首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We present two large flares which were exceptional in that each produced an extensive chain of H emission patches in remote quiet regions more than 105 km away from the main flare site. They were also unusual in that a large group of the rare type III reverse slope bursts accompanied each flare.The observations suggest that this is no coincidence, but that the two phenomena are directly connected. The onset of about half of the remote H emission patches were found to be nearly simultaneous with RS bursts. One of the flares (August 26, 1979) was also observed in hard X-rays; the RS bursts occurred during hard X-ray spikes. For the other flare (June 16, 1973), soft X-ray filtergrams show coronal loops connecting from the main flare site to the remote H brightenings. There were no other flares in progress during either flare; this, along with the X-ray observations, indicates that the RS burst electrons were generated in these flares and not elsewhere on the Sun. The remote H brightenings were apparently not produced by a blast wave from the main flare; no Moreton waves were observed, and the spatially disordered development of the remote H chains is further evidence against a blast wave. From geometry, time and energy considerations we propose: (1) That the remote H brightenings were initiated by direct heating of the chromosphere by RS burst electrons traveling in closed magnetic loops connecting the flare site to the remote patches; and (2) that after onset, the brightenings were heated by thermal conduction by slower thermal electrons (kT1 keV) which immediately follow the RS burst electrons along the same loops.  相似文献   

2.
Vršnak  B.  Ruždjak  V.  Brajša  R.  Zlobec  P.  Altaş  L.  Özgüç  A.  Aurass  H.  Schroll  A. 《Solar physics》2000,194(2):285-303
A sample of 47 importance 1 flares whose H emission occurred or protruded over umbrae of major sunspots (so called Z-flares) was studied to investigate characteristics of the associated dm–m radio, microwave and soft X-ray emission as the energy release site permeats into regions of strong magnetic fields. A close time association was found between the microwave burst peak and the `contact' of the H emission with the sunspot umbra. The H emission attained maximum close to or a few minutes after the contact. The soft X-ray bursts were delayed more, attaining maximum 0–10 min after the contact. The onset of bursts in the dm–m wavelength range was associated with the period of growth or the peak of the microwave burst. Two categories of type III and IV bursts could be recognized: the ones starting some ten minutes before the microwave peak, and those that begin close to the microwave burst peak. Type III bursts occur preferably when the microwave burst peaks simultaneously with or after the contact. The results are explained presuming that the contact reveals a permeation of the energy release process into a region of strong magnetic fields, where the process intensifies, and where the accelerated particles have access to magnetic field lines extending to large coronal heights. Different manifestations of the energy release process in various magnetic field topologies are considered to account for the various time sequences observed.  相似文献   

3.
Geomagnetic crochets (sfe) observed at Kodaikanal over the period 1966–71 have been studied in relation to solar X-ray bursts observed by NRL satellite (SOLRAD-9) in the 0.5–3 Å, 1–8 Å and 8–20 Å bands and radio bursts observed in the frequency range 1000–17000 MHz. The amplitude of sfe is linearly correlated with the peak intensities of X-ray bursts in the 1–8 Å and 8–20 Å bands. The single frequency correlation of sfe with radio bursts is a flat maximum in the frequency range 2000–3750 MHz. Following the spectral classification of AFCRL for microwave bursts, it is noticed that sfe are mostly associated with the A type burst spectra and are very poorly correlated with bursts with the G, C and M type spectra. These features differ from those of other SID's reported earlier.  相似文献   

4.
Sunspot associated H-flares and microwave bursts occurring during the period 1972 to 1974 have been examined in relation to the magnetic strength and configurations of the sunspots and sunspot groups (abbreviated as spots). Important results obtained are: (i) percentage occurrences of flares exceeds those of microwave bursts up to a magnetic field strength of 2000 G while the reverse is true for higher field strength of spots, (ii) flare productivity (average number of flares per spot) and also burst productivity are comparatively higher in the case of and types of spots than in the case of other types of spots, (iii) the above productivities are predominantly high when magnetic configuration of spots changes during their life time, and (iv) impulsive type of microwave bursts are more associated with spots having changing type of magnetic configuration.  相似文献   

5.
A study of type II solar radio bursts recorded at 160 MHz by the Culgoora radioheliograph during 1980 to 1982 shows that the radio emission occurs above H filaments rather than above H flares. This suggests that the type II radio emission most probably originates from within a coronal helmet streamer overlying the filament channel.  相似文献   

6.
On the assumption that solar flares are due to instabilities which occur in current sheets in the Sun's atmosphere, one may classify magnetic-field configurations associated with flares into two types. One is characterized by closed current sheets, magnetic-field lines adjacent to these sheets beginning and ending at the Sun's surface. The other is characterized by open current sheets, magnetic-field lines adjacent to these sheets beginning at the Sun's surface but extending out into interplanetary space. Flares associated with open current sheets can produce Type III radio bursts and high-energy-particle events, but flares associated with closed current sheets cannot. The flare of July 6, 1966 apparently consisted of one flare of each type.  相似文献   

