首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Characteristics of clustering debris flows in Wenchuan earthquake zone   总被引:1,自引:1,他引:0  
Clustering debris-flow events, namely many debris flows simultaneously triggered by a regional rainstorm in a large-scale mountainous area, occurred in four regions of Wenchuan earthquake stricken areas in 2008 and 2010. The characteristics of the clustering debris flows are examined with regard to triggering rainfall, formation process, and relationship with the earthquake by field survey and remote sensing interpretation. It is found that the clustering events occurred nearly at the same time with the local peak rainstorms, and the rainfall intensity-duration bottom limit line for clustering debris flows is higher than the worldwide line. It means that more rainfall is needed for the occurrence of the clustering debris flows. Four kinds of major formation processes for these debris flows are summarized: tributary-dominated, mainstream- dominated, transformation from slope failures, and mobilization or liquefaction of landslide. The four regions has a spatial correlation with the strong- quake-influenced zone with the peak ground acceleration = 0.2 g and the seismic intensity 〉 X.  相似文献   

2.
Slope debris flows in the Wenchuan Earthquake area   总被引:1,自引:0,他引:1  
Avalanches and landslides, induced by the Wenchuan Earthquake on May 12, 2008, resulted in a lot of disaggregated, solid material on slopes that could be readily mobilized as source material for debris flows. Rainstorms triggered numerous slope debris flows with great damage to highways and rivers over the subsequent two years. Slope debris flows (as opposed to channelized debris flows) are defined as phenomena in which high-concentration mixtures of debris and water flow down slopes for short distances to highways and river banks. Based on field investigations and measurements of 19 slope debris flows, their main characteristics and potential mitigation strategies were studied. High rainfall intensity is the main triggering factor. Critical rainfall intensities for simultaneous occurrence of single, several and numerous slope debris flow events were 20 mm/day, 30mm/day, and 90 mm/day, respectively. Field investigations also revealed that slope debris flows consist of high concentrations of cobbles, boulders and gravel. They are two-phase debris flows. The liquid phase plays the role of lubrication instead of transporting medium. Solid particles collide with each other and consume a lot of energy. The velocities of slope debris flows are very low, and their transport distances are only several tens of meters. Slope debris flows may be controlled by construction of drainage systems and by reforestation.  相似文献   

3.
Critical rainfall assessment is a very important tool for hazard management of torrents and debris flows in mountainous areas. The Wenchuan Earthquake 2008 caused huge casualties and property damages in the earthquake-stricken area, which also generated large quantities of loose solid materials and increased occurrence probabilities of debris flows. There is an urgent need to quantify the critical rainfall distribution in the area so that better hazard management could be planned and if real time rainfall forecast is available, torrent and debris flow early-warning could be issued in advance. This study is based on 49-year observations (1954-2003) of up to 678 torrent and debris flow events. Detailed contour maps of 1 hour and 24 hour critical rainfalls have been generated (Due to the data limitation, there was insufficient 10 minute critical rainfall to make its contour map). Generally, the contour maps from 1 hour and 24 hours have similar patterns. Three zones with low, medium and high critical rainfalls have been identified. The characteristics of the critical rainfall zones are linked with the local vegetation cover and land forms. Further studies and observations are needed to validate the finding and improve the contour maps.  相似文献   

4.
A large number of debris flows occurred in the Wenchuan earthquake zone after the 12 May 2008 earthquake.The risks posed by these debris flows were rather high.An appropriate model is required to predict the possible runout distance and impacted area.This paper describes a study on the runout characteristics of the debris flows that occurred in the Wenchuan earthquake zone over the past four years.A total of 120 debris flows are analyzed.Separate multivariate regression models are established for the runout distances of hill-slope debris flows and channelized debris flows.The control variables include type of debris flow,debris flow volume,and elevation difference.Comparison of the debris flows occurring before and after the earthquake shows that the runout distance increased after the earthquake due to sufficient material supply and increased mobility of the source materials.In addition,the runout distances of annual debris flow events in 2008,2010 and 2011 are analyzed and compared.There is a tendency that the runout distance decreases over time due to the decreasing source material volume and possible changes of debris flow type.Comparison between the debris flows in the earthquake zone and the debris flows in Swiss Alps,Canada,Austria,and Japan shows that the former have a smaller mobility.  相似文献   

