首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Subduction, upwelling, and phytoplankton blooms are commonly observed features at oceanic fronts. This study isolates the role of vertical mixing for enhanced production and water mass subduction near fronts, considering the time-developing problem with a Semi-Geostrophic circulation model coupled to a planktonic ecosystem model. Our model results show that vertical mixing in the surface boundary layer strongly modifies the time evolution of the front and of its associated biology. Ageostrophic flows caused by the combined effects of confluence and vertical mixing enhance primary production on the less dense side and increase water mass subduction on the dense side of the front. Confluence alone results in the intensification of the front by the same advective response, while the phytoplankton bloom on the less dense side does not arise without vertical mixing. Vertical mixing alone slumps the front near the surface and provides weak subduction on the dense side and uplift of the isopycnals at the center of the front. We find that it is possible to sustain an isolated phytoplankton patch above the domed isopycnals at the center of the front with the nutrients supplied by the secondary circulations arising due to vertical mixing. These results suggest that the phytoplankton bloom and patches found on the less dense side of fronts in many field observations are likely caused by fine-scale along-isopycnal upwelling of nutrients forced by adiabatic confluence in the meander trough of fronts and further pumping and entrainment of nutrients by the secondary circulation due to vertical mixing. Isolated patches observed at the center of the front in many frontal surveys could be caused by secondary flows due to vertical mixing.  相似文献   

2.
During the summer, a northward, wind-driven current dominates the Rottnest Island region in southwestern Australia. Field studies have shown that the interaction between Rottnest Island and the northward current generates upwelling at the western end of the island, which is advected downstream, resulting in isotherm doming in the wake region. Flow curvature-induced secondary circulation has been proposed as the dominant mechanism responsible for this upwelling. Here, a three-dimensional numerical model, together with field observations, was used to undertake a detailed investigation of the three-dimensional flow structure in the wake region. Comparison of the observed upwelling pattern and the simulated flows revealed the island's dominant role in generating upwelling. This result was confirmed with the use of idealized numerical experiments. The modeling results confirmed the presence of secondary circulation, generated as a result of flow curvature at the western end of the island, which caused strong upwelling and extended downstream.  相似文献   

3.
During the summer, a northward, wind-driven current dominates the Rottnest Island region in southwestern Australia. Field studies have shown that the interaction between Rottnest Island and the northward current generates upwelling at the western end of the island, which is advected downstream, resulting in isotherm doming in the wake region. Flow curvature-induced secondary circulation has been proposed as the dominant mechanism responsible for this upwelling. Here, a three-dimensional numerical model, together with field observations, was used to undertake a detailed investigation of the three-dimensional flow structure in the wake region. Comparison of the observed upwelling pattern and the simulated flows revealed the island's dominant role in generating upwelling. This result was confirmed with the use of idealized numerical experiments. The modeling results confirmed the presence of secondary circulation, generated as a result of flow curvature at the western end of the island, which caused strong upwelling and extended downstream.  相似文献   

4.
Using the data of CTD observations in the Kuril region of the Pacific Ocean, vertical structures of water masses are analyzed and differentiated using the Turner angle Tu in the layer between the isopycnic surfaces of 26.5 and 26.8 σθ. The former characterizes the core of the cold intermediate layer in the subarctic water structure and the latter, the intermediate salinity minimum in the subtropical water structure. Vertical variations of temperature and salinity in the specified density range for subarctic and subtropical water structures are opposite to each other, and the Turner angle changes the sign from negative to positive when crossing the boundary between them. The isoline Tu = ?45° denotes disappearance of the cold intermediate layer, Tu = 0°, an outcrop of the halocline along with the salinity front formation, and Tu = 45° is the northern boundary of the subtropical water. Obtained are the relationships between the Turner angle and the variations of temperature and salinity within the mentioned layer. Demonstrated are the benefits of the proposed method for localizing the boundaries of the subarctic front as compared with traditional methods.  相似文献   

