首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
利用2011—2020年辽宁地区逐小时地面观测数据和定时高空观测数据,统计分析纯雪、雨雪转换两类降水天气特征。结果表明,辽宁地区2011—2020年雨雪转换日数与纯雪日数比值为1∶5,沿海地区多于内陆,雨雪转换时主要有5种天气类型:空中槽型、北上气旋型、低涡切变型、冷平流型、回流型,其中,空中槽型雨雪转换日数最多,占总日数的42.8%;冷平流型和回流型相对较少,分别占9.4%和7.8%。地面2 m气温、0℃层高度、抬升凝结高度、抬升凝结高度气温与地面2 m气温差、700~850 hPa位势高度差、850~1000 hPa位势高度差等6个气象因子对鉴定辽宁地区降水相态有一定参考意义。利用高分辨的欧洲细网格资料对2021年2月28日雨雪天气过程的降水相态进行诊断分析,结果表明,雨雪相态的转变对对流层低层温度平流非常敏感,0℃层高度、冰雪层厚度、粒子降落行程与降水相态之间关系密切;当0℃层高度降低(由920 hPa到950 hPa),云中冰雪层增厚(由430 hPa增至530 hPa),液态水层变薄(由20 hPa到10 hPa),云中冰雪物下落到地面的行程缩短(由780 m降至410 m),下落环境温度降低(由3.5℃到0.5℃),降水相态由雨转换为雨夹雪或雪。  相似文献   

2.
利用2008—2018年逐年11月至翌年3月常规气象观测资料,从天气形势配置、降水相态与特征层气温、0 ℃层高度和层结厚度的关系等进行分析,归纳了黄山地区冬半年雨、冻雨、雨夹雪和雪四类降水相态的判别依据,并利用一次雨雪转换天气过程对判据进行了检验。结果表明,黄山地区固态降水和固液混合型降水主要发生在1—2月。850 hPa高度层及以下各层气温对雨雪转换的判别效果较好,当850、925、1 000 hPa特征层气温和地面气温分别大于等于-3.9、-2.6、0.5、1 ℃时可判定为雨,各层气温继续降低将出现雨夹雪或雪。当0 ℃层高度在1 000 hPa高度层以上时可能出现雨,反之出现雨夹雪或雪。此外,厚度层结也能较好地区分雨和雨夹雪或雪。冻雨(冰粒)的判据与其他降水相态的判据不同之处是在700 hPa高度层附近存在融化层。判据能较好地区分黄山地区不同降水相态,但对冻雨和冰粒的识别能力相对较弱。  相似文献   

3.
山东冬半年降水相态的温度特征统计分析   总被引:11,自引:4,他引:7  
杨成芳  姜鹏  张少林  张磊 《气象》2013,39(3):355-361
采用济南和青岛1999-2011年的降水、高空和地面观测资料,研究了山东冬半年降水相态与影响系统的关系及温度垂直变化特征,获得不同降水相态的温度预报指标.结果表明:(1)降水相态变化与影响系统有关,江淮气旋和回流形势产生的大雪以上强降雪存在雨雪转换,低槽冷锋、黄河气旋和切变线(低涡)多产生中雪以下直接降雪.(2)无相态变化的降雪过程一般发生在温度较低、垂直变化单一的条件下,850 hPa以下各层均有明显温度阈值.(3)有相态转换的降雪过程中,850和925 hPa的温度对于雨、雪、雨夹雪的识别没有明显指示性,1000 hPa以下的温度最为关键,将925 hPa以下各层与地面的温度结合起来判别相态,较使用单一特性层温度更为可靠;冰粒区别于其他降水类型,在温度场上的显著特征为700 hPa的温度较高.(4)0℃层高度可用于雨雪转换指标:降雨时0℃层高于925 hPa或在925 hPa上下,当0℃层的高度降至1000 hPa上下时转为降雪.(5)雨夹雪和冰粒发生在有雨雪相态转换的降水过程中,为过渡形态,不会单独出现.  相似文献   