5.
The Wenchuan earthquake that occurred on 12 May 2008 induced numerous landslides. Loose landslide materials were deposited on hillslopes, and deep channels were easily remobilized and transformed into debris flows by extreme rainstorms. Twelve years after the Wenchuan earthquake, debris flows were still active in the Qipangou Ravine in the quake-hit area. In this paper, we continuously tracked the spatiotemporal evolution of the landslides and vegetation restoration and evaluated the evolution of debris flow activity in the Qipan catchment with the aid of a GIS platform and field investigations from 2008 to 2019. We observed that the area with active landslides increased sharply immediately following the earthquake, and then decreased with time; however, the total area of landslides continued to increase from 6.93 km2 in 2008 to 10.55 km2 in 2019. The active landslides shifted towards lower angles and higher elevations after 2013. Since 2009, the vegetation coverage has been gradually increasing and approaching the coverage present before the earthquake as of 2019. The landslide activity was high and the vegetation recovery rates were rapidly rising during the first five years after the earthquake; the recovery rates then slowed over time. Therefore, we divided the evolution that occurred during the post landslide period into an active period(2008-2013), a self-adjustment period(2013-2026) and a stable period(after 2026). We then proposed a quantitative model to determine the trends of landslide activity rates and NDVI values in the catchment, which indicated that the landslide activities and postseismic vegetation restoration rates in this catchment will return to preseismic levels within approximately two decades. We also analysed the runout volumes of the debris flows after the earthquakes(Diexi and Wenchuan) and the standard deviation of the vegetation coverage and predicted that the debris flow activities will last for an additional 50 years or more.  相似文献   

6.
The Wenchuan earthquake caused numerous landslides and collapses that provide abundant unconsolidated material for future mobilization as debris flows.Debris flows will be very active and cause considerable damage for some time in the affected area.Because of environmental changes related to the earthquake,many potentially dangerous debris flow gullies have yet to be identified.This paper selects the upper Min River from Yinxiu to Wenchuan as the study area,interprets the unconsolidated deposits,and discusses their relationship to distance from the fault.Then,applying that information and the values of other factors relating to debris flow occurrence,the locations of potential debris flows are analyzed by multi-factor comprehensive identification and rapid identification.The multi-factor comprehensive identification employs fuzzy matter-element extension theory.The volume of unconsolidated material in the study area is about 3.28 × 108 m3.According to the analysis by multi-factor comprehensive identification,47 gullies have a high probability for potential debris flow,8 gullies have a moderate probability,and 1 gully has a low probability.  相似文献   

7.
The 5.12 Wenchuan Earthquake and the subsequent rainstorms induced a large number of landslides, which later were transformed into debris flows. To evaluate the effect of the earthquake on the sediment supply of debris flows, eight debris flow basins near Beichuan City, Sichuan Province, China were chosen as the study area. The area variations of the debris flow source after the Wenchuan Earthquake and the subsequent rainstorm are analyzed and discussed in this paper. Interpretations of aerial photographs (after the 5.12 Wenchuan Earthquake) and SPOT5 images (after the rainstorm event of September 24, 2008) as well as field investigations were compared to identify the transformation of landslide surface in the study area, indicating that the landslide area in the eight debris flow basins significantly increased. The loose sediment area on the channel bed increased after the rainstorm event. In order to estimate the relationship of the landslide area with the rainfall intensity in different return periods, a model proposed by Uchihugi was adopted. Results show that new landslide area induced by heavy rainfall with 50-year and 100-year return period will be 0.87 km2 and 1.67 km2, respectively. The study results show the Wenchuan earthquake had particular influences on subsequent rainfall-induced debris flow occurrence.  相似文献   

8.
Developing a risk assessment model for typhoon-triggered debris flows   总被引:2,自引:0,他引:2  
A methodology is developed for interactive risk assessment of physical infrastructure and spatially distributed response systems subjected to debris flows.The proposed framework is composed of three components,namely geotechnical engineering,geographical information systems and disaster management.With the integration of slope stability analysis,hazard scenario and susceptibility,geological conditions are considered as temporary static data,while meteorological conditions are treated as dynamic data with a focus on typhoons.In this research,the relevant parameters required for database building are defined,and the procedures for building the geological database and meteorological data sets are explained.Based on the concepts and data sets,Nantou and Hualien in Taiwan are used as the areas for case studies.  相似文献   

