首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
金沙江流域面雨量的气候特征   总被引:1,自引:0,他引:1  
采用MICAPS系统提供的金沙江流域内64个气象站2005~2008年逐日08~08时降水资料,由各台站日降水量的算术平均计算出流域逐日面雨量,从而分析金沙江流域面雨量的气候特征.结果表明:金沙江流域年平均降水总量为807mm,较嘉陵江、乌江流域偏小15%左右;较三峡区间偏小23%;雨季(5~10月)降水量为720mm,占全年的90%;旱季(11月~次年4月)降水量为86.9mm,占全年的10%;比较金沙江流域和三峡区间逐日降水的年分布曲线发现,金沙江流域夏季风推进迅速而撤退缓慢,三峡区间夏季风推进缓慢而撤退迅速;青藏高压南部的东北气流、南亚西南气流和西太平洋副高南部东南气流的辐合线是金沙江流域暴雨的主要影响系统.  相似文献   

2.
利用惠阳观测站1990~2009年逐时降水资料,统计分析了惠州城区逐时降水的气候特征,结果表明:①降水和短时强降水出现时数均呈以6月为主峰和8月为副峰的双峰型分布,四季中夏季出现时数最多;②降水均有明显的周循环特征,主要表现为降水日平均出现时数和日平均雨量周末的增加以及周中的减少,周末与周中相比分别偏多0.2h和0.8...  相似文献   

3.
利用广州5个地面观测站2008-2019年逐时降水资料,基于4分位、线性统计等方法,对近10年来广州市短时强降水的变化特征进行分析总结.结果 表明:短时强降水的小时雨量和分钟雨量变化均呈双峰型分布;前35 min内分钟雨量对短时强降水小时雨量的贡献量最大,而0~5 mm雨量等级的降雨频率占比最高;各区短时强降水频率具有...  相似文献   

4.
一种可用于登陆台风定量降水估计(QPE)方法的初步建立   总被引:4,自引:2,他引:4  
借鉴Adler-Negri[1]、Goldenberg等[2]及李俊等[3]的工作,通过对三者工作的有机结合及完善,针对登陆台风GMS-5 IR1TBB特征及逐时观测雨量强度及水平分布特点,初步建立一种可用于登陆台风的定量降水估计(QPE)方法,并结合0104号登陆台风“尤特”个例,从各站点逐时雨量、过程雨量以及区域面雨量角度,分析检验了初步建立的云估计降水方法的定量估计能力。结果表明:(1)所建QPE方法可以反映出登陆台风逐时降水的水平分布不均匀性,可以分离出对流降水和层云降水,但对大于15.0 mm/h的降水强度估计能力有限。(2)51.7%的站点过程雨量相对误差小于20%,过程雨量相对误差小于40%的站点数占总站点数的75.9%,表明所建QPE方法对过程雨量的估计能力还是相当强的,这也间接反映了其对逐时雨量较强的估计能力。(3)所建QPE方法对逐时面雨量也具有一定的估计能力,可以为抗旱、防洪决策服务提供一定的参考。  相似文献   

5.
河南省短时强降水及其云团特征分析   总被引:3,自引:0,他引:3  
根据河南省119个气象站1991-2010年5-9月逐时降水量资料,利用线性趋势和克里金插值等方法,分析了河南省短时强降水及其云团的特征.结果表明:河南省短时强降水自西向东、自北向南呈递增趋势,20.0 ~49.9 mm/h级别的降水在驻马店地区东部和信阳地区西部有明显增多趋势;≥50.0 mm/h级别的降水在周口地区北部有一高值中心.年际变化表明,20.0~49.9 mm/h级别的降水呈显著增加趋势,而≥50.0 mm/h级别的降水呈略增加趋势,但是不显著.月份间的差异非常明显,7月份出现的频次最多,其次是8月份,再次是6月份,5月份和9月份最少.日变化统计表明,上午最少,午后逐渐增加,傍晚和凌晨最多.历年极值雨量7月份出现次数最多,并集中分布在河南省中东部地区,西部地区极值雨量不超过50.0 mm/h,明显低于中东部地区.影响河南省短时强降水的对流云团大致有3个源地6条路径,云团特征可分三种类型,分别为不规则对流云团、圆形或椭圆形云团、带状云系.当有强降水发生时,Tbb值一般很低,但是Tbb值的大小与小时雨量没有很好的相关性.  相似文献   