4.
为探究复杂地形下冬半年降水相态预报方法,进一步提升降水相态预报时空分辨率和准确率,利用2010—2019年冬半年(11月至次年3月)宝鸡市11个国家气象站观测资料及欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)第五代大气再分析资料,统计分析宝鸡市冬半年雨、雨夹雪和雪3种降水相态时空分布特征,筛选确定降水相态判识因子及阈值,构建降水相态精细化客观预报方法,并检验预报效果。结果表明:宝鸡市初冬-冬末时期以降雨为主,雨雪转换时期3种相态日数占比相当,而隆冬时期则以降雪为主。降水相态空间分布与地形密切相关,海拔较低的渭河两岸川塬区降雨较多,而海拔较高的南北部山区降雪较多。地面2 m气温(T2)、850 hPa和700 hPa温度(T850、T700)、850~1 000 hPa和700~850 hPa位势厚度(H850-1000、H700-850)可作为宝鸡市冬半年降水相态组合判据,川塬区渭滨站初...  相似文献   

5.
董伟  杨光武  马梁臣  朱丹 《干旱气象》2019,37(3):363-369
采用2005-2014年长春市地面和高空常规气象观测资料,研究冬半年地面和高空不同高度层气温对降水相态变化的影响。结果表明:地面气温对降水相态变化影响程度最大,以1.7℃作为雨和雨夹雪的相态转换指标、以-0.1℃作为雪和雨夹雪的相态转换指标可以较好地判断降水相态;将地面气温与925 hPa温度相结合来判断降水相态更加准确;地面气温在0℃附近上升或下降的变化速度越快,雨夹雪持续时间越短。  相似文献   

6.
利用1999—2014年11月至翌年3月安庆站逐日地面气象观测资料和探空资料,分析了安庆站不同降水相态的时空分布特征和雨雪转换过程中影响系统的配置及转变,选取雨雪转换、降雪和冰粒(包括冻雨)3种天气现象,研究不同降水相态与特性层温度及厚度层结的关系。结果表明:1999—2014年安庆市固态降水集中出现在11月至翌年3月;有降水相态转换的过程中,将850hPa及以下各层温度与地面温度结合对降水相态转变的识别具有更好的效果,当T_(850hPa)≥-4℃、T_(925hPa)≥-4℃、T_(1000hPa)≥-1℃、T_(地面温度)≥1℃时可以判定降水相态为降雨,各层温度继续降低将出现雨转雪,直接降雪在以上指标的基础上需要850hPa的温度降至-6℃及以下;H_(850—700hPa)和H_(1000—850hPa)厚度层结雨雪转换的临界值分别为154dagpm、129dagpm,低于此值则为雪,反之为雨;0℃层高度也可以作为降水相态转换的指标之一,当0℃层高度下降至1000hPa左右时为雨转雪;降水过程中逆温层普遍存在,各种降水类型的区别在于冰粒(冻雨)在850—700hPa之间存在一个0℃以上的暖层,而降雪需要逆温层温度小于0℃。  相似文献   

7.
利用2005—2014年春秋两季月降水资料,统计分析了近10 a新疆北部4个站点的雨雪天气;利用同时期的高空资料,选取了500 hPa和850 hPa高度差(H_(500-850))、700 hPa和850 hPa高度差(H_(700-850))、850 h Pa和925 hPa高度差(H_(850-925))、700 hPa和925 hPa高度差(H_(700-925))、500 hPa温度(T500)、700 hPa温度(T700)、850 hPa温度(T850)、925 hPa温度(T925)共8个指标参与统计,得出4个站点的主要影响因子及降水相态判别指标;并利用判别指标对2015年3—4月、10—11月伊宁及乌鲁木齐站点出现的降水相态进行检验。研究表明:(1)伊宁T925、T850分别为2.5℃、-2.5℃时;塔城站点T925、T850分别为1.8℃、-1.5℃时可作为雨雪分界指标;伊宁、塔城两站T700对降水相态的指示意义不大;阿勒泰T850、T700、T500分别为-2℃、-8.5℃、-25.3℃时;乌鲁木齐T850、T700分别为-1.75℃、-9.3℃时,可作为雨雪分界,T500对乌鲁木齐降水相态的指示意义不大。(2)伊宁H_(700-925)、H_(850-925)分别为2220 m、680 m时;塔城H_(700-925)、H_(850-925)分别为2 207.5 m、675 m时;阿勒泰H_(700-850)、H_(500-850)分别为1522 m、4 052.5 m时;乌鲁木齐H_(700-850)、H_(500-850)分别为1520 m、4 067.5 m时,可作为雨雪的简单分界。(3)通过检验,总结出的雨雪判别指标可为新疆北部降水相态客观预报提供较好的参考。  相似文献   