9.
Site-specific Vulnerability Assessment for Debris Flows: Two Case Studies   总被引:1,自引:0,他引:1  
Introduction Here vulnerability is related to the hazard-affected bodies including human beings and material objects. Without hazard-affected bodies, there would be no disasters. Disaster is a combination of the hazard-affected bodies and the hazard-forma…  相似文献   

10.
Taking TM images, ETM images, SPOT images, aerial photos and other remote sensing data as fundamental sources, this research makes a thorough investigation on landslides and debris flows in Sichuan Province, China, using the method of manual interpretation and taking topography maps as references after the processes of terrain correction, spectral matching, and image mosaic. And then, the spatial characteristics of landslides and debris flows in the year of 2005 are assessed and made into figures. The environmental factors which induce landslides and debris flows such as slope, vegetation coverage, lithology, rainfall and so on are obtained by GIS spatial analysis method. Finally, the relationships of landslides or debris flows with some environmental factors are analyzed based on the grade of each environmental factor. The results indicate: 1) The landslides and debris flows are mainly in the eastern and southern area of Sichuan Province, however, there are few landslides and debris flows in the western particularly the northwestern Sichuan. 2) The landslides and debris flows of Sichuan Province are mostly located in the regions with small slope degree. The occurring rate of debris flow reduces with the increase of the vegetation coverage degree, but the vegetation coverage degree has little to do with the occurrence of landslide. The more rainfall a place has, the easier the landslides and debris flows take place.  相似文献   

11.
In the meizoseismal areas hit by the China Wenchuan earthquake on May 12, 2008, the disasterprone environment has changed dramatically, making the susceptibility assessment of debris flow more complex and uncertain. After the earthquake, debris flow hazards occurred frequently and effective susceptibility assessment of debris flow has become extremely important. Shenxi gully in Du Jiangyan city, located in the meizoseismal areas, was selected as the study area. Based on the research of disaster-prone environment and the main factors controlling debris flow, the susceptibility zonations of debris flow were mapped using factor weight method(FW), certainty coefficient method(CF) and geomorphic information entropy method(GI). Through comparative analysis, the study showed that these three methods underestimated susceptible degree of debris flow when used in the meizoseismal areas of Wenchuan earthquake. In order to solve this problem, this paper developed a modified certainty coefficient method(M-CF) to reflect the impact of rich loose materials on the susceptible degree of debris flow. In the modified method, the distribution and area of loose materials were obtained by field investigations and postearthquake remote sensing image, and four data sets, namely, lithology, elevation, slop and aspect, wereused to calculate the CF values. The result of M-CF method is in agreement with field investigations and the accuracy of the method is satisfied. The method has a wide application to the susceptibility assessment of debris flow in the earthquake stricken areas.  相似文献   

12.
The Yushu Ms 7.1 earthquake occurred on April 14,2010 in Qinghai Province,China.It induced a mass of secondary geological disasters,such as collapses,landslides,and debris flows.Risk assessment maps are important for geological disaster prevention and mitigation,and also can serve as a guide for post-earthquake reconstruction.Firstly,a hazard assessment index system of secondary geological disasters in the earthquake region was built in this paper,which was based on detailed analysis of environmental and triggering factors closely related to geological disasters in the study area.GIS technology was utilized to extract and analyze the assessment index.Hazard assessment maps of secondary geological disasters were obtained by spatial modeling and overlaying analysis.Secondly,an analysis of the vulnerability of hazard bearing bodies in the area was conducted,important information,such as, population density,percentage of arable land, industrial and agricultural outputs per unit area were regarded as assessment indices to evaluate socioeconomic vulnerability.Thirdly,the risk level of secondary geological disasters of the area was obtained by the formula:Risk=Hazard×Vulnerability. Risk assessment maps were categorized into four levels,including"low","moderate","high"and"very high".These results show that some urban areas are at very high risk,including Jiegu,Chengwen,Xiaxiula and Sahuteng towns.This research can provide some references and suggestions to improve decisionmaking support for emergency relief and post- earthquake reconstruction in the study area.  相似文献   

