首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2020年6月23日,我国北斗三号全球导航卫星系统正式完成星座全球组网.北斗三号全球导航卫星系统采用新一代全球广播电离层延迟修正模型(BDGIM),为用户提供电离层延迟改正服务.本文利用高精度全球电离层格网(GIM)以及实测BDS/GPS数据提供的电离层TEC作为参考,从延迟改正精度及北斗单频伪距单点定位应用、模型系数...  相似文献   

2.
电离层延迟是影响导航定位精度的最主要因素。北斗卫星导航系统采用Klobuchar模型修正单频接收机用户的电离层延迟误差,对于双频接收机,可以利用不同频率信号的伪距观测数据解算得到电离层延迟值。为比较两种方法在天津地区的电离层延迟修正效果,利用NovAtel GPStation6接收机(GNSS电离层闪烁和TEC监测接收机)采集到的卫星实测数据进行计算。以国际全球导航卫星系统服务组织(IGS)发布的全球电离层格网数据为参考,对两种方法的修正效果进行比较分析。结果表明,在天津地区,利用双频观测值解算电离层延迟比Klobuchar模型计算结果更加精确,且平均每天的修正值达到IGS发布数据的82.11%,比Klobuchar模型计算值高948%   相似文献   

3.
根据高精度卫星导航和电离层活动监测的需要,特别是中国北斗系统的运营,利用陆态网络200余个GPS基准站的双频实测数据,通过建立低阶球谐函数模型同时解算电离层电子含量、GPS卫星DCB;将其结果与CODE分析中心的结果进行比较.分析表明,该方法建立的模型是可靠的,其GPS卫星DCB相对于CODE精度优于0.3ns,垂直总电子含量相对CODE精度优于3TECU.  相似文献   

4.
北斗卫星导航系统Klobuchar模型精度评估   总被引:2,自引:0,他引:2  
目前,我国北斗卫星导航系统已完成星座区域组网,系统每2h提供一组电离层延迟Klobuchar模型参数。利用欧洲定轨中心(CODE)的高精度电离层格网数据作为参考,对北斗卫星导航系统电离层参数性能进行了精度评估分析,并进行了定位分析。数据表明,其修正精度一般在70%以上,北半球的修正误差在1.5m左右,而南半球的修正误差在3.5m左右;在北半球中纬度地区的修正精度比高纬度、低纬度地区高;北斗单频伪距定位采用北斗Klobuchar模型在平面上的精度为3m左右,高程上为7m左右,与采用GPS的Klobuchar模型相比较,定位精度提高了约10%,高程方向尤为明显。  相似文献   

5.
GEO卫星区域电离层监测分析   总被引:4,自引:1,他引:3  
由于GEO卫星的静地特性,由双频观测数据获取的穿刺点垂直总电子含量(VTEC)可以充分反映电离层的时域变化,而根据地面监测站的分布,可以进一步获取VTEC的空域变化.分析根据区域卫星导航系统观测数据计算VTEC的精度,理论分析表明VTEC精度优于2 TECU.根据实测数据计算分析我国高、中、低纬度不同穿刺点电离层平时、磁暴期间的周日变化特性和2011年全年变化特性,并与IGS全球电离层图(GIM)的穿刺点插值结果进行分析比较.结果表明,两者在电离层周日和全年变化趋势上具有很好的一致性,但磁暴期间我国低纬度地区GIM误差的峰值可达29TECU,2011年全年评估结果GIM误差标准差为2~8 TECU.根据2011年的观测结果,电离层VTEC呈现出明显的半年异常现象.区域卫星导航系统为我国的电离层监测尤其是空间天气期间的电离层监测提供了新的支持.  相似文献   

