首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用卫星测高技术建立的全球海潮模型的精度和分辨率均有限,而高精度、高分辨率的近海区域潮汐观测资料,可用于改善和提高全球海潮模型在沿海地区的精度。利用中国东海和南海的近海海潮模型,对HAMTIDE11A.2011全球海潮模型中的中国近海区域进行了替换,并得到了修正前后模型计算的海潮负荷对不同区域GPS测站精密定位的影响。分析可得:(1)确认修正前后的全球海潮模型计算的海潮负荷对GPS测站精密定位的影响存在约5mm的差异,并通过频谱分析得到修正后的模型在GPS精密定位中剔除海潮负荷影响的效果在半日、周日及半年周期处明显优于修正前的模型;(2)采用高精度近海模型进一步修正全球海潮模型,该成果对近海区域的GPS精密定位海潮负荷改正具有一定参考价值。  相似文献   

2.
许双安 《测绘科学》2022,(12):48-56
针对现有全球气温气压(GPT3)模型在大高差区域计算对流层延迟(ZTD)时存在较大误差的现象,该文提出一种顾及大高差的改进GPT3(IGPT3)ZTD模型,该模型同时考虑了ZTD残差项中的周期和高差因素对ZTD估计的影响,分别建立了顾及ZTD残差周期项的年周期模型和顾及高差项的线性模型。以青藏高原及云南区域为实验区域,选取中国环境构造监测网络青海、四川和西藏的连续运行参考站数据进行验证,统计结果发现,该文提出的方法能够改善经验ZTD的估计效果,其外符合精度的平均均方根为18.21 mm,且模型精度与测站高程无关系,说明该文提出的模型能够有效应用到大高差区域的ZTD估计。  相似文献   

3.
《测绘科学》2020,(1):48-53
针对电离层延迟改正对单频接收机用户带来误差较大的问题,该文基于球谐函数借助山东区域CORS双频观测数据建立山东区域电离层模型,并对硬件延迟偏差(DCB)和电子含量进行可靠性、稳定性分析,进一步使用单频精密单点定位(PPP)验证山东区域电离层模型的有效性。实验结果表明:测站DCB解算精度稳定在0.4ns内,解算卫星DCB与欧洲定轨中心(CODE)的偏差总体稳定在0.5ns内,区域电离层模型与CODE解算VTEC差值的均方根为1.22TECU,STD为0.93TECU,对山东区域单频PPP而言,山东区域电离层模型比CODE发布全球电离层模型在N、E、U方向精度明显提高。同时,建立的山东区域电离层模型从时间分辨率、空间分辨率上均优于CODE中心发布全球电离层模型。  相似文献   

4.
为了探究星载实验条件下全球导航卫星系统(GNSS) L波段反射信号的测高性能,该文利用气旋全球导航卫星系统(CYGNSS)L1级时延多普勒图(DDM)进行了海面高度反演,使用丹麦技术大学(DTU)全球平均海面模型DTU 15和DTU全球海潮模型验证反演精度。以2018年1月8日的一个轨迹为例,经过误差修正之后得到的海面高度的平均绝对误差(MAE)提升了5.4 m;使用小波阈值去噪的方法优化海面高度反演结果,MAE另外增加1.24 m。研究表明,CYGNSS的不同卫星测高结果的MAE最大相差仅10%;卫星姿态和风速对海面高度反演精度无明显影响。对2018—2020年印度尼西亚附近区域和中国南海区域的海面高度进行了反演,相应的反演结果与验证模型的海面高度的相关性分别在99%和95%以上,证明了CYGNSS测量海面高度的有效性。  相似文献   