13.
This work addresses the integrated assessment of rockfall(including landslides) hazards and risk for S301, Z120, and Z128 highways, which are important transportation corridors to the world heritage site Jiuzhai Valley National Park in Sichuan, China. The highways are severely threatened by rockfalls or landslide events after the 2017 Ms 7.0 Jiuzhaigou earthquake. Field survey(September 14-18 th, 2017, May 15-20 th, 2018, and September 9-17 th, 2018), unmanned aerial vehicle(UAV), and satellite image identified high-relief rockfalls and road construction rockfalls or landslides along the highway. Rockfall hazard is qualitatively evaluated using block count, velocity, and flying height through a 3D rockfall simulation at local and regional scales. Rockfall risk is quantitatively assessed with rockfall event probability, propagation probability, spatial probability, and vulnerability for different block volume classes. Approximately 21.5%, 20.5%, and 5.3% of the road mileage was found to be subject to an unacceptable(UA) risk class for vehicles along S301, Z120, and Z128 highways, respectively. Approximately 20.1% and 3.3% of the road mileage belong to the UA risk class for tourists along Z120 and Z128 highways, respectively. Results highlighted that high-relief rockfall events were intensively located at K50 to K55(Guanmenzi to Ganheba) and K70 to K72(Jiudaoguai to Shangsizhai Village) road mileages along S301 highway and KZ18 to KZ22(Five Flower Lake to Arrow Bamboo Lake) road mileages, KZ30(Swan Lake to Virgin Forests), and KY10.5 kilometers in Jiuzhai Valley. Rockfalls in these locations were classified under the UA risk class and medium to very high hazard index. Road construction rockfalls were located at K67(Jiuzhai Paradise) and K75–K76 kilometers along S301 highway and KZ12 to KZ14(Rhino Lake to Nuorilang Waterfall), KZ16.5 to KZ17.5(Golden Bell Lake), KY5(Lower Seasonal Lake), and KY14(Upper Seasonal Lake) kilometers along Z120 and Z128 highway in Jiuzhai Valley. Rockfalls in these areas were within a reasonable practicable risk to UA risk class and very low to medium hazard index. Finally, defensive measures, including flexible nets, concrete walls, and artificial tunnels, could be selected appropriately on the basis of the rockfall hazard index and risk class. This study revealed the integration between qualitative rockfall hazard assessment and quantitative rockfall risk assessment, which is crucial in studying rockfall prevention and mitigation.  相似文献   

14.
Shallow fissures, being the main infiltration paths of fluid on the surface of a slope, played an important role in the whole process of a landslide. However, the spatial distribution characteristics of fissures in the slope are difficult to be determined. In this study, we attempted to characterize the variation pattern of slope fissures along depth in the Wenchuan earthquake area in Sichuan Province by combining engineering geological investigation, geomorphologic analysis and geophysical investigation. The geophysical methods that were used in this study include Multichannel Analysis of Surface Wave (MASW), Ground Penetrating Radar (GPR) and Electrical Resistivity Tomography (ERT). The results suggested that geophysical parameters (shear wave velocity, electromagnetic signals attenuation and resistivity) could provide valuable information for the spatial network of shallow fissures. Through the verification by engineering geological survey and geophysical sensitivity analysis, this work highlighted that MASW was the most appropriate technique to delineate the propagation of shallow fissures in a gravel soil slope.  相似文献   

15.
Nepal was hit by a 7.8 magnitude earthquake on 25th April, 2015. The main shock and many large aftershocks generated a large number of coseismic landslips in central Nepal. We have developed a landslide susceptibility map of the affected region based on the coseismic landslides collected from remotely sensed data and fieldwork, using bivariate statistical model with different landslide causative factors. From the investigation, it is observed that most of the coseismic landslides are independent of previous landslides. Out of 3,716 mapped landslides, we used 80% of them to develop a susceptibility map and the remaining 20% were taken for validating the model. A total of 11 different landslide-influencing parameters were considered. These include slope gradient, slope aspect, plan curvature, elevation, relative relief, Peak Ground Acceleration (PGA), distance from epicenters of the mainshock and major aftershocks, lithology, distance of the landslide from the fault, fold, and drainage line. The success rate of 87.66% and the prediction rate of 86.87% indicate that the model is in good agreement between the developed susceptibility map and the existing landslides data. PGA, lithology, slope angle and elevation have played a major role in triggering the coseismic mass movements. This susceptibility map can be used for relocating the people in the affected regions as well as for future land development.  相似文献   

