首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Results concerning the concentration of cadmium and lead in Mediterranean waters collected during the 2nd PHYCEMED cruise (Oct. 1983) are discussed. Sampling has been performed at seven stations in the Western Mediterranean Basin, two in the Strait of Gibraltar and the near Atlantic, two in the Sicily Strait and the Eastern Basin.In the Western Basin the observations are in fair agreement with those of PHYCEMED 1. Cadmium has a fairly homogeneous distribution vertically as well as from one station to another, with an average concentration of 8 ng l−1; while lead shows a slight but continuous decrease in concentrations with depth (from at least 50 ng l−1 in surface waters to 20 or 25 ng l−1 at depth). On the other hand, at the basin boundaries, where waters from different origins are present, vertical distributions appear very different. On the basis of calculated water budgets it can be estimated that the Mediterranean Sea discharges about 200 t y−1 of cadmium and about 250 t y−1 of lead into the Atlantic Ocean while 1000 t y−1 of lead are transferred from the Western to the Eastern Basin.  相似文献   

2.
In order to investigate total organic carbon (TOC) exchange through the Strait of Gibraltar, samples were taken along two sections from the western (Gulf of Cádiz) and eastern (Western Alboran Sea) entrances of the Strait and at the middle of the Strait in April 1998. TOC was measured by using a high-temperature catalytic oxidation method. The results referenced here are based on a three-layer model of water mass exchange through the Strait, which includes the Atlantic inflow, Mediterranean outflow and an interface layer in between. All layers were characterised by a decrease of TOC concentrations from the Gulf of Cádiz to the Western Alboran Sea: from 60–79 to 59–66 μM C in the Atlantic inflow and from 40–60 to 38–52 μM C in the Mediterranean waters, respectively. TOC concentrations in the modified North Atlantic Central Water varied from 43 to 55 μM C. Intermediate TOC values were measured in the interface layer (43–60 μM C). TOC concentrations increased from the middle of the Strait towards continents indicating a contribution of organic carbon of photosynthetic origin along Spain and Morocco coasts or TOC accumulation due to upwelling in the northeastern part of the Strait. Our results indicate that the short-term variability caused by the tide greatly impacts the TOC distribution, particularly in the Gulf of Cádiz. The TOC input from the Atlantic Ocean to the Mediterranean Sea through the Strait of Gibraltar varies from 0.9×104 to 1.0×104 mol C s−1 (or 0.28×1012 to 0.35×1012 mol C year−1, respectively). This estimate suggests that the TOC inflow and outflow through the Strait of Gibraltar are two and three orders of magnitude higher than reported via the Turkish Straits and Mediterranean River inputs.  相似文献   

3.
4.
The effects of tidal forcing on the biogeochemical patterns of surface water masses flowing through the Strait of Gibraltar are studied by monitoring the Atlantic Inflow (AI) during both spring and neap tides. Three main phenomena are defined depending on the strength of the outflowing phase predicted over the Camarinal Sill: non-wave events (a very frequent phenomenon during the whole year); type I Internal wave events (a very energetic event, occurring during spring tides); and type II Internal wave events (less intense, occurring during neap tides).During neap tides, a non-wave event comprising oligotrophic open-ocean water from the Gulf of Cádiz is the most frequent and clearly dominant flow through the Strait. In this tidal condition, the inflow of North Atlantic Central Water (NACW) provides the main nutrient input to the surface layer of the Alboran Sea, supplying almost 70% of total annual nitrate transport to the Mediterranean basin. A low percentage of active and large phytoplankton cells and low average concentrations of chlorophyll (0.3–0.4 mg m−3) are found in this tidal phase. Around 50% of total annual phytoplankton biomass transport into the Mediterranean Sea through the Strait presents these oligotrophic characteristics.In contrast, during spring tides, patches of water with high chlorophyll levels (0.7–1 mg m−3) arrive intermittently, and these are recorded concurrently with the passage of internal waves coming from the Camarinal Sill (type I internal wave events). When large internal waves are arrested over the Camarinal Sill this implies strong interfacial mixing and the probable concurrent injection of coastal waters into the main channel of the Strait. These processes result in a mixed water column in the AI and can account for around 30% of total annual nitrate transport into the Mediterranean basin. Associated with type I internal wave events there is a regular inflow of large and active phytoplankton cells, transported in waters with relatively high nutrient concentrations, which constitutes a significant supply of planktonic resources to the pelagic ecosystem of the Alboran Sea (almost 30% of total annual phytoplankton biomass transport).  相似文献   