5.
针对全球海潮模型在不同沿海地区存在差异性以及在中国近海精度不高的问题,利用全球海潮模型FES2004和NAO99b计算上海地区(经纬度范围为120.85°E~122.2°E,30.6667°N~31.8833°N)S2、M2、K1和O1四个分潮的海潮负荷位移在垂直分量上的差异;并利用中国近海模型osu.chinasea.2010对全球海潮模型FES2004中相应的区域进行替换,计算近海效应对SHJZ站(上海金山)、SHJBS站(上海宝山)、SHAO站(上海佘山)以及DCMD站(上海崇明)四个测站精密定位的影响。结果表明:1) 全球海潮模型FES2004和NAO99b在上海地区存在较明显的差异,尤其是垂直分量,最大接近4 mm,且两个模型的差异随离海洋距离增大而减小;2) 利用修正前后的全球海潮模型FES2004经过计算分析得出,近海效应对上海地区GPS测站精密定位的影响达到5 mm,对测站垂直分量的位移影响从大到小分别是DCMD站(5.1 mm)、SHBS站(4.9 mm)、SHJS(4.2 mm)、SHAO(3.6 mm)。   相似文献   

6.
大气加权平均温度(Tm)是全球导航卫星系统(GNSS)水汽监测的关键参数。针对中国区域地形起伏较大的特点,本文构建了顾及精细季节变化的Tm垂直递减率函数模型,在此基础上,利用2007—2014年的Global Geodetic Observing System(GGOS)atmosphere格网数据建立了中国区域的Tm格网新模型(简称为CTm模型)。以2015年GGOS格网数据和无线电探空资料为参考值,对CTm模型进行精度检验,并与常用的Bevis公式和GPT2w模型进行比较分析。结果表明:①以GGOS格网数据为参考值,CTm模型的年均偏差和均方根误差(RMS)分别为-0.52 K和3.28 K,相比于GPT2w-5和GPT2w-1模型,精度(RMS值)分别提高了27%和13%;②以探空数据为参考值,CTm模型的年均偏差和RMS误差分别为0.26 K和3.75 K,相对于GPT2w-5和GPT2w-1模型,精度分别提高了21%和16%,尤其在中国西部地区,CTm模型表现出更为显著的优势。此外,将CTm模型用于GNSS水汽计算,其引起的水汽计算RMS误差和相对误差分别为0.29 mm和1.36%。CTm模型不需要实测气象参数,因此,在中国区域的GNSS实时高精度水汽探测中具有重要的应用。  相似文献   

7.
朱海  黄观文  张菊清 《测绘学报》2021,50(3):356-367
加权平均温度Tm是全球导航卫星系统(GNSS)反演可降水量的关键参数.本文以中国陕西为例,结合欧洲天气预报中心(ECMWF)的再分析数据与3个探空站数据,基于最小二乘原理建立了一种顾及周期性的Tm区域化回归模型.利用陕西省内3个探空站数据进行验证.结果表明,本文所建立的顾及周期的Tm区域模型比传统Bevis模型精度平均...  相似文献   

8.
随着地磁场模型和地磁导航等研究的深入,需要合适的地磁场模型精度评价方法。利用世界地磁场模型(world magnetic model,WMM)和国际地磁台网(INTERMAGNET)观测数据,研究了最新的WMM2010模型在全球范围内的精度,并分析了WMM在欧洲、北美洲、中国及邻近地区等不同局部区域的精度。根据地磁场模型球谐系数截断阶数与空间最小分辨率波长关系,提出用格网化方法来评价地磁场模型的精度,并给出了WMM在全球和局部地区的精度。  相似文献   

9.
随着北斗卫星导航系统(BDS)的全球组网发射完成,BDS逐步实现了向全球用户提供基本导航(卫星无线电导航业务(RNSS)、向中国及周边区域用户提供区域短报文通信(卫星无线电测定业务(RDSS)、星基增强(SBAS)等服务的“三步走”规划.为研究BDS不同服务体制下的授时差异,本文从时空基准、授时精度检核、设备时延、卫星健康状态等方面,分析了基于已知位置的BDS RDSS单/双向授时、RNSS单/双频授时及SBAS单频授时模型差异,并给出了基于本文授时模型下的BDS不同体制授时精度,以为利用BDS进行授时服务的用户机研制、生产、测试和检验提供参考.   相似文献   