5.
The influence of chlorophyll spatial patterns and variability on the tropical Pacific climate is investigated by using a fully coupled general circulation model (HadOPA) coupled to a state-of-the-art biogeochemical model (PISCES). The simulated chlorophyll concentrations can feedback onto the ocean by modifying the vertical distribution of radiant heating. This fully interactive biological-ocean-atmosphere experiment is compared to a reference experiment that uses a constant chlorophyll concentration (0.06 mg m−3). It is shown that introducing an interactive biology acts to warm the surface eastern equatorial Pacific by about 0.5°C. Two competing processes are involved in generating this warming: (a) a direct 1-D biological warming process in the top layers (0–30 m) resulting from strong chlorophyll concentrations in the upwelling region and enhanced by positive dynamical feedbacks (weaker trade winds, surface currents and upwelling) and (b) a 2-D meridional cooling process which brings cold off-equatorial anomalies from the subsurface into the equatorial mixed layer through the meridional cells. Sensitivity experiments show that the climatological horizontal structure of the chlorophyll field in the upper layers is crucial to maintain the eastern Pacific warming. Concerning the variability, introducing an interactive biology slightly reduces the strength of the seasonal cycle, with stronger SST warming and chlorophyll concentrations during the upwelling season. In addition, ENSO amplitude is slightly increased. Similar experiments performed with another coupled general circulation model (IPSL-CM4) exhibit the same behaviour as in HadOPA, hence showing the robustness of the results.  相似文献   

6.
Observations of a front associated with boundary layer separation from a headland illustrate a mechanism by which horizontal density gradients create intense turbulence and vertical mixing, thus, contributing to water property modification in the coastal zone. Tidal current past an island separates from the coast, creating a shear zone between the primary flow and the slowly moving water in the lee of the island. The density structure on either side of the front may differ due to different origins or degrees of prior mixing. Consequently, there can be horizontal density gradients across the front. Boundary layer separation from the headland begins as a vertical vortex sheet on which instabilities grow to form a sequence of eddies. The presence of horizontal density gradients causes the shear layer to tilt. Tilting and stretching of the sheared flow generates intense circulation. Whirlpools and boils appear at the surface accompanied by vertical motions in which broad areas of upwelling alternate with narrow areas of downwelling. These mix the water throughout its depth; bubbles entrained at the surface reach depths of over 120 m. Such violent mixing weakens stratification associated with the estuarine circulation and aerates water masses passing through the area.  相似文献   

7.
A simple variational model of the zonal region between waters has been developed with a specified density gradient and a convergence zone. An approximate analytical solution has been constructed. The boundary between waters is shown to divide into two fronts, a convergence front and a density front. The density front should be shifted equatorward relative to the convergence axis. Such a structure corresponds to the subarctic/subtropical boundary in the Pacific Ocean: the subarctic front and the Kuroshio Extension front that goes into the North Pacific Current.  相似文献   

8.
 The mechanisms responsible for the mean state and the seasonal and interannual variations of the coupled tropical Pacific-global atmosphere system are investigated by analyzing a thirty year simulation, where the LMD global atmospheric model and the LODYC tropical Pacific model are coupled using the delocalized physics method. No flux correction is needed over the tropical region. The coupled model reaches its regime state roughly after one year of integration in spite of the fact that the ocean is initialized from rest. Departures from the mean state are characterized by oscillations with dominant periodicites at annual, biennial and quadriennial time scales. In our model, equatorial sea surface temperature and wind stress fluctuations evolved in phase. In the Central Pacific during boreal autumn, the sea surface temperature is cold, the wind stress is strong, and the Inter Tropical Convergence Zone (ITCZ) is shifted northwards. The northward shift of the ITCZ enhances atmospheric and oceanic subsidence between the equator and the latitude of organized convention. In turn, the stronger oceanic subsidence reinforces equatorward convergence of water masses at the thermocline depth which, being not balanced by equatorial upwelling, deepens the equatorial thermocline. An equivalent view is that the deepening of the thermocline proceeds from the weakening of the meridional draining of near-surface equatorial waters. The inverse picture prevails during spring, when the equatorial sea surface temperatures are warm. Thus temperature anomalies tend to appear at the thermocline level, in phase opposition to the surface conditions. These subsurface temperature fluctuations propagate from the Central Pacific eastwards along the thermocline; when reaching the surface in the Eastern Pacific, they trigger the reversal of sea surface temperature anomalies. The whole oscillation is synchronized by the apparent meridional motion of the sun, through the seasonal oscillation of the ITCZ. This possible mechanism is partly supported by the observed seasonal reversal of vorticity between the equator and the ITCZ, and by observational evidence of eastward propagating subsurface temperature anomalies at the thermocline level. Received: 7 April 1997 / Accepted: 15 July 1998  相似文献   