5.
The total organic carbon (TOC) and total inorganic carbon (CT) exchange between the Atlantic Ocean and the Mediterranean Sea was studied in the Strait of Gibraltar in September 1997. Samples were taken at eight stations from western and eastern entrances of the Strait and at the middle of the Strait (Tarifa Narrows). TOC was analyzed by a high-temperature catalytic oxidation method, and CT was calculated from alkalinity–pHT pairs and appropriate thermodynamic relationships. The results are used in a two-layer model of water mass exchange through the Strait, which includes the Atlantic inflow, the Mediterranean outflow and the interface layer in between. Our observations show a decrease of TOC and an increase of CT concentrations from the surface to the bottom: 71–132 μM C and 2068–2150 μmol kg−1 in the Surface Atlantic Water, 74–95 μM C and 2119–2148 μmol kg−1 in the North Atlantic Central Water, 63–116 μM C and 2123–2312 μmol kg−1 in the interface layer, and 61–78 μM C and 2307–2325 μmol kg−1 in the Mediterranean waters. However, within the Mediterranean outflow, we found that the concentrations of carbon were higher at the western side of the Strait (75–78 μM C, 2068–2318 μmol kg−1) than at the eastern side (61–69 μM C, 2082–2324 μmol kg−1). This difference is due to the mixing between the Atlantic inflow and the Mediterranean outflow on the west of the Strait, which results in a flux of organic carbon from the inflow to the outflow and an opposite flux of inorganic carbon. We estimate that the TOC input from the Atlantic Ocean to the Mediterranean Sea through the Strait of Gibraltar varies from (0.97±0.8)104 to (1.81±0.90)104 mol C s−1 (0.3×1012 to 0.56×1012 mol C yr−1), while outflow of inorganic carbon ranges from (12.5±0.4)104 to (15.6±0.4)104 mol C s−1 (3.99–4.90×1012 mol C yr−1). The high variability of carbon exchange within the Strait is due to the variability of vertical mixing between inflow and outflow along the Strait. The prevalence of organic carbon inflow and inorganic carbon outflow shows the Mediterranean Sea to be a basin of active remineralization of organic material.  相似文献   

6.
Abstract

Chemical parameters (pH, Eh, carbon, Kjeldahl nitrogen, total phosphorus, 0.5M H2SO4‐extractable phosphorus, organic phosphorus, and water‐soluble phosphorus) were measured in the surface layers of sediments collected from various depths in Lakes Rotowhero, Okaro, Ngapouri, Rotokakahi, Okareka, Tikitapu, Okataina, and. Rotoma during October 1972. The sediments of the productive geothermal lake, Rotowhero, were markedly different from those of the cold‐water lakes: they had relatively low pH values, high carbon (mean 8.5%) and organic phosphorus (mean 4160 μg.g?1) concentrations, and very high total phosphorus concentrations (mean 4770 μg.g?1), probably as a result of enrichment by hot springs.

The mean concentrations in the sediments of the cold‐water lakes were carbon 3.2–7.9%, Kjeldahl nitrogen 3380–8310 μg.g?1 and phosphorus 690–1780 μg.g?1. These concentrations are within the ranges for New Zealand terrestrial topsoils, but the lake sediments appear enriched in phosphorus relative to local topsoils. Total carbon, nitrogen, and phosphorus concentrations of sediments tended to be highest in the eutrophic lakes (Okaro, Ngapouri) although the deep oligotrophic lakes (Okataina, Rotoma) had relatively high total phosphorus concentrations (means 1400, 1510 μg.g?1). Overall, the carbon, nitrogen, and phosphorus concentrations of the sediments showed little relationship to the trophic state of the lake.