6.
基于2016—2017年河北省中南部暴雨过程的OTT Parsivel激光雨滴谱仪观测资料,对3种类型暴雨过程的降水微结构特征参量、不同尺度降水粒子对雨强的贡献、分雨强下的雨滴谱分布、速度谱等进行分析。结果表明:河北省中南部暴雨不同雨强下雨滴谱基本呈现单峰型分布,低槽冷锋类暴雨雨滴谱谱宽最窄,低涡类暴雨次之,暖切变线类暴雨最宽。不同类型暴雨过程粒子平均直径和峰值直径平均值以低涡类最小,低槽冷锋类次之,暖切变线类最大。雨滴体积中值直径和质量加权平均直径均值以低槽冷锋最小,低涡类次之,暖切变线类最大。河北省中南部暴雨过程主要以直径D 1. 0 mm的小雨滴为主,其中1. 0≤D 3. 0 mm的雨滴雨强对总雨强贡献接近70%,D 4. 0 mm的大雨滴数浓度占总数浓度百分比最小,其雨强对总雨强的贡献也最小。3种类型暴雨分雨强对应雨滴谱多呈单峰型分布,呈双峰分布时对应雨强不同。速度谱上不同类型暴雨雨滴数极大值中心位置一致,且位于经验曲线下方。与目前雷达系统采用的标准Z=300~(I1. 40)关系相比,河北省中南部暴雨过程Z-I关系低估低槽冷锋类暴雨降水,高估低涡类和暖切变线类暴雨降水,其中低涡类暴雨偏差最大。  相似文献   

7.
通过对1961年~2012年近50年闽北前汛期(5~6月)日雨量资料、逐小时雨量资料和乡镇自动站雨量资料统计分析得出:闽北前汛期雨量和日雨量强度呈西北部向东南部倾斜,强降水中心与武夷山脉平行,越靠近武夷山脉前汛期雨量和日雨量越大,远离武夷山脉受山脉影响减弱,前汛期雨量和日雨量就明显减弱;闽北暴雨量级以上的逐小时雨强日变化的平均高峰值区出现在上午9时附近,强降水的主要降水时段在凌晨到中午;观测站与乡镇自动气象站之间的日雨量相关关系是地理位置分布比行政所属关系更重要。  相似文献   

8.
为探析国家气象信息中心多源融合格点降水实况产品在中小河流面雨量计算中的可行性,该文以湖南省资水流域柘桃区间为例,利用泰森多边形法、算术平均值法、克里金插值法以及国家气象信息中心多源融合格点降水实况产品,以2020年9月的主要降水过程为代表,对4种方法计算的面雨量结果进行比较分析。结果表明:(1)4种方法的计算结果相关性显著,均能较好反应出不同强度降水及不同子流域之间的差异。大多数情况下算术平均值法的结果偏大,多源融合格点实况法的结果偏小,插值法和泰森多边形法的结果介于二者之间。(2)当地面雨量站分布密集或降水空间分布均匀时,4种方法计算结果的标准差较小;当地面雨量站分布稀疏或降水空间分布不均时,4种方法的结果标准差较大,此时采用多源融合格点实况法比算术平均值法、泰森多边形法更合理可靠。(3)对于地形地貌复杂多变的山区,尤其是暴雨以上强降水天气,降水空间分布十分不均,实际计算中小河流域面雨量时,针对不同的子流域、不同的天气过程,应当根据天气系统及降水空间分布综合分析,合理利用多种方法才能准确把握面雨量的大小和可能的误差。  相似文献   

9.
利用1981~2019年吉林省气象局信息中心提供的吉林省51个测站逐时降水数据,系统分析了暖季吉林省冷涡降水的时空分布特征.结果 表明:(1)吉林省降水量日变化和频次的峰值均发生在下午16~18时(北京时);0.1~5 mm/h降水频次大值区主要集中在吉林省东部山区,而5~10 mm/h和>10 mm/h降水频次大值区...  相似文献   

