首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A theoretical evaluation of basic thermodynamic relationships reveals that variation of activity coefficients, ion pairing and electrical interactions must be considered when modelling ionic diffusion in seawater. The contributions of ion-pair formation and change in activity coefficient along the diffusion path were studied experimentally by conducting diffusion experiments in which solutions of KCl, NaCl, MgCl2, Li2SO4, K2SO4, Na2SO4 and MgSO4, at an ionic strength of 0.7, were allowed to diffuse into distilled water. The study reveals that the thermodynamic factor, required to correct for changes in the activity coefficient along the diffusion path, is significant for all the salts studied. Agreement between a simple diffusion model, which does not include ion pairing, and observed data was good for completely dissociated salts, but poor for salts which are known to form ion pairs at the concentration levels studied. The diffusion of MgSO4, 0.425 of which is associated at I = 0.7, was successfully modelled by assuming that the diffusion coefficient of the MgSO40 ion pair is different from the diffusion coefficient of the dissociated salt. The diffusion coefficient of this ion pair is estimated to be 1.9 × 10−5 cm2 s−1 at 30°C, as compared to 0.49 × 10−5 cm2 s−1 for the dissociated salt. It is suggested that the high mobility of this ion pair could cause magnesium enrichment in pore water of sulfate depleted sediments.  相似文献   

2.
The stability constants of the ion pairs NaSO4?, KSO4?, MgSO4?, CaSO4, MgCl+ and CaCl+ were determined at 25°C and 0.7 M formal ionic strength, by measuring the solubility of gypsum (CaSO4 · 2H2O) in different media. The media used contained one or two of the following electrolytes: NaCl, KCl, MgCl2, NaClO4, Mg(ClO4)2, Na2SO4. Values for the stability constants are 1.22, 1.84, 12.3, 30.6, 0.48 and 1.20 M?1, respectively, and the solubility product for gypsum is 2.87 · 10?4M2. The distribution of the main constituents of seawater was calculated using these results and the values of the carbonate and bicarbonate constants given by Dyrssen and Hansson (1972–1973