8.
2018年1月下旬,江西省中北部出现严重雨雪冰冻灾害天气,覆冰和积雪持续时间长达7 d,其间多次出现罕见的雨雪相态转换,先后经历了雨、冻雨、雪、冻雨、雪5个复杂过程。文中对此次天气过程的相态转换特征及成因进行了分析。结果表明: 1) 在有利的环流背景下,西风带小槽发展东移并携带冷空气南下,破坏850 hPa高度层附近的暖性逆温层,是冻雨转雪的重要因素,而700 hPa高度层上西南急流的脉动、偏南风增强为雪转冻雨提供了动力和热力条件。2) 冻雨发生时最强风切变出现在925—850 hPa高度层,降雪发生时出现在850—700 hPa高度层。两次冻雨转降雪过程中,上升运动均增强,降雪时低层辐合、高层辐散强度较冻雨时强。3) 近地面气温接近05 ℃时,850 hPa高度层冷暖平流对中低层大气的降温和升温作用至关重要,冷平流的降温作用剧烈,而暖平流的升温作用需要持续输送。暖层消失,冻雨即可转降雪;雪转冻雨时850 hPa和700 hPa高度层温度升至1 ℃,暖层内最高温度达2 ℃,相态的转变落后于暖性逆温层的形成。4) 此次过程中,九江地区发生雨转冻雨以及冻雨转雪过程,地面气温下降明显。雨转冻雨时,气温≤-05 ℃;冻雨转降雪时,气温≤-1 ℃。雪转冻雨时,地面温度略有上升,仍在-1 ℃以下。高山站气温的持续上升,对雪转冻雨天气有指示意义。  相似文献   

9.
基于2003-2018年池州冬半年观测资料,采用T-mode主成分客观分析法(TPCA)等方法进行固态降水与环流背景的统计分析。结果表明:池州172个固态降水日中,固态降水的主要月份占比分别是1月的44.8%、2月的27.9%和12月的16.3%;其中雨雪转换、纯雪和冻雨3类占比分别为55.2%、41.3%和3.5%。环流形势可划分为一槽一脊型(Ⅰ型),纬向波动型(Ⅱ型)和两槽一脊型(Ⅲ型),Ⅰ型占比最多,Ⅱ型次之,Ⅲ型较少。Ⅰ~Ⅲ型分别代表北方冷空气从中路、西路和东路南下,池州固态降水过程主要受中路冷空气影响。Ⅰ型气温最低,出现固态降水概率最高,是其它形势3倍以上;Ⅱ型气温最高,出现固态降水概率最低。除Ⅲ型外,纯雪过程中低层温度均较雨雪转换过程低2.0 ℃左右;雨雪转换过程中925 hPa温度与850 hPa基本相同,一般在-4.0~-5.0 ℃之间,而纯雪过程则较850 hPa偏高1.0 ℃左右;雨雪转换过程1000 hPa温度基本在0 ℃附近,纯雪则在0 ℃以下。925 hPa盛行东北风,850 hPa存在气旋性环流,配合700 hPa上12.0 m/s左右急流、水汽通量及水汽通量散度大值中心,有利于池州固态降水的产生。它一般属于大尺度降水,层结稳定,锋区位于700 hPa以下,低层有冷平流,切变线一般位于850~800 hPa之间。  相似文献   

10.
利用冬奥会气象观测站网资料、ERA5的0.25°×0.25°高分辨率再分析资料、常规探空资料以及激光雷达和风廓线雷达资料,从环流形势、温湿度和微物理特征以及雷达特征等方面对2020年11月17-19日冬奥会张家口赛区一次明显的雨转雪天气过程进行分析。结果表明:低层前期的暖湿西南气流,为降水提供好的水汽和能量条件,后期强的干冷平流为相态转换提供有利条件。赛区出现雨转雪时,700 hPa温度低于-2℃,同时850 hPa温度低于2℃。零度层高度的快速下降是相态转换的重要温度判据,0℃线降到距地面400 m左右赛区降水相态已经转变为纯雪,低层风向的转向对赛场的雨雪相态转换有一定的指示意义。随着高空云冰和雪水含量逐渐增加,其出现最大值后,雨雪相态开始转换。降雪时激光雷达最大探测高度比降雨时有明显的降低,风廓线雷达低层风场的变化和雨雪相态关系密切,风廓线雷达探测的垂直速度变化也能反映雨雪相态的转换。  相似文献   