10.
大气加权平均温度(Tm)是地基GNSS水汽探测的关键参数.基于2016-2018年ERA5再分析资料,利用严密积分精确确定了中国区域陆态网测站的Tm值;并对Bevis公式和GPT3全球经验模型在中国区域的精度展开了评估分析.结果表明,在中国区域,基于ERA5内插温度的Bevis公式能较好反映Tm周日变化,其精度总体稍优...  相似文献   

11.
为了研究IRI 2016模型在陆地、海洋及全球整体的预报精度和差异性问题,该文利用IGS组织提供的20002019年全球电离层TEC数据和12个GNSS跟踪站(陆地区域跟踪站6个,海洋区域跟踪站6个)实测TEC数据,基于陆地和海洋独立研究的方法,借助数理统计、相关系数及时间序列,分析了IRI 2016模型在陆地与海洋区域的精度特征.结果 表明:IRI 2016模型精度与研究区域内跟踪站的数量、纬度有密切关系,跟踪站密集区域、低纬度地区模型精度较高;太阳活动强度与IRI 2016模型精度高度相关,2008年和2019年为太阳活动低年,模型的精度较高.IRI 2016模型在全球范围内,相较于海洋区域,陆地区域模型的精度较高;与春秋冬三季相比,夏季TEC预测值与CODE GIM统计差值最小,模型的精度最高.  相似文献   

12.
单频用户主要采用全球导航卫星系统(global navigation satellite system,GNSS)广播电离层模型来修正电离层延迟,GPS、Galileo和BDS-2均播发广播电离层参数。BDS-3试验卫星也播发了应用于全球电离层延迟修正的BDGIM(BeiDou global ionospheric delay correction model)模型参数。以国际GNSS服务(International GNSS Service,IGS) GIM (global ionosphere maps)产品和全球140余个GNSS观测站GPS双频观测量为基准,从全球范围、不同纬度、不同区域等系统分析了GPS、Galileo和BDS-3的全球广播电离层模型改正精度,并与IGS预报电离层产品(IGS P1和IGS P2)进行比较。分析认为,IGS P1和IGS P2产品的改正精度总体最优,BDGIM参数优于Gal NeQuick和GPS K8。对于BDS-3新发布的BDGIM参数,分析认为,在全球范围的改正精度(均方根)约为3.58 TECU,改正率约77.2%,在全球不同区域的改正精度相当。  相似文献   

13.
大气加权平均温度(T m)是全球导航卫星系统(GNSS)反演大气水汽(PWV)的关键参数。然而,已有经验T m模型难以捕获T m的日周期变化,限制了其在高时间分辨率GNSS-PWV监测中的应用。利用大气再分析资料可获取高时间分辨率的T m信息,但需使用高精度的T m垂直递减率模型对其进行高程改正。针对已有T m垂直递减率模型建模仅使用单一格网点数据等不足,本文引入滑动窗口算法,利用2012—2016年的MERRA-2再分析资料建立了顾及时变垂直递减率的中国区域水平分辨率分别为1°×1.25°、2°×2.5°和4°×5°的T m垂直递减率格网模型(简称“CTm-H1、CTm-H2和CTm-H3模型”)。联合2017年的MERRA-2、GGOS大气格网数据和探空站资料,对CTm-H模型进行精度检验,并与中国区域统一的T m垂直递减率模型(简称“统一模型”)进行比较分析。结果表明:①以MERRA-2格网数据为参考值,通过CTm-H模型将MERRA-2地表格网数据改正到分层格网数据各层高度处检验,CTm-H 3个模型性能相当,在两种T m数据高程差异较大时,CTm-H模型表现出显著的优势,相比于统一模型,精度(RMS值)整体提高了30%。②以探空站资料为参考值,通过CTm-H模型将MERRA-2地表格网数据和GGOS大气格网产品分别改正到探空站高度处检验,与统一模型相比,CTm-H 3个模型的精度整体分别提高了3%和5%,且CTm-H和统一模型的精度相比于未顾及垂直改正提升较大,尤其在中国西部地区表现出显著的优势。总体而言,CTm-H 3个模型在中国区域均具有较高的精度,不需要实测气象参数即可提供中国区域近地空间范围内(本文指0~10 km的高程范围)任意位置实时高精度的T m高程改正值,因此,它在中国区域的实时高精度GNSS水汽探测中具有重要的应用。  相似文献   