9.
The empirical orthogonal function (EOF) analysis of subsurface temperature shows a dominant north-south mode of interannual variability in the Tropical Indian Ocean (TIO) at around 100 m depth (thermocline). This subsurface mode (SSM) of variability evolves in September-November (SON) as a response to Indian Ocean Dipole and intensifies during December-February (DJF) reinforced by El Niño and Southern Oscillation (ENSO) forcing. The asymmetry in the evolution of positive and negative phases of SSM and its impacts on the modulation of surface features are studied. The asymmetry in the representation of anomalous surface winds along the equator and off-equatorial wind stress curl anomalies are primarily responsible for maintaining the asymmetry in the subsurface temperature through positive and negative phases of the SSM. During the positive phase of SSM, downwelling Rossby waves generated by anticyclonic wind stress curl propagate towards the southwestern TIO (SWTIO), the thermocline ridge region of mean upwelling. The warmer subsurface water associated with the downwelling Rossby waves upwells in the region of mean upwelling and warms the surface resulting in strong subsurface-surface coupling. Such interaction processes are however weak during the negative phase of SSM. The asymmetry in the subsurface-surface interaction during the two phases of SSM and its impact on the modulation of surface features of TIO are also reported. In addition to the ENSO forcing, self-maintenance of SSM during DJF season is evident in the positive SSM (PSSM) years through modulation of subsurface surface coupling and air-sea coupling. This positive feedback during PSSM years is maintained by the deepening thermocline, warm SSTs and convection. The asymmetry in the thermocline evolution is more evident in the SWTIO and southern TIO.  相似文献   

10.
Variation in wind velocity over water   总被引:1,自引:0,他引:1  
Starting from the equations of motion and continuity, a theoretical model is deduced in this paper for the variation in wind velocity over water caused by abrupt changes in surface roughness and temperature when air flows from land to water, based on the consideration that the turbulent exchange coefficient varies with height and distance from the upwind edge. According to the computation of this model, the variation in wind velocity over water, as the drift of air is from land to water, occurs mainly in the first few kilometers from the upwind edge. The wind velocity over water increases to a maximum when the air over land is stable, it tends to moderate when neutral condition is reached, and least variation is shown in unstable condition. And when the air over land is unstable the wind velocity is less over water than over land in strong winds, but some-what greater in light winds.  相似文献   

11.
This paper describes a two-dimensional lake breeze model with turbulent energy closure. The simulated results show that (1) the front of the lake breeze progresses inland faster in the late afternoon than at the fully developed stage; and (2) the lake breeze and land breeze have larger extension offshore than inland. The acce-leration of the front in the declining phase of the lake breeze is explained in terms of the decreased turbulent fric-tion acting on the head of the lake breeze. The larger extension offshore, probably, is attributed to the smaller roughness of water surface and to the offshore synoptic wind.  相似文献   

12.
Land surface temperature is one of the most important parameters related to global warming. It depends mainly on soil type, discontinuous vegetation cover, or lack of precipitation. The main purpose of this paper is to investigate the relationship between high LST, synoptic conditions and air masses trajectories, vegetation cover, and soil type in one of the driest region in Romania. In order to calculate the land surface temperature and normalized difference vegetation index, five satellite images of LANDSAT missions 5 and 7, covering a period of 26 years (1986–2011), were selected, all of them collected in the month of June. The areas with low vegetation density were derived from normalized difference vegetation index, while soil types have been extracted from Corine Land Cover database. HYSPLIT application was employed to identify the air masses origin based on their backward trajectories for each of the five study cases. Pearson, logarithmic, and quadratic correlations were used to detect the relationships between land surface temperature and observed ground temperatures, as well as between land surface temperature and normalized difference vegetation index. The most important findings are: strong correlation between land surface temperature derived from satellite images and maximum ground temperature recorded in a weather station located in the area, as well as between areas with land surface temperature equal to or higher than 40.0 °C and those with lack of vegetation; the sandy soils are the most prone to high land surface temperature and lack of vegetation, followed by the chernozems and brown soils; extremely severe drought events may occur in the region.  相似文献   