Organic phosphorus concentrations of the surface layers of sediments were similar in all the cold‐water lakes (mean 319 μg.g?1). The proportion of the total phosphorus apparently ‘fixed’ in mineral material was minimal (0–1%) in sediments from the eutrophic and mesotrophic lakes, but in the oligotrophic lakes was similar to that in New Zealand topsoils (9–14%). Reducing conditions may cause solution of a high proportion of the ‘fixed’ phosphorus in the eutrophic lakes.

The water‐soluble phosphorus concentrations in the sediments of the five shallow cold‐water lakes (Okaro, Ngapouri, Rotokakahi, Okareka, Tikitapu) correlated positively with trophic state and with concentrations of dissolved phosphorus in the lake waters.

Carbon, nitrogen, and phosphorus concentrations in the sediments tended to vary with overlying water depth. This should be considered when comparisons are made between lakes.  相似文献   

7.
A large set of new data concerning dissolved metal concentrations has been acquired in the Gulf of Cadiz and in the Strait of Gibraltar from 1996 to 1999. These data, associated with models (hydrodynamic, tracer advection–dispersion and mixing), have been used to assess the influence of rivers draining the South Iberian Pyrite Belt on the Gulf of Cadiz and on the Atlantic inflow in the Strait of Gibraltar.Metal concentrations in surface waters from the Gulf of Cadiz are maximal near the mouth of the Tinto/Odiel rivers with values exceeding 50 nmol/kg (Mn), 5 nmol/kg (Ni), 30 nmol/kg (Cu), 100 nmol/kg (Zn), 0.9 nmol/kg (Cd) and 45 nmol/kg (As). From the Tinto/Odiel river, a plume of contamination follows the coast in the direction of the Strait of Gibraltar. The computation of a tracer advection–dispersion model confirms that the coastal currents carry the metals discharged from the Tinto and Odiel to the Strait of Gibraltar.From temperature–salinity and metal–salinity plots, four water masses can be recognised in the Gulf of Cadiz and in the Strait of Gibraltar: North Atlantic Surface Water (NASW), North Atlantic Central Water (NACW) and metal-enriched Spanish Shelf Waters from the Gulf of Cadiz (SSW). The Mediterranean Outflow Water (MOW) is also clearly seen at depths greater than 300 m.The chemical characteristics of these various water masses have been used in a mixing model to evaluate their relative contribution to the Atlantic inflow through the Strait of Gibraltar. These contributions are seasonally variable. In June 1997, the contribution was: 80±20%, 5±5% and 15±10% for NASW, NACW and SSW, respectively. In September, the SSW contribution was apparently negligible.Finally, these relative contributions allow the evaluation of the metal fluxes in the Strait of Gibraltar. The presence of SSW in the Strait increases the metal flux to the Mediterranean Sea by a factor of 2.3 (Cu), 2.4 (Cd), 3 (Zn) and 7 (Mn). It does not modify significantly As and Ni fluxes.  相似文献   

8.
《Marine Geology》1999,153(1-4):29-39
During Ocean Drilling Program (ODP) Legs 160 and 161, sapropels were recovered both in the western and eastern Mediterranean. This obliges to a reassessment of the previous studies focused on sapropels from only the eastern Mediterranean, and to consider the changes which occurred in the Mediterranean climate but also in the water characteristics both in the Atlantic and in the western Mediterranean. In the North Atlantic, the position of the polar front which migrated southwards during glacial times and the melting of northern ice caps during interglacial periods, together with the convection in the Labrador and Norwegian Seas, appear essential to control the salinities of the waters facing the Strait of Gibraltar. The salinities of the surface and intermediate layers constitute the first driving force of the Mediterranean dynamics, the second driving force being the Mediterranean climate. The stagnation of deep waters leading to sapropel deposition in the western Mediterranean may be explained by a drastic weakening of the density difference between Mediterranean outflow and Atlantic intermediate waters facing the Strait of Gibraltar. This weakening was induced primarily by the salinity decrease of Atlantic surface water and secondly by a rather high salinity in the Atlantic intermediate layer, rather than by a drastic deterioration of the Mediterranean climate. This scenario probably concerns most of the sapropel events and it may be used for the knowledge of Atlantic and Mediterranean functioning over climatic changes.  相似文献   