14.
对流层延迟是全球导航卫星系统(GNSS)计算的主要误差之一,其模型精度对测站坐标解算有较大影响,在高程方向尤为明显。因此,有必要对不同的对流层延迟改正模型的适用性进行评估。采用SHA解算了中国陆态网GNSS跟踪站的对流层天顶延迟数据,对常用的对流层改正模型EGNOS/UNB3m/GPT/GPT2的天顶延迟量在中国不同区域、不同季节的适用性进行了分析。结果显示,4种模型的RMS均为4~5cm,各模型RMS之差小于1cm,其中GPT2模型的RMS最小;4种模型的平均偏差(BIAS)为1cm左右,GPT2模型的BIAS最大,为1.5cm;时间上,各个模型在夏季精度普遍较低,这是因为夏季水汽丰富,对流层湿延迟变化较大;空间上,各模型在东南沿海精度较低,因为东南沿海气候湿润,湿延迟变化较大;各模型精度对测站高程不敏感,精度在比较高的测站并无明显降低。通过对不同模型在中国区域的精度分析,验证该改正模型可以为中国区域用户的对流层模型的选择提供一定的参考。  相似文献   

15.
对流层延迟是卫星导航定位最主要的误差来源之一,精确计算对流层延迟有助于模糊度的收敛及定位精度的提高。目前应用最广、精度最高的对流层经验模型是全球气压气温模型,为了验证GPT3模型计算中国区域地表至11 km大气剖面对流层延迟改正的精度,利用2011—2020年中国区域82个参与全球气象交换的测站的无线电探空数据,对GPT3的气压(P)、气温(T)、水汽压(E)以及加权平均温度(Tm)进行精度检验及分析,实验结果表明,GPT3模型精度受纬度和高程影响较大,其中GPT3-P和GPT3-Tm受纬度影响显著;GPT3-P在地表RMS为8.02 hPa,而在地表至11 km其RMS为20.01 hPa,说明模型地表精度要优于大气剖面精度,GPT3-Tm呈现同样的规律,而GPT3-T的地表以及地表至11 km的RMS分别为7.94 K、7.53 K,GPT3-E的RMS分别为2.42 hPa、1.97 hPa;模型在不同年积日的精度存在差异,呈现一定的季节特性,但其精度在长时间区间内没有明显变化。总体而言,GPT3模型在中国地区范围...  相似文献   

16.
研究了NeQuick2算法改进及其实现方法,从不同角度分析了NeQuick2模型在全球区域和中国区域内的性能优势。一个太阳活动周期内,中国区域NeQuick2模型计算的电子总含量(total electron content,TEC)比NeQuick1模型精度有显著提升,改正精度与太阳活动水平具有较强的相关性,低年比高年的改善效果更为显著。以全球电离层数据(global ionosphere maps,GIM)为参考标准,中国中高纬区域太阳活动低年NeQuick2模型TEC的系统年平均偏差减少了76%,年平均均方根(root mean square,RMS)值减少了约72%。太阳活动高年NeQuick2模型TEC的系统年平均偏差减少了38%,平均RMS减少了13%左右,且中高纬区域改正精度优于低纬区域11%~13%。全球区域太阳活动峰值期间NeQuick2模型TEC比NeQuick1模型日平均偏差改善了25%,日平均RMS改善了30%左右。分别用NeQuick1和NeQuick2模型得出F2层顶部区域在太阳活动峰值期电子密度随高度剖面分布,顶部电子密度剖面精度改善近40%。最后分别得出了两个模型中国区域中高纬地区E和F1层区域在100 km、150 km和200 km高度的电子密度分布图,结果显示NeQuick2模型改善了电子密度分布状况,有效避免了NeQuick1在底部区域电子密度梯度不连续以及电离层异常结构的情况。  相似文献   