13.
The relationship between North Atlantic tropical cyclone (TC) peak intensity and subsurface ocean temperature is investigated in this study using atmospheric and ocean reanalysis data. It is found that the peak intensity of basin-wide strong TCs (Categories 4 and 5) is positively correlated with subsurface ocean temperature in the extratropical North Atlantic. A possible physical mechanism is that subsurface ocean temperature in the extratropical North Atlantic can affect local sea surface temperature (SST); on the other hand, the moisture generated by the warming SST in the extratropical North Atlantic is transported to the main region of TC development in the tropics by a near-surface anticyclonic atmospheric circulation over the tropical North Atlantic, affecting TC peak intensity. Moreover, coastal upwelling off Northwest Africa and southern Europe can affect subsurface ocean temperature in the extratropical North Atlantic. Therefore, the peak intensity of strong TCs is also found to be directly correlated with the water temperature in these two upwelling regions on an interdecadal timescale.摘要利用大气与海洋再分析数据等相关资料, 本项研究发现, 北大西洋强台风 (Saffir–Simpson分类中的第4和第5类) 的最大强度与亚热带北大西洋的次表层海温呈正相关. 由于亚热带北大西洋的次表层海温会影响当地的海表温度, 该地区海面产生的水汽通过近地面的反气旋大气环流可被输送到位于热带的台风主要发展区域, 进而影响台风的最大强度. 与此同时, 位于西非北部和南欧的近岸涌升流会影响亚热带北大西洋的次表层海温. 因此, 强台风的最大强度也被发现与上述两个涌升流区域的海温具有相关性, 但是这种相关性主要体现在年代际时间尺度上.  相似文献   

14.
Passive microwave signatures of landscapes in winter   总被引:4,自引:0,他引:4  
Summary The successful application of passive microwave sensors requires signatures for the unambiguous inversion of the remote sensing data. Due to the large number of object types and large variability of physical properties, the inversion of data from land surfaces is a delicate and often ambiguous task. The present paper is a contribution to the assessment of multi-frequency passive microwave signatures of typical objects on land in winter. We discuss the behaviour of measured emissivities at vertical and horizontal polarization over the frequency range of 5 to 100 GHz (incidence angle of 50 degrees) of water and bare soil surfaces, grass and snowcovers under various conditions. These data and their variabilities lead us toward a classificaion algorithm for some, but not all object classes. Most snowcovers can easily be discriminated from other surfaces, difficulties occur for fresh powder snow if 94 GHz data are not available. The problem of wet snow has found a solution by using a certain combination of observables.In addition to snowcover types we find large differences between frozen and unfrozen bare soil. On the other hand the different situations of grasscovers show all very similar emissivities.For the estimation of physical parameters we propose algorithms for certain object classes. The estimation of surface temperature, especially for snow-free land, seems to be feasible, also the estimation of the snow liquid water content at the surface. For estimating soil moisture lower frequencies (e.g. 1.4 GHz) should be used.For the estimation of the Water Equivalent, WE, we cannot yet find a definitive solution. Certain correlations exist for dry winter snow between WE and observables at frequencies between 10 and 35 GHz. Especially the polarization difference at 10 GHz shows a monotonous increase with increasing WE. Algorithms using higher frequencies are more sensitive to WE, however, they are subject to ambiguities.With 7 Figures  相似文献   

15.
16.
太平洋大尺度环流数值模拟 II:长期平均环流   总被引:2,自引:2,他引:2       下载免费PDF全文
用本文第Ⅰ部分所给出的四层太平洋环流模式,模拟在定常年平均大气强迫场驱动下太平洋长期平均环流。所进行的53年数值积分表明,模式成功地模拟出观测到的太平洋大尺度环流基本特征,特别是能直接计算出在海洋动力学和大尺度海气相互作用研究中有重要应用的海面起伏,对表层流场的模拟也明显优于具有同等分辨率的其他模式的结果;对气候有重要影响的SST形势的模拟结果同观测也较为一致。本文还用第53年数值积分资料进行了扰动压力场、斜压扰动压力场和海表热通量等的诊断计算和分析。文中还对模拟结果进行了物理和动力学的分析和解释。  相似文献   