6.
糜晓龙  袁运斌  张宝成 《测绘学报》2021,50(10):1290-1297
随着中国北斗三号全球导航卫星系统(BeiDou-3 Navigation Satellite System,BDS-3)的建成、欧盟伽利略系统(Galileo)及日本准天顶卫星系统(quasi-zenith satellite system,QZSS)的发展,越来越多的卫星可用于反演大气电离层.通常,接收机差分码偏差(differential code biases,DCB)的短时变化被认为是利用全球导航卫星系统(Global Navigation Satellite System,GNSS)反演电离层的重要误差来源,然而,有研究表明,接收机差分相位偏差(differential phase biases,DPB)的短时变化也有可能影响电离层反演的精度和可靠性.为此,本文提出了基于站间单差模型并采用不变换参考星策略来估计接收机DPB的方法,可实现接收机DPB的连续估计.基于几台可跟踪BDS-3信号的多频多模接收机采集的数据,对BDS-3、Galileo、GPS和QZSS重叠频率组合的DPB进行了分析.结果表明,四系统的接收机DPB日变化都是很明显的,并且和温度有很强的相关性;基于不同系统重叠频率组合的DPB之间存在强相关;基于相同类型接收机的DPB的变化也存在明显的相关性.  相似文献   

7.
在卫星导航定位中,电离层延迟误差是主要误差源之一,其影响可以到达数米乃至数百米,有必要进行高精度的电离层模型研究,尤其是区域的高精度电离层模型建立.本文基于北斗地基增强系统114基准站三系统 (GPS/BDS/GLONASS) 双频的观测数据进行电离层提取计算,并结合多项式函数模型进行建模,得出中国区域内的电离层模型,并采用直接跟CODG的电离层产品比较和间接通过单频精密单点定位方式来评估模型精度.结果表明,基于北斗地基增强系统建立的中国区域电离层模型精度高于CODG发布的电离层格网模型且更符合中国区域电离层的真实空间分布.   相似文献   

8.
文中使用CORS实时数据,基于Kalman滤波建立区域电离层TEC球谐函数模型。使用CORS相位平滑伪距电离层观测值,逐历元滤波求解电离层模型参数,分离卫星与接收机硬件延迟,并应用于单双频PPP定位中。实验结果表明,区域电离层模型精度约为1.9 TECU,较IGS发布的电离层格网数据(GIM)提高58.8%;采用区域电离层模型改正后单频PPP定位精度约为0.2 m,较GIM提高60.3%;模型提供的高精度电离层改正信息能够有效提升双频PPP收敛速度及初始定位精度。  相似文献   

9.
吴寒  吴燕苹  吴亚君  孔建 《测绘通报》2017,(10):120-123
提出了一种改进的基于卫星轨迹的电离层区域建模方法,详细讨论了基于卫星轨迹电离层区域建模的基本原理,并利用IGS SHAO单基准站数据建模试验,分析验证了基于卫星轨迹的电离层建模方法的可靠性。该模型可以有效表达电子密度小区域陡变,模型区域拟合精度在1~3 TECU。  相似文献   

10.
差分码偏差(differential code bias,DCB)又称硬件延迟,是影响用户导航定位授时(pointing navigation timing,PNT)服务的主要误差源之一。GPS卫星的硬件延迟通常是在电离层建模过程中和电离层模型系数一起解得的,但是北斗系统目前仅是一个区域导航定位系统,无法通过单系统获得高精度的硬件延迟解。提出通过联合GPS和北斗卫星观测数据用低阶球谐模型建模的方式确定北斗卫星和接收机的DCB。实验数据表明在现有条件下采用该方式解算北斗卫星的DCB的精度在0.3ns左右,稳定性较好,且北斗地球静止轨道卫星(GEO)、倾斜同步轨道(IGSO)卫星DCB稳定性好于中轨道(MEO)卫星,北斗卫星DCB的稳定性要优于接收机。  相似文献   

11.
受限于区域监测站及地球静止轨道(geosynchronous earth orbit,GEO)卫星的静地特性,北斗卫星导航系统(BeiDou satellite navigation system,BDS)定轨精度较差,加入低轨卫星(low earth orbit,LEO)星载数据可显著提升定轨精度.使用一种由24颗L...  相似文献   