17.
由于日本区域易受自然灾害频发、水汽特征变化复杂、探空站点分布稀疏的问题,进而制约了高精度水汽的获取,因此缺少此区域的高精度加权平均温度(Tm)模型. 鉴于此,采用2009—2016年全球大地测量观测系统(GGOS) Atmosphere Tm和ERA-Interim 2 m Ts格网数据新建立一种考虑Tm残差季节性变化和周日变化的适合日本区域的Tm模型 (JQTm模型). 同时,利用2017年日本区域13个探空站和110个GGOS Atmosphere Tm格网数据,对新建立的JQTm模型在日本区域的精度进行评估. 研究发现:与GGOS Atmosphere Tm格网数据对比,JQTm模型的偏差(bias)和均方根误差(RMSE)分别为0.15 K和1.92 K,RMSE分别比GPT2w-1模型、GPT2w-5模型提升41.16% (1.33 K)、44.41% (1.53 K);与探空资料对比,JQTm模型的bias和RMSE分别为–0.66 K和2.14 K,RMSE分别比GPT2w-1模型、GPT2w-5模型提升28.43% (0.85 K)、29.61% (0.90 K). JQTm模型能够为日本区域提供高精度的Tm值,为研究此区域大气水汽和极端天气提供重要依据.   相似文献   

18.
为了研究IRI2016模型对于总电子含量(TEC)的预测能力,该文利用IRI2016模型计算的TEC数据与GPS-TEC、CODETEC数据,分别从单站、全球和区域(高、中、低纬度)的角度对IRI2016模型预测TEC的能力进行了分析.首先,选取2004-2018年中的偶数年作为对比年份,在全球范围内选取5个代表性的测站,分别是位于高纬度的Nril站、Palm站,中纬度的Cedu站、Yssk站和低纬度的Bogt站,比较了 IRI2016模型和GPS-TEC实测数据;然后,在4个测试年中,将IRI2016模型在四至点上的全球TEC预报图和对应的CODE TEC图进行了对比,并分别将高、中、低纬度地区的数据结果提取出来,绘制出CODETEC与IRI2016模型差值的分布直方图.结果表明:从单站、全球和中高纬度区域的角度分析,IRI2016模型表现较好.但模型描述的全球TEC分布较粗略,灵活性不高,并且在低纬度区域范围内,模型数据与CODE TEC差值的均方根值较大,模型表现较差.  相似文献   

19.
大气加权平均温度(Tm)是全球导航卫星系统(global navigation satellite system, GNSS)反演大气水汽(precipitation water vapor, PWV)的关键参数。当前已有Tm模型提供的Tm信息难以捕获其日周期变化,因此限制了其在高时间分辨率GNSS PWV估计中的精度。大气再分析资料可提供高时空分辨率的Tm格点产品,但是在使用时需要对其进行空间插值,且Tm在高程上的变化远大于其在水平方向上变化。同时,针对中国区域地形起伏大等特点,提出顾及垂直递减率的中国区域Tm格点产品空间插值方法,以分布于中国区域的2015年89个探空站资料为参考值,验证了提出的方法在全球大地测量观测系统大气中心Tm格点产品和美国国家航空和太空管理局提供的MERRA-2的Tm格点产品中的空间插值精度。结果表明:(1)在顾及垂直递减率的Tm格点产品空间插值中,反距离加权法的...  相似文献   

20.
针对GPT3经验模型估计加权平均温度的泛化能力不足的缺点,该文提出了一种使用神经网络对GPT3模型的残差进行改正的方法,从而建立一个高精度的改进模型。使用了全球站点无线电探空资料数据集(IGRA)提供的中国区域内的38个探空站点共108 633组数据进行建模,其中2012—2014年的数据用于模型训练,2015年的数据用于模型检验。最终结果表明:改进模型的均方根误差值为2.91 K,精度相比GPT3模型计算得到的估计值提高了32.2%,加权平均温度估计精度有了显著的提高,且在整个中国区域都有较好的泛化能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号