16.
The Ms 8.0 May 12,2008 Wenchuan earthquake triggered tens of thousands of landslides.The widespread landslides have caused serious casualties and property losses,and posed a great threat to post-earthquake reconstruction.A spatial database,inventoried 43,842 landslides with a total area of 632 km 2,was developed by interpretation of multi-resolution remote sensing images.The landslides can be classified into three categories:swallow,disrupted slides and falls;deep-seated slides and falls,and rock avalanches.The correlation between landslides distribution and the influencing parameters including distance from co-seismic fault,lithology,slope gradient,elevation,peak ground acceleration(PGA) and distance from drainage were analyzed.The distance from co-seismic fault was the most significant parameter followed by slope gradient and PGA was the least significant one.A logistic regression model combined with bivariate statistical analysis(BSA) was adopted for landslide susceptibility mapping.The study area was classified into five categories of landslide susceptibility:very low,low,medium,high and very high.92.0% of the study area belongs to low and very low categories with corresponding 9.0% of the total inventoried landslides.Medium susceptible zones make up 4.2% of the area with 17.7% of the total landslides.The rest of the area was classified into high and very high categories,which makes up 3.9% of the area with corresponding 73.3% of the total landslides.Although the susceptibility map can reveal the likelihood of future landslides and debris flows,and it is helpful for the rebuilding process and future zoning issues.  相似文献   

17.
Characteristic rainfall for warning of debris flows   总被引:4,自引:2,他引:2  
A characteristic rainfall is introduced to overcome the difficulties encountered in determining a critical rainfall value for triggering debris flow.The characteristic value is defined as the rainfall at which debris-flow occurrence probability shows a rapid increase,and can be used as a warning rainfall threshold for debris flows.Investigation of recorded debris flows and 24-hour rainfall data at Jiangjia basin,Yunnan Province,in southwestern China,demonstrates the existence of such a characteristic rainfa...  相似文献   

18.
Debris flows consist of grains of various sizes ranging from 10~(-6) m ~1 m. Field observations in the Jiangjia Gully (JJG) and other sites throughout China indicate that the grain size distribution of sediment in debris flows can be characterized by an exponential function fit to the cumulative distribution. The exponent value for the function varies by location and may be useful in distinguishing between debris flows from different valleys. For example, minimum values and ranges of the exponent are associated with the high frequency of debris flows in the JJG. Furthermore, the distribution presents piecewise fractality (i.e. scaling laws hold in various ranges of the grain size) and we propose that the fractal structure determines the matrix and that the fractal dimension plays a crucial role in material exchange between a debris flow and the substrate it flows over. Finally, the empirical data support an exponential relation between grain composition and non-dimensional shear stress for the critical state of the channel. Overall we propose a material-determinism approach to studying debris flows which contrasts with the enviro-determinism that has dominated much recent work in this field.  相似文献   

19.
The data on the hillslope and channelized debris flows in the Shitou area of central Taiwan occurred during Typhoons Toraji and Nali in 2001 were applied in this paper. The geomorphic parameters, including the flow length, gully gradient, drainage area and form factor of the debris flows were determined by spatial analysis using a Geographic Information System (GIS) based on the data derived from field investigation, aerial photographs, and topographical maps. According to such determined geomorphic parameters, the threshold conditions and empirical equations, such as the relationship between the gully gradient and drainage area and that between gully length and drainage area and topographic parameter, are presented and used to distinguish the geomorphic characteristics between the channelized and hillslope debris flows.  相似文献   

20.
According to the observational data of viscous debris flows with hyper-concentration, debris flows can be classified into three types: high-viscous, viscous, and sub-viscous debris flows. Distinct formation mechanism of different graded bedding structures in deposits of viscous debris flows was analyzed in this paper by using their yield-stress ratio and flow plug ratio. This paper specially analyzed the effect of Weissenberg which the gravels in squirm condition of hyper-concentration viscous flows would tend to move vertically, and the formation mechanism of the gravels accumulated at surface was also studied. The analysis in this paper can establish a foundation for the studies on differentiation of bedding structures of debris flow deposits and studies on dynamic parameters of debris flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号