17.
陆面过程模式LPM-ZD及其对我国中东部地区陆面特征的模拟   总被引:1,自引:0,他引:1  
该文利用陆面过程模式LPM┐ZD和一套观测分析资料对我国中东部地区的陆面特征进行了模拟研究.模拟结果表明:模式LPM┐ZD比较好地模拟了该区域内不同类型植被和土壤的温、湿变量以及陆气间通量交换的日变化特征;能够合理地模拟我国中东部区域的陆面过程特点分布,很好地反映了我国南北方区域气候特点的差异和我国夏季风气候特点  相似文献   

18.
Sea-breeze circulations in a stably stratified environment have been simulated in a water tank. The floor of the tank was divided into two halves representing land and sea; the land side was heated from the bottom of the tank, and the sea side was insulated by an underlying sponge slab. The temperature profiles over both land and sea sides, the land–sea temperature difference, and the horizontal temperature distributions were measured. Particle tracking velocimetry was applied to obtain the two-dimensional velocity field orthogonal to the coastline. It was shown that the overall flow consists of a closed circulation caused by the horizontal temperature difference between land and sea, and a strong updraft occurring at the sea-breeze front. The dimensionless governing parameters are calculated from the measurements and used to characterize the developing sea breezes. The analysis confirms the scaling laws for sea-breeze velocity and depth. The results indicate that the scaling characteristics of the sea-breeze translation speed during the developing period are different to those during the following maintaining period. A criterion for the onset of the sea breeze is proposed based on these results.  相似文献   

19.
We describe laboratory experiments on the instability and later evolution of a front in a two-layer rotating fluid. In particular, we focus on the influence of a nearby boundary on instability growth and eddy formation. The front is produced through the adjustment of a buoyant fluid initially confined within a bottomless cylinder. Typically a front in quasi-cyclostrophic balance establishes after two rotation periods, after which it becomes unstable. Measurements of the velocity and vorticity fields at the surface are made which provide detailed information on the evolution of the front as the instability grows to finite amplitude. We focus on the time evolution of the vorticity and distinguish between the cyclonic and anticyclonic components. The spatial averages of the cyclonic and anticyclonic vorticity first grow exponentially. This growth saturates when eddies form and are advected across the front. The growth rate depends upon two nondimensional parameters: the width W of the upwelling region in units of the internal radius of deformation and the depth ratio δ between the two layers. Measurements of the growth rates for the average of the cyclonic and anticyclonic vorticity are compared to the values inferred from a simplified model for baroclinic instability. A good agreement is obtained when the front develops far from the boundary (i.e. W1). However, the agreement is only qualitative when the front is near the boundary (i.e. W1). We find that, as W decreases, the growth of cyclonic eddies consisting of dense—“coastal”—water is enhanced compared to that of anticyclonic vorticity consisting of buoyant—“off-shore”—water. This crucial effect of the boundary with respect to the instability of the front has significant impact on exchanges across the front.  相似文献   

20.
肖庆农  伍荣生 《气象学报》1996,54(4):456-465
建立了一个二维非静力平衡模式,通过坐标变换的方法使得模式低层有较高的分辨率。对重力流的模拟结果显示;本模式模拟出的重力流冷锋主要特征,如抬高的头部、头部较强的上升运动以及等位温线密集带与实际大气观测很一致。此外,模式还成功地模拟出了重力流头部后面底层的高速潜流层。应用模拟结果与理论结果对重力流的移动速度进行了对比分析。当考虑地形时,重力流在山前受阻,其头部比不考虑地形时高,且产生了向上游传播的“涌浪”;重力流过山后其头部降低,位温梯度减弱,头部后面的水平速度减小。此外,还对非静力平衡与静力平衡条件下重力流的差异进行了分析讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号