7.
B. Vršnak  S. Lulić 《Solar physics》2000,196(1):181-197
The ignition of coronal shock waves by flares is investigated. It is assumed that an explosive expansion of the source region caused by impulsive heating generates a fast-mode MHD blast wave which subsequently transforms into a shock wave. The solutions of 1-D MHD equations for the flaring region and for the external region are matched at their boundary. The obtained results show under what conditions flares can ignite shock waves that excite the metric type II bursts. The heat input rate per unit mass has to be sufficiently high and the preflare value of the plasma parameter in the flaring region has to be larger than 0 crit. The critical values depend on the flare dimensions and impulsiveness. Larger and more impulsive flares are more effective in generating type II bursts. Shock waves of a higher Mach number require a higher preflare value of and a more powerful heating per unit mass. The results demonstrate why only a small fraction of flares is associated with type II bursts and why the association rate increases with the flare importance.  相似文献   

8.
We studied the evolutional characteristics of fine structures in H flare emitting regions and their relation to X-ray and microwave emissions for selected events observed with the 60 cm Domeless Solar Telescope at Hida Observatory, University of Kyoto. The principal conclusions of this investigation are: (1) H kernel consists of some finer bright points or Hflare points whose individual size is less than 1 arc sec. (2) Impulsive brightnenings of H flare points occurred simultaneously with the spikes of the hard X-ray and microwave bursts within the time resolution of our H observations which varied from 1 to 10 s. (3) It is concluded that fast electron beams must be the principal mechanism of heating H flares during the impulsive phase of a flare.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984. Contributions from the Kwasan and Hida Observatories, University of Kyoto, No. 265.  相似文献   

9.
We re-examine observations bearing on the origin of metric type II bursts for six impulsive solar events in November 1997. Previous analyses of these events indicated that the metric type IIs were due to flares (either blast waves or ejecta). Our point of departure was the study of Zhang et al. (2001) based on the Large Angle and Spectrometric Coronagraphs C1 instrument (occulting disk at 1.1 R0) that identified the rapid acceleration phase of coronal mass ejections (CMEs) with the rise phase of soft X-ray light curves of associated flares. We find that the inferred onset of rapid CME acceleration in each of the six cases occurred 1–3 min before the onset of metric type II emission, in contrast to the results of previous studies for certain of these events that obtained CME launch times 25–45 min earlier than type II onset. The removal of the CME-metric type II timing discrepancy in these events and, more generally, the identification of the onset of the rapid acceleration phase of CMEs with the flare impulsive phase undercuts a significant argument against CMEs as metric type II shock drivers. In general, the six events exhibited: (1) ample evidence of dynamic behavior [soft X-ray ejecta, extreme ultra-violet imaging telescope (EIT) dimming onsets, and wave initiation (observed variously in H, EUV, and soft X-rays)] during the inferred fast acceleration phases of the CMEs, consistent with the cataclysmic disruption of the low solar atmosphere one would expect to be associated with a CME; and (2) an organic relationship between EIT dimmings (generally taken to be source regions of CMEs) and EIT waves (which are highly associated with metric type II bursts) indicative of a CME-driver scenario. Our analysis indicates that the broad (90 to halo) CMEs observed in the outer LASCO coronagraphs for these impulsive events began life as relatively small-scale structures, with angular spans of 15 in the low corona. A review of on-going work bearing on other aspects (than timing) of the question of the origin of metric type II bursts (CME association; connectivity of metric and decametric-hectometric type II shocks; spatial relationship between CMEs and metric shocks) leads to the conclusion that CMEs remain a strong candidate to be the principal/sole driver of metric type II shocks vis-à-vis flare blast waves/ejecta.  相似文献   

10.
, ii (2000–3000 Å) i . , i . i (. 2). i i i i + ( 7–10). ii (. 13). ii i i (, 2400 Å) (. 14 15). i i i , iu , i (. 1). i i ii i i . .  相似文献   

11.
Based on a general planetary theory, the secular perturbations in the motion of the eight major planets (excluding Pluto) have been derived in polynomial form. The results are presented in the tables. The linear terms of second order with respect to the planetary masses and the nonlinear terms of first order up to the fifth (and partly seventh) degree with respect to eccentricities and inclinations were taken into account in the right-hand members of the secular system. Calculations were carried out by computer with the use of a system that performed analytic operations on power series with complex coefficients.
qA ( ). . ( ) . .
  相似文献   

12.
Analyzing 205 radio bursts observed by the Ondejov radiospectrograph in the 1–4 GHz frequency range during 1992 and 1993, we found 6 examples of type II-like radio bursts coinciding with impulsive phases of solar flares. These bursts were interpreted as radio manifestations of MHD (shock) waves generated during impulsive phases of flares in the vicinity of the transition region. Assuming a magnetic-field perturbation origin of these waves, we studied pinch processes in the current sheet near the transition region. In the 2-D MHD numerical model of this current sheet we demonstrated that 2-D pinch processes induced by radiative losses can trigger the impulsive phase of some flares and so generate the observed high-frequency type II-like radio bursts.  相似文献   

