plasma parameters are larger in decay phase compare to rising and maximum phases of cycle 23. Our analyses show that average values of lag/lead time lie in the ≈?4.00 h interval for Kp, ap and AE indices as well as for Bt, Bz, σB, E, D and P. For a more meaningful analysis we have also presented the above study for two different groups G1 (CME-driven GMSs) and G2 (CIR-driven GMSs) separately. Correlation coefficients between various interplanetary field/plasma parameters, their various products and geomagnetic activity indices for G1 and G2 groups show different nature. Three GMSs and associated solar sources observed during three different phases of this solar cycle have also been studied and it is found that GMSs are associated with large flares, halo CMEs and their active regions are close to the solar equator.  相似文献   

18.
对地日冕物质抛射研究   总被引:5,自引:0,他引:5  
日冕物质抛射,作为太阳大气中频繁发生的极为壮观的活动现象,越来越受到太阳物理学家的关注。其中一类特殊的抛射事件--对地日冕物质抛射,通常与大的地磁暴、行星际激波和高能粒子事件相伴生,具有强烈的地球物理效应,是影响空间天气的主要因素之一。概括了对地日冕物质抛射的研究现状,重点介绍了与对土日冕物质抛射事件相联系的光球向量磁场演化的观测研究成果,并由典型事件探讨了暗条爆发、耀五等剧烈太阳活动和对地日冕物质抛射之间的密切关系,提出了尚待解决的主要问题和进一步的研究方向。  相似文献   

19.
A. Hewish 《Solar physics》1988,116(1):195-198
A recent study of associations between geomagnetic storms and solar phenomena has found more associations with solar flares than with coronal holes (Garcia and Dryer, 1987). This disagrees with observations of earthbound transients obtained from IPS imaging which showed that nearly all geomagnetically effective disturbances originated from coronal holes at low latitudes. The discrepancy has arisen because the former study failed to take into account the large angular extent of transient eruptions from coronal holes. It is highly probable that the intense geomagnetic storm of February 1986, discussed by Garcia and Dryer, was caused by a low-latitude coronal hole which was present at that time. This answers their question concerning moderately strong flares that apparently cause major storms, while much larger flares often do not; flares may sometimes be associated with eruptions from coronal holes, but only as peripheral events.  相似文献   

20.
The aim of this paper is to investigate the association of the geomagnetic storms with the magnitude of interplanetary magnetic field IMF (B), solar wind speed (V), product of IMF and wind speed (\(V \cdot B)\), Ap index and solar wind plasma density (\(n_{\mathrm{p}})\) for solar cycles 23 and 24. A Chree analysis by the superposed epoch method has been done for the study. The results of the present analysis showed that \(V \cdot B\) is more geoeffective when compared to V or B alone. Further the high and equal anti-correlation coefficient is found between Dst and Ap index (? 0.7) for both the solar cycles. We have also discussed the relationship between solar wind plasma density (\(n_{\mathrm{p}})\) and Dst and found that both these parameters are weakly correlated with each other. We have found that the occurrence of geomagnetic storms happens on the same day when IMF, V, Ap and \(V \cdot B\) reach their maximum value while 1 day time lag is noticed in case of solar wind plasma density with few exceptions. The study of geomagnetic storms with various solar-interplanetary parameters is useful for the study of space weather phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号