10.
杨银  李岩瑛  陈豫英  陈自艳  刘蓉 《气象》2019,45(5):632-640
利用1960—2014年兰州、临夏、合作、定西、武都、天水、平凉和西峰逐分钟降水资料,分析甘肃河东强降水频次的时空分布特征,建立基于Copula函数的持续时间和过程雨量的联合分布,基于该函数开展强降水发生概率分析研究。结果表明:(1)甘肃河东近55年来平均强降水频次为1. 64次/(a·站),主要特征为持续时间短、过程雨量小,平均持续时间为2. 88 h,过程雨量为23. 4 mm,持续时间小于1 h的概率高达13. 4%;(2)强降水主要发生在汛期(4—9月),月变化服从正态分布,墨西哥帽小波分析表明频次存在着显著的22~23 a和13~15 a的年代际和3~7 a的年际变化;(3)强降水发生概率从大到小依次为平凉、西峰、天水、定西、武都、临夏、兰州和合作,相应的陇东最大,陇南次之,中部地区最小。  相似文献   

11.
利用2007--2008年1—12月国家气象中心GRAPES云模式预报雨量资料,及同期江西区域天气雷达估测雨量及自动气象站实测雨量资料,比较其基本统计与地理分布特征,并对其进行相关计算与结果分析,选取129个数据样本,计算分析它们之间的复相关性,并对其计算误差进行比较与分析。结果表明,三种雨量的复相关性较好。GRAPES云模式预测的时雨量值最大,比雷达估测的时雨量值及自动站实测的时雨量值偏大,自动站实测时雨量值次之雷达估测的时雨量值偏小。  相似文献   

12.
苏锦兰  张万诚  宋金梅  徐安伦 《气象》2021,47(2):133-142
利用2005—2018年125个国家级台站小时降水观测数据研究云南小时降水时空分布特征。结果表明:云南年总降水量、不同持续时间降水量、极端强降水量及降水日变化空间分布差异很大。年降水量自西北向南增加,雨强自北向南增强,降水时长西部大于东部、南部略大于北部,年降水量受降水时长和雨强共同影响,降水时长影响最强,雨强影响较弱,这种特征在滇西北最突出,但滇东北的降水量与雨强相关更好。云南大部夜雨量多于昼雨量,滇东北和北部边缘夜雨特征最显著;降水日变化特征在云南北部为夜间单峰,西部边缘为清晨单峰,中部为夜间与午后峰值相当的双峰,南部也为夜间和午后双峰,但南部不同区域间主峰和次峰出现时间不同。云南南部降水贡献以短、中历时降水为主,北部则以长、超长历时降水为主。云南短时强降水发生次数的空间分布表现为自西北向东南增加;年发生站次数具有增加趋势,日变化特征为显著单峰,多在傍晚至入夜出现,且极端短时强降水更易在凌晨出现。这些小时降水时空分布特征很大程度上代表了低纬高原地区的降水特征。由于低值天气系统多影响低纬高原中北部,热带天气系统多影响南部,且低纬高原地形复杂,局地热力条件差异明显,这些因素造成该区域小时降水时空分布特征差异显著。  相似文献   