13.
Flare-associated soft X-ray bursts (8–12 Å) are examined for 283 events observed by OSO-III. These bursts are shown to be predominantly thermal in nature. Their time-profiles are roughly similar to those of the associated H flares, although the X-ray burst begins about two minutes earlier, on the average. The strength of the soft X-ray burst is directly related to the area and brilliance of the flare, the age and flare-richness of the associated plage, and the general level of solar activity at the time of the burst. The peak enhancements in the soft X-ray and H emission rates during flares are of the same order of magnitude, as are the total flare energies radiated at these wavelengths. We estimate that soft X-radiation accounts for up to 10% of a flare's total electromagnetic emission.NRC/NAS Resident Research Associate.  相似文献   

14.
We searched for a new phenomenon, called coronal explosions, in three solar flares, and found them in all three. A coronal explosion is the propagation of a density wave through the flaring area. The wave emerges from one or two small areas (the sources) which are close to, but not identical with the sources of hard X-ray burst emission. In all three cases the explosion starts at the end of the impulsive phase, during or after the last hard ( 20 keV) X-ray burst. The velocities of propagation range between 1800 and a few tens of km s-1, and tend to decrease with time. We suggest that the bursts are magneto-hydrodynamical (shock) waves moving downward into denser regions.  相似文献   

15.
Two dimensional source brightness distributions at 26.4 MHz for solar bursts of spectral type II, III, IV, and V are derived from observations with a multiple-baseline, time-sharing interferometer system. It was designed explicitly to study the large angle (40 halo) component of low frequency solar bursts first reported by Weiss and Sheridan (1962). Thirty-two bursts occurring in the interval of June–August, 1975, were fit with a circular gaussian core and an elliptical gaussian halo component. Half-power halo diameters (E-W×N-S) averaged 30×28 for type III bursts and 42×27, 28×37, 30×25 for type V, II and IV bursts respectively. Typical core sizes fell in the range of 10±4 giving 31 halo to core size ratio. All burst types were found to have some large angle structure: the specific intensity was 10% compared to the core but the total power in each component was comparable. Two processes for producing the core-halo structure of type III bursts are compared: scattering and refraction of a point source and refraction from many sources over an extended region. It is concluded that the core can be explained by either model but the halo is more consistent with emission from an extended source region of 40° in longitude.  相似文献   

16.
A possibility of developing the analytical theory of perturbed motion for a balloon-satellite influenced by solar radiation pressure force is analysed here on the basis of the limit case modification of the two fixed centers problem whose force-field is a superposition of the Newtonian central field and a homogeneous one. Such an approach enables us in the intermediate orbit already to take into account the effect of a constant force, all coordinates of a satellite being expressed as functions of some monotonically increasing variable by means of inversion of elliptic quadratures. The relations between canonical constants of the intermediate orbit and a quasikeplerian elements coinciding in the absence of solar radiation pressure with keplerian ones are derived. The numerical results and illustrating the perturbations in the radius-vector of the intermediate orbit of a balloon-satellite of the Echo-I type are given.
-, , , . , , . , . , - - -I.
  相似文献   

17.
Morphological features of two-ribbon flares have been studied, using simultaneous ISEE-3 hard X-ray records and high-resolution Big Bear H movies for more than 20 events. Long-lasting and complex hard X-ray bursts are almost invariably found associated with flares of the two-ribbon type. We find at least three events, namely March 31, 1979, April 10, 1980, and July 1, 1980, where the occurrence of individual spikes in hard X-ray radiation coincides with suddenly enhanced H emission covering the sunspot penumbra. There definitely exist important ( 1B) two-ribbon H flares without significant hard X-ray emission.  相似文献   

18.
19.
We study the association of type III bursts related to H flares in different magnetic environments in the period 1970–1981. Special attention is paid to flares which partly cover a major spot umbra (Z-flares). In particular we consider the location of the spots in the active regions and the magnetic field intensities of spots covered by a ribbon. The association rate with type III bursts decreases to 17% when the flare is located inside the bipolar pattern of a large active region, compared with an association rate of 54% when the flare is situated outside it. The association rate increases with the magnetic field intensity of the spot covered by H emission; this is most clearly revealed for the flares occurring outside the bipolar pattern of active regions. Ninety-three percent of the flare-associated type III burst were accompanied by 10 cm radio bursts. For the most general case in which a flare is developing anywhere in an active region, the association with type III bursts generation increases with the increasing magnetic field intensity of the main spot of the group.  相似文献   

20.
I have studied the observational relationship between the location of flare sites in active regions and three other observables, viz., H line width, hard X-ray burst parameters, and peak microwave fluxes. Results suggest that the strength of the magnetic field plays a role in governing the magnitudes of these emissions. Qualitative relationships are derived on the assumption of proportionality between the spectral maximum frequency of the associated microwave burst and the field strength in the microwave source.The relationship inferred between the power in thick target electrons (derived from the hard X-ray burst) and the column density of second-level hydrogen atoms (derived from the H line widths) is compared with calculations by Brown (1973) and Canfield (1974).The line widths observed for two white light flares suggest that a criterion for detectable continuum emission in disk flares is an H line width 20 Å.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号