9.
The relation between the nitrate and phosphate concentrations in the Sea of Okhotsk and the bordering waters of the Pacific Ocean were studied. The surveys were carried out in the autumn, spring, and summer of 2001–2002. For the deepwater part of the sea, the relation [NO? 3] = ((14.88 ± 0.07) × [PO3? 4] ? 5.46 ± 0.17) was found. The coefficients in the equation given are statistically different from those in the similar equation for the Pacific waters: [NO? 3] = (16.05 ± 0.15) × [PO3? 4]-(7.23 ± 0.36). In the northern part of the sea; on the shelf; in the slope area; and, especially, in the deep waters of the TINRO Depression, the linear dependence between the phosphate and nitrate concentrations was distorted. This feature was described in terms of nitrate deficiency. The maximum values of this deficiency were found in the near-bottom waters. The principal processes that might cause the nitrate deficiency were considered: the difference in the oxidation rates of the nitrogen and phosphorus organic compounds, the matter transfer between the continent and the sea, the different efficiency of the biogenic burial of nitrogen and phosphorus in the bottom sediments, and the denitrification in the upper layer of the bottom sediments. It was shown that the most probable cause of the nitrate deficiency was the denitrification. The loss of inorganic nitrogen owing to the supply of the waters of the Sea of Okhotsk to the Pacific Ocean was estimated as ~2.5 × 1011 mol N/year.  相似文献   

10.
A new population of vestimentiferan tubeworms was discovered during a recent expedition to a mud volcano field in the Alboran Sea, western Mediterranean Sea. Morphological data and mitochondrial cytochrome-c-oxidase subunit 1 (COI) sequences show that the Alboran tubeworm is essentially identical to Lamellibrachia sp. found in the eastern Mediterranean. This is the first record of a vestimentiferan species in the western basin of the Mediterranean, an area with direct connection to the Atlantic via the Strait of Gibraltar and therefore of great importance to the study of distributional patterns and evolution of Mediterranean species. We examine the current hypotheses on the biogeographic distribution of vestimentiferan species in the eastern Atlantic and Mediterranean Sea and conclude that independently of when Lamellibrachia colonized the Mediterranean, neither the present hydrological settings of both Mediterranean Sea and Atlantic Ocean, nor vestimentiferans reproductive biology are impeditive to the presence of the Mediterranean species of Lamellibrachia in the NE Atlantic. The West African and Lusitanian margins are the most likely places to find living populations of this species in the NE Atlantic.  相似文献   

11.
The results of determinations of cadmium, copper and lead in western Mediterranean waters collected during the PHYCEMED 81 cruise are discussed in this paper. The analyses were carried out according to two different methods: flameless atomic absorption and anodic stripping voltammetry. Very strict conditions of sampling and treatment were maintained in order to reduce the chance of contamination. The concentrations found are considerably lower than those usually reported for Mediterranean waters. The distributions are homogeneous, both vertically and from one station to another. The average concentrations are 8 ng 1?1 for Cd, 90 ng 1?1 for Cu and 30–40 ng?1 for Pb. This homogeneity, as well as the concentrations of cadmium and lead, may be explained by the hydrological conditions of the Mediterranean Sea.  相似文献   