12.
王乐  张勤  黄观文  燕兴元  秦志伟 《测绘学报》2016,45(Z2):101-108
我国北斗二代系统(BDS)地面运控监测站数量较少且为区域分布,短期内难以实现全球建站,因此对全球运行的中圆地球轨道卫星(MEO)难以形成连续多重覆盖观测,导致BDS的MEO实时轨道精度偏低。基于上述问题,本文考虑到低轨卫星星载GNSS数据可以有效弥补区域监测站在空间覆盖及几何结构上的不足,设计了一种将星载GNSS接收机作为高动态天基监测站,联合地面区域监测站数据对卫星导航系统的MEO卫星轨道进行实时解算预报的方法。算例结果显示:7个区域监测站联合1至3个天基监测站,其定轨精度可分别提升约21%、34%和55%,这也表明,地面区域监测站联合天基低轨卫星数据可有效提高MEO卫星的轨道精度。建议我国BDS在区域测站分布阶段可采用联合低轨卫星数据方法提高北斗MEO卫星实时轨道精度。  相似文献   

13.
GNSS卫星精密轨道是高精度GNSS应用的基础与前提,GNSS卫星精密定轨技术也一直都是卫星导航领域的研究重点与热点。本文首先介绍了GNSS星座与跟踪数据概况,梳理了精密定轨函数模型、动力学模型及随机模型构建过程中的关键问题,归纳了低轨星载观测和星间链路观测等多源数据增强GNSS精密定轨的研究进展;然后,从应用的角度总结了当前GNSS精密轨道产品的基本状态,并进行了精度评估;最后,讨论了GNSS精密定轨在大网快速解算、多层次观测数据融合、太阳光压模型精化及高精度实时定轨等方面所面临的挑战,并展望了低轨星座、光钟、激光链路等新技术给GNSS精密定轨带来的机遇。  相似文献   

14.
低轨导航增强GNSS发展综述   总被引:1,自引:0,他引:1  
张小红  马福建 《测绘学报》2019,48(9):1073-1087
低轨星座具有地面接收信号强度高、几何图形变化快的优势,能够与中高轨GNSS星座形成互补,对增强GNSS的精度、完好性、连续性和可用性具有显著优势,已成为当前卫星导航领域的关注热点。本文首先简要介绍了现有的GNSS增强系统;总结了国内外低轨导航增强星座发展现状;针对低轨导航增强,对比分析了高中低轨导航星座的优缺点;重点讨论了低轨导航增强在联合定轨、快速精密定位、空间天气监测和室内定位等方面带来的机遇;分析指出了低轨导航增强的空间段、地面段和用户段所面临的挑战。  相似文献   

15.
低轨卫星增强BDS单频伪距单点定位   总被引:2,自引:1,他引:1  
针对单频定位由于成本优势被广泛运用,却无法同时满足较高精度要求的问题,对低轨卫星增强单频定位精度的效果进行了探究。基于卫星工具包软件仿真北斗卫星导航系统与铱星系统观测数据,并结合误差建模实现高低轨卫星联合定位算法,分析不同纬度观测站的定位结果。结果表明,当可见卫星比例(LEO:总体)从5%上升到18%,定位精度改善比从48%提升到80%左右,呈现一定正相关性;误差标准差在U方向上均有大于50%以上减小,在E、N方向则出现大约10%的浮动,总体有改善的趋势。因此,低轨卫星的加入可以有效提高伪距单点定位精度。  相似文献   

16.
现阶段高轨道航天器导航主要依靠地基测控系统,为了研究全球卫星导航系统(GNSS)技术用于高轨道航天器导航的可行性,对GNSS技术在地球静止轨道(GEO)卫星、倾斜地球同步轨道(IGSO)卫星航天器中的导航精度及适用性展开了分析研究. 采用2021年11月9日的两行轨道数据(TLE)仿真GNSS星座,以不同星下点的GEO卫星和不同倾角的IGSO卫星作为目标星展开导航仿真试验. 实验结果表明:为了满足GNSS解算所需的卫星数量,须通过接收旁瓣信号来增加可见卫星数目. 对GEO目标星而言,当接收机灵敏度高于?169 dB时,导航精度可达30 m;利用GPS对7个不同的GEO或IGSO轨道目标星进行导航实验表明,GPS对目标星导航的位置误差约为35 m;北斗三号(BDS-3)、GPS、GLONASS、Galileo的导航位置误差均值分别为28.03 m、21.16 m、37.15 m、25.09 m,具有良好的内符合精度,其中GPS精度最高,GLONASS精度最低,但大部分时段也在45 m内.   相似文献   