13.
选取我国东南沿海热带气旋登陆数目多、经济发达的浙江和福建两省,利用国家级地面气象站逐小时降水观测资料,结合热带气旋降水客观分离方法,对1956~2012年(共57年)浙、闽两省沿海登陆热带气旋降水开展客观分离,统计分析热带气旋登陆期间降水精细化时空分布特征。结果表明:热带气旋平均路径在登陆前6小时至登陆后24小时呈西北行,累积降水具有明显非对称分布特征,与主要水汽辐合区相吻合,登陆后24小时至48小时的降水分布与鄱阳湖水体以及局地地形有密切联系;伴随登陆进程,降水分布呈现显著变化,登陆前,浙、闽两省降水较强;登陆后,降水范围向内陆扩展到浙、闽两省以外地区;登陆点聚类分析指出,所有类别的较强降水时段均位于登陆前12小时至登陆后6小时,但不同类别的降水分布和演变特征具有显著差异,这种差异与局地地形和热带气旋环流所处位置关系密切;小时强降水统计分析显示,伴随着登陆进程强降水频次分布逐渐变化和向内陆地区推进,高频次强降水主要出现在登陆前、后6小时的浙、闽两省沿海地区,且以两省交界附近地区最为集中,与该地区明显的高大地形分布有着密切的关系。两省各台站由登陆热带气旋带来的小时降水极值差异较大,从10到143 mm均有分布,大部分极值在30至60 mm之间。其中,极值大于50 mm的站点主要分布在沿海地区,在浙、闽交界处较为集中,与小时强降水的频次分布一致。  相似文献   

14.
With the development of urbanization, whether precipitation characteristics in Guangdong Province, China, from 1981 to 2015 have changed are investigated using rain gauge data from 76 stations. These characteristics include annual precipitation, rainfall frequency, intense rainfall(defined as hourly precipitation ≥ 20 mm), light precipitation(defined as hourly precipitation ≤ 2.5 mm), and extreme rainfall(defined as hourly rainfall exceeding the 99.9 th percentile of the hourly rainfall distribu...  相似文献   

15.
基于2018~2020年云南省126个国家地面观测站逐小时降水资料,客观定量评估了国家气象信息中心研发的CMPAS二源融合和三源融合逐小时网格降水产品在云南地区的适用性。结果表明:两套融合降水产品均能较好地反映云南区域小时降水的时空变化特征,但都低估了实际降水量;三源融合降水产品在云南的适用性更强,对0.1~1.9mm量级的小时降水量预估偏大,且离散性较高,但随着实况降水量的增加,平均误差呈负值,降水量预估值偏小;三源融合降水产品能准确抓住云南省的过程性降水,在短时强降水导致滑坡泥石流的监测中具有一定优势。   相似文献   

16.
谢漪云  王建捷 《气象学报》2021,79(5):732-749
利用2019年夏季(6—8月)西南复杂地形区地面观测站逐时和逐日降水量观测数据,从降水量和降水频率入手,对同期GRAPES-Meso 3 km业务模式短期(36 h以内)降水预报性能,特别是在不同典型地貌区—四川盆地子区、云贵高原北部子区和南部子区、青藏高原东缘山地子区的预报偏差进行细致评估与分析。结果表明:(1)GRAPES-Meso 3 km模式能合理地刻画出西南复杂地形区夏季日降水和日内尺度降水的主要特征,以及小时降水频次-强度的基本关系。(2)在各子区,模式日降水量(频率)预报表现为清晰的正偏差,正偏差在盆地子区最显著,为观测值的1.1倍(0.3倍);日降水量正偏差主要由强降水日降水量预报偏大引起,但频率正偏差在云贵高原南、北子区与其他两个子区不同,主要是中小雨日数预报偏多的贡献;强降水(中小雨)落区预报存在明显(轻微)偏大倾向,强降水预报落区偏大频率在青藏高原东缘山地子区最高,达82.8%,在云贵高原南部子区最低,为53.6%。(3)日循环上,各时次小时降水量(频率)预报整体偏大,且主要正偏差出现在观测的夜雨峰值时段,其中海拔1200 m以下区域的降水频率正偏差从夜间峰值区延续到中午,模式偏强的日降水量预报往往表现为日内偏长的降水时长或小时降水空报。(4)诊断分析显示,模式在四川盆地区突出的夏季日降水预报正偏差是模式对流层低层在云贵高原南-东南侧偏强的西南风预报与西南地区特殊地形结合的产物。   相似文献   