12.
Aerosol (soluble and total) iron and water-column dissolved (DFe, < 0.2 μm) and total dissolvable (TDFe, unfiltered) iron concentrations were determined in the Canary Basin and along a transect towards the Strait of Gibraltar, in order to sample across the Saharan dust plume. Cumulative dust deposition fluxes estimated from direct aerosol sampling during our one-month cruise are representative of the estimated deposition fluxes based on near surface water dissolved aluminium concentrations measured on board. Iron inventories in near surface waters combined with flux estimates confirmed the relatively short residence time of DFe in waters influenced by the Saharan dust plume (6–14 months). Enhanced near surface water concentrations of DFe (5.90–6.99 nM) were observed at the Strait of Gibraltar mainly due to inputs from metal-rich rivers. In the Canary Basin and the transect towards Gibraltar, DFe concentrations (0.07–0.76 nM) were typical of concentrations observed in the surface North Atlantic Waters, with the highest concentrations associated with higher atmospheric inputs in the Canary Basin. Depth profiles showed that DFe and TDFe were influenced by atmospheric inputs in this area with an accumulation of aeolian Fe in the surface waters. The sub-surface minimum of both DFe and TDFe suggests that a simple partitioning between dissolved and particulate Fe is not obvious there and that export may occur for both phases. At depths of around 1000–1300 m, both regeneration and Meddies may explain the observed maximum. Our data suggest that, in deep waters, higher particle concentrations likely due to dust storms may increase the scavenging flux and thus decrease DFe concentrations in deep waters.  相似文献   

13.
Stoichiometry among bioactive trace metals in the Chukchi and Beaufort Seas   总被引:1,自引:1,他引:0  
The distribution of Al, Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb in seawater was investigated in the Chukchi and Beaufort Seas of the western Arctic Ocean in September 2000. The unfiltered and filtered seawater samples were used for determination of total dissolvable metal (TDM) and dissolved metal (DM), respectively. The concentration of labile particulate metal (LPM) was estimated with the difference between that of TDM and DM. The concentrations of TDAl, TDMn, TDFe, TDCo and TDPb varied substantially in the study area. The high concentrations occurred at stations near the Bering Strait, in the Mackenzie delta, and above reductive sediments on the shelf and slope. These elements were mostly dominated by labile particulate species, such as Fe?CMn oxides and species adsorbed on terrestrial clay. DCo was correlated with DMn over the study area (r?=?0.78, n?=?135), and the slope of the regression line was 27 times higher at a pelagic station than at a shelf station. TDNi, TDCu, TDZn and TDCd showed relatively small variations and were generally dominated by dissolved species. There was a moderate correlation between DCd and phosphate for all samples (r?=?0.79), whereas there were no significant correlation between the other DMs and nutrients. TDNi and TDCu showed a remarkable linearity for most stations except those near the Bering Strait (R 2?=?0.95, n?=?126). These results suggest that biogeochemical cycling including uptake by phytoplankton and remineralization from settling particles has only minor control over the distribution of trace metals in this area. Using the present data, the annual input of bioactive trace metals form the Bering Strait and the Mackenzie River was estimated. Also, the trace metal compositions of major water masses were evaluated. The dissolved elemental ratio was P:Al:Mn:Fe:Co:Ni:Cu:Zn:Cd?=?1:1.2?×?10?2:4.4?×?10?4:1.4?×?10?3:3.7?×?10?5:3.7?×?10?3:1.4?×?10?3:4.5?×?10?3:2.2?×?10?4 for Canada Basin deep water (CBDW). This ratio was significantly different from that for Pacific deep water and Bering Sea water, suggesting substantial modification of the trace metal compositions of seawater in the study area.  相似文献   

14.
The vertical distribution of dissolved aluminium in the Mediterranean Sea offshore of Corsica has been followed during a period of high biological activity (April–September). In May and August, the concentration of dissolved aluminium is at a relatively low (1.5 μg Al1?1) and rather constant value in the surface waters, while exhibiting minimum values of about 0.5 and 0.8 μg Al1?1 in April and September. It increases under the seasonal thermocline to a depth of 150–500 m. The bottom waters are characterized by a constant and relatively high value of 4 μg Al1?1.The observed concentrations of dissolved aluminium are not compatible with a precipitation-dissolution mechanism of clay minerals.The general distribution pattern and the seasonal changes of dissolved aluminium exhibit strong analogies with those of dissolved silica and nitrogen, suggesting a pre-dominant role of biological activity. It is not possible at this stage to attribute the aluminium uptake in the photic zone solely to the activity of diatoms, as suggested earlier.  相似文献   