17.
The global positioning system (GPS) differential code biases (DCB) provided by the International GNSS Service (IGS) show solar-cycle-like variation during 2002–2013. This study is to examine whether this variation of the GPS DCBs is associated with ionospheric variability. The GPS observations from low earth orbit (LEO) satellites including CHAMP, GRACE and Jason-1 are used to address this issue. The GPS DCBs estimated from the LEO-based observations at different orbit altitudes show a similar tendency as the IGS DCBs. However, this solar-cycle-like dependency is eliminated when the DCBs of 13 continuously operating GPS satellites are constrained to zero-mean. Our results thus revealed that ionospheric variation is not responsible for the long-term variation of the GPS DCBs. Instead, it is attributed to the GPS satellite replacement with different satellite types and the zero-mean condition imposed on all satellite DCBs.  相似文献   

18.
Continued advancements in remote sensing technology along with a trend towards highly autonomous spacecraft provide a strong motivation for accurate real-time navigation of satellites in low Earth orbit (LEO). Global Navigation Satellite System (GNSS) sensors nowadays enable a continuous tracking and provide low-noise radiometric measurements onboard a user spacecraft. Following the deactivation of Selective Availability a representative real-time positioning accuracy of 10 m is presently achieved by spaceborne global positioning system (GPS) receivers on LEO satellites. This accuracy can notably be improved by use of dynamic orbit determination techniques. Besides a filtering of measurement noise and other short-term errors, these techniques enable the processing of ambiguous measurements such as carrier phase or code-carrier combinations. In this paper a reference algorithm for real-time onboard orbit determination is described and tested with GPS measurements from various ongoing space missions covering an altitude range of 400–800 km. A trade-off between modeling effort and achievable accuracy is performed, which takes into account the limitations of available onboard processors and the restricted upload capabilities. Furthermore, the benefits of different measurements types and the available real-time ephemeris products are assessed. Using GPS broadcast ephemerides a real-time position accuracy of about 0.5 m (3D rms) is feasible with dual-frequency carrier phase measurements. Slightly inferior results (0.6–1 m) are achieved with single-frequency code-carrier combinations or dual-frequency code. For further performance improvements the use of more accurate real-time GPS ephemeris products is mandatory. By way of example, it is shown that the TDRSS Augmentation Service for Satellites (TASS) offers the potential for 0.1–0.2 m real-time navigation accuracies onboard LEO satellites.  相似文献   

19.
差分码偏差(differential code bias,DCB)是指由全球导航卫星系统(global navigation satellite system, GNSS)信号接收和发射硬件导致的频率相关的偏差项,对电离层估计有显著的影响,在利用GNSS观测数据提取电离层总电子含量时需要被精确修正,研究利用低轨卫星的星载GNSS观测数据估计DCB尤为重要。使用Swarm星座3颗卫星GPS接收机2016年1月的双频观测值,设计了独立估计和联合估计两种估计方案,采用附加限制条件的间接平差方法对GPS卫星以及星载接收机的DCB进行估计。以中国科学院和德国宇航中心的DCB产品作为参考,分析了两种估计方案的精度和稳定性,相较于独立估计方案,联合估计方案得到的GPS卫星DCB的稳定性较独立估计方案提高了16.6%,且与参考DCB具有更好的一致性。  相似文献   

20.
LEO卫星精密轨道预报是LEO导航增强系统中重要的技术环节之一,本文使用多种算法来实现不同任务需求下的轨道预报。对于在地面处理系统实现的LEO轨道预报,算法1采用定轨预报同时处理的策略,算法2将离散轨道点进行动力学拟合再进行积分外推。GRACE-C卫星预报5、10、15 min的URE平均精度分别为5.25、5.67、6.25 cm;HY2A卫星为7.83、8.69、9.66 cm;SWARM-A卫星为8.88、9.22、9.63 cm;SWARM-B卫星为8.49、8.98、9.63 cm。对于计算条件受限的LEO星上轨道预报,本文利用单个轨道点及简单动力学模型进行轨道积分外推的算法。该算法主要考虑地球中心引力及非球形引力摄动,因此地球重力场阶次对轨道预报精度产生较大影响。平均高度为500 km的LEO卫星选取60阶重力场,高度为1000 km的LEO卫星选取30阶重力场,可实现预报10 min轨道优于10 cm的预报精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号