17.
本文利用四川省156个国家地面气象观测自动站2018年逐小时降水资料,从降水产品与观测值的对比、降水产品误差空间特征、降水产品误差月变化、不同降水量级的误差特征等方面,对国家气象信息中心研制的中国区域1h、0.05° × 0.05°分辨率的地面-卫星-雷达三源融合实时降水产品和地面-卫星二源融合快速降水产品在四川区域的适用性进行对比评估。研究结果表明,两套融合降水产品能较好的反映四川区域年内小时降水的时空变化特征,与站点观测降水相比,两套融合降水产品均存在一定程度的低估,且随着降水量级的增大,均方根误差值也相应增大。两套融合降水产品相比,融合了雷达资料的三源融合降水产品各项指标均优于二源融合降水产品,数据质量更高。   相似文献   

18.
甘玉婷  陈昊明  李建 《气象学报》2021,79(5):750-768
为深入认识对流可分辨模式对小尺度孤立地形区降水的预报性能,使用2017年暖季(5—9月)台站逐时降水观测数据,以小时尺度降水特征为指标,细致评估了千米尺度分辨率(3 km)的北京“睿图”短期数值预报子系统(RMAPS-ST)对泰山及其周边地区降水特征的预报能力,并对比了不同起报时次(北京时08时和20时)的预报差异。评估发现,RMAPS-ST可以再现泰山站的局地降水中心,但区域西南侧降水预报小于观测,而泰山站及其东北侧则相反。清晨和午后时段的降水预报与观测相比存在较大偏差。以泰山站为例,RMAPS-ST易于低估夜间至清晨时段的降水频率,这可能与模式对降水系统发展演变过程的预报偏差以及清晨泰山站弱降水事件的漏报有关;清晨泰山站降水强度的预报在不同起报时次的结果中存在差异,20时起报存在大幅度高估的问题,进而导致其暖季平均降水量预报大于观测,而08时起报对于清晨降水强度的高估不明显;08时起报易高估泰山站午后的降水频率,这与其午后短历时降水事件数预报偏多有关,模式对山区热动力场的预报偏差是午后降水空报的可能原因。小时尺度降水特征已应用于中国气象局区域数值预报模式的业务评估体系中,本研究结果也表明,此类评估有助于深入认识千米尺度数值预报模式对降水日内变化的预报能力,从而为精细化降水产品的订正提供更详实的科学依据。   相似文献   

19.
2007年汛期淮河流域连续性大暴雨TBB场分析   总被引:6,自引:1,他引:5  
利用水平分辨率0.1°×0.1°经纬度FY-2C卫星TBB网格资料、连续性强降水过程和最强降水时段的加强加密降水资料(其中,安徽临泉县迎仙站日降水破安徽省日最大降水纪录),对应分析TBB平均场分布特征及其演变特点,揭示强降水云团生消史与暴雨发展的内在联系.结果表明:TBB低值区与淮河流域强暴雨落区有明显的对应关系,TBB值减小过程与雨强增强过程比较一致,TBB梯度大值区在某地长时间维持将产生长时间强降水.源源不断的来自南海经广西沿着副高西北侧向东北方向伸展的水汽输送,与西风槽不断带来的新鲜冷空气在淮河流域相汇,对淮河流域强降水云系的生成、发展和维持起着重要作用.同时,在此阶段TBB 低值区在淮河流域一带稳定少动,南北摆动幅度小,时生时伏的变化,造成淮河流域天气53 年以来全线致洪暴雨重大事件.  相似文献   

20.
本文采用GIS栅格插值的常用方法,反距离权重法(IDW),样条函数法(Spline),克里金法(Kriging),协同克里金法(Co-Kriging),泰森多边形法(Thissen)对2013年7月8~11日都江堰特大暴雨过程进行面雨量计算的对比分析,并用FLood Area模型对此次过程中白沙河流域的暴雨洪涝过程进行模拟,结果显示:5种面雨量计算方法的结果受雨量站密集程度和降水空间分布特征的制约,特别是样条函数法和泰森多边形法,对雨量站分布影响较为敏感;小时面雨量计算中站点分布对样条函数法影响更大;协同克里金法计算面雨量可使FLood Area模拟结果更优,更接近于真实值;在复杂地形条件下面雨量计算中,考虑地形的相关影响可有效提高降水插值精度,使Flood Area模型的模拟结果误差更小。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号