15.
Dissolved and total dissolvable manganese concentrations have been measured at four stations in the western North Atlantic Ocean. Total dissolvable manganese concentrations are high in surface waters, decrease to uniformly low levels throughout the bulk of the water column, and increase in the bottom nepheloid layer. Dissolved Mn (Mnd) concentrations follow the total dissolvable concentrations throughout the surface and deep waters but do not increase in the near-bottom waters.Deep water concentrations of Mnd decrease from 30 ng l?1 in the Newfoundland Basin to 20 ng l?1 in the Sargasso Sea. This change and other features of the deep water distribution of dissolved manganese could be associated with the slow oxidation of Mn2+ to MnO2. There is also evidence at one station of scavenging of manganese from the dissolved phase in the near-bottom layer which may again be related to the kinetics of manganese oxidation.  相似文献   

16.
The variability of the water transport through three major straits of the Mediterranean Sea (Gibraltar, Sicily and Corsica) was investigated using a high-resolution model. This model of the Mediterranean circulation was developed in the context of the Mercator project.The region of interest is the western Mediterranean between the Strait of Gibraltar and the Strait of Sicily. The major water masses and the winter convection in the Gulf of Lions were simulated. The model reproduced the meso-scale and large-scale patterns of the circulation in very good agreement with recent observations. The western and the eastern gyres of the Alboran Sea were observed but high interannual variability was noticed. The Algerian Current splits into several branches at the longitude of the Strait of Sicily level, forming the Tyrrhenian branch, and, the Atlantic Ionian Stream and the Atlantic Tunisian Current in the eastern Mediterranean. The North Current retroflexed north of the Balearic Islands and a dome structure was observed in the Gulf of Lions. The cyclonic barotropic Algerian gyre, which was recently observed during the MATER and ELISA experiment, was evidenced in the simulation.From time-series of 10-day mean transport, the three straits presented a high variability at short time-scales. The transport was generally maximum, in April for the Strait of Gibraltar, in November for the Strait of Sicily, and in January for the Strait of Corsica. The amplitudes of the transport through the Straits of Gibraltar (0.11 Sv) and Sicily (0.30 Sv) presented a weaker seasonal variability than that of the Strait of Corsica (0.70 Sv).The study of the relation between transport and wind forcing showed that the transport through the Strait of Gibraltar is dependent on local zonal wind over short time-scales (70%), which was not the case for the other straits (less than 30%). The maximum (minimum) of the transport occurred for an eastward (westward) wind stress in the strait. An interannual event was noticed in November–December 2001, which corresponded to a very low transport (0.3 Sv), which was characterised by a cyclonic circulation in the western Alboran Sea. That circulation was also reproduced by the model for other periods than winter during the interannual simulation.The transport through the Strait of Sicily is not influenced by local wind.The wind stress curl of the northwestern Mediterranean influenced the transport through the Strait of Corsica.  相似文献   

17.
Mercury speciation and its distribution in surface and deep waters of the Mediterranean Sea were studied during two oceanographic cruises on board the Italian research vessel URANIA in summer 2003 and spring 2004 as part of the Med Oceaneor and MERCYMS projects. The study included deep water profiles of dissolved gaseous Hg (DGM), reactive Hg (RHg), total Hg (THg), monomethyl Hg (MeHg) and dimethyl Hg (DMeHg) in open ocean waters. Average concentrations of measured Hg species were characterized by seasonal and spatial variations. Overall average THg concentrations ranged between 0.41 and 2.65 pM (1.32 ± 0.48 pM) and were comparable to those obtained in previous studies of the Mediterranean Sea. A significant fraction of Hg was present as “reactive” Hg (average 0.33 ± 0.32 pM). Dissolved gaseous Hg (DGM), which consists mainly of Hg0, represents a considerable proportion of THg (average 20%, 0.23 ± 0.11 pM). The portion of DGM typically increased towards the bottom, especially in areas with strong tectonic activity (Alboran Sea, Strait of Sicily, Tyrrhenian Sea), indicating its geotectonic origin. No dimethyl Hg was found in surface waters down to the depth of 40 m. Below this depth, its average concentration was 2.67 ± 2.9 fM. Dissolved fractions of total Hg and MeHg were measured in filtered water samples and were 0.68 ± 0.43 pM and 0.29 ± 0.17 pM for THg and MeHg respectively. The fraction of Hg as MeHg was in average 43%, which is relatively high compared to other ocean environments. The concentrations reported in this study are among the lowest found in marine environments and the quality of analytical methods are of key importance. Speciation of Hg in sea water is of crucial importance as THg concentrations alone do not give adequate data for understanding Hg sources and cycling in marine environments. For example, photoinduced transformations are important for the presence of reactive and elemental mercury in the surface layers, biologically mediated reactions are important for the production/degradation of MeHg and DGM in the photic zones of the water column, and the data for DGM in deep sea indicate the natural sources of Hg in geotectonicaly active areas of the Mediterranean Sea.  相似文献   

18.
Hydrographic mesoscale structures in the North-western Alboran Sea show a high variability induced by a number of different factors. One of the most important is the differences in atmospheric pressure over the Mediterranean basin when compared to the Gulf of Cádiz. This difference modulates the zonal wind field in the Alboran Sea and the intensity of the Atlantic inflow through the Strait of Gibraltar, also affecting the formation and extension of the Western Alboran Gyre (WAG). When westerly winds are dominant, lower atmospheric pressure in the Mediterranean enhances the inflow of Atlantic waters causing the Atlantic Jet to be located in the vicinity of the Spanish shore, creating a well-defined frontal zone in front of Estepona Cove. In this situation, the coastal upwelling is enhanced, leading to a minimum in sea surface temperature and a maximum of surface nutrient concentrations located in the coastal area. The vertical position of the chlorophyll maximum found in these circumstances appeared to be controlled by the nutrient availability. On the other hand, when easterly winds prevail, higher atmospheric pressure in the Mediterranean leads to a reduced inflow and the oceanographic and biological structures are clearly different. The Atlantic Jet moves southward flowing in a south-eastern direction, changing the structure of the currents, resulting in an enhanced cyclonic circulation extending throughout the North-western Alboran Sea basin. These physical alterations also induce changes in the distribution of biogeochemical variables. Maximum nutrient and chlorophyll concentrations are located further off the coast in the central area of the newly created cyclonic gyre. During these easterlies periods coastal upwelling stops and the distribution of phytoplankton cells seems to be mainly controlled by physical processes such as advection of coastal waters to the open sea.  相似文献   

19.
Within the Central waters of the North Atlantic Ocean there is a significant east–west difference in salinity, similar to that caused by Mediterranean Water at deeper levels. In this paper we hypothesize that the salinity of the Central Water is influenced by the saline Mediterranean Outflow Water, despite physical separation of the two water masses by a salinity minimum over most of the ocean basin. It is suggested that there occurs a cross-isopycnal flux of salinity from the Mediterranean Outflow Water towards the low-density Central Water (detrainment) in the eastern Gulf of Cadiz, not far from the Strait of Gibraltar, where the two water masses are in physical contact. Laboratory experiments, inverse modeling and direct current observations are applied to support the hypothesis.  相似文献   

20.
Concentrations and mineralogy of suspensates in the central and western Mediterranean are vertically and laterally variable. This variability is related to input by resuspension of bottom sediments and from local terrigenous sources. Bottom currents flowing through constrictions at the straits of Sicily and Gibraltar and the eastern entrance of the Alboran Sea resuspend bottom sediments, giving rise to increased concentrations of suspensates in near-bottom waters and limited inputs to higher levels. There is no evidence of a suspensate-rich bottom water in the Balearic Sea.Terrigenous sources are believed to be the cause of increasing relative amounts of montmorillonite in surface waters as they flow eastward within the Mediterranean. Montmorillomite is relatively more important in suspended sediments than in bottom sediments where kaolinite—chlorite is dominant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号