11.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

12.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

13.
Various features of the atmospheric environment affect the number of migratory insects, besides their initial population. However, little is known about the impact of atmospheric low-frequency oscillation(10 to 90 days) on insect migration. A case study was conducted to ascertain the influence of low-frequency atmospheric oscillation on the immigration of brown planthopper, Nilaparvata lugens(Stl), in Hunan and Jiangxi provinces. The results showed the following:(1) The number of immigrating N. lugens from April to June of 2007 through 2016 mainly exhibited a periodic oscillation of 10 to 20 days.(2) The 10-20 d low-frequency number of immigrating N. lugens was significantly correlated with a low-frequency wind field and a geopotential height field at 850 h Pa.(3) During the peak phase of immigration, southwest or south winds served as a driving force and carried N. lugens populations northward, and when in the back of the trough and the front of the ridge, the downward airflow created a favorable condition for N. lugens to land in the study area. In conclusion, the northward migration of N. lugens was influenced by a low-frequency atmospheric circulation based on the analysis of dynamics. This study was the first research connecting atmospheric low-frequency oscillation to insect migration.  相似文献   

14.
The atmospheric and oceanic conditions before the onset of EP El Ni?o and CP El Ni?o in nearly 30 years are compared and analyzed by using 850 hPa wind, 20℃ isotherm depth, sea surface temperature and the Wheeler and Hendon index. The results are as follows: In the western equatorial Pacific, the occurrence of the anomalously strong westerly winds of the EP El Ni?o is earlier than that of the CP El Ni?o. Its intensity is far stronger than that of the CP El Ni?o. Two months before the El Ni?o, the anomaly westerly winds of the EP El Ni?o have extended to the eastern Pacific region, while the westerly wind anomaly of the CP El Ni?o can only extend to the west of the dateline three months before the El Ni?o and later stay there. Unlike the EP El Ni?o, the CP El Ni?o is always associated with easterly wind anomaly in the eastern equatorial Pacific before its onset. The thermocline depth anomaly of the EP El Ni?o can significantly move eastward and deepen. In addition, we also find that the evolution of thermocline is ahead of the development of the sea surface temperature for the EP El Ni?o. The strong MJO activity of the EP El Ni?o in the western and central Pacific is earlier than that of the CP El Ni?o. Measured by the standard deviation of the zonal wind square, the intensity of MJO activity of the EP El Ni?o is significantly greater than that of the CP El Ni?o before the onset of El Ni?o.  相似文献   

15.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

16.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

17.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

18.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

19.
The moving-window correlation analysis was applied to investigate the relationship between autumn Indian Ocean Dipole (IOD) events and the synchronous autumn precipitation in Huaxi region, based on the daily precipitation, sea surface temperature (SST) and atmospheric circulation data from 1960 to 2012. The correlation curves of IOD and the early modulation of Huaxi region’s autumn precipitation indicated a mutational site appeared in the 1970s. During 1960 to 1979, when the IOD was in positive phase in autumn, the circulations changed from a “W” shape to an ”M” shape at 500 hPa in Asia middle-high latitude region. Cold flux got into the Sichuan province with Northwest flow, the positive anomaly of the water vapor flux transported from Western Pacific to Huaxi region strengthened, caused precipitation increase in east Huaxi region. During 1980 to 1999, when the IOD in autumn was positive phase, the atmospheric circulation presented a “W” shape at 500 hPa, the positive anomaly of the water vapor flux transported from Bay of Bengal to Huaxi region strengthened, caused precipitation ascend in west Huaxi region. In summary, the Indian Ocean changed from cold phase to warm phase since the 1970s, caused the instability of the inter-annual relationship between the IOD and the autumn rainfall in Huaxi region.  相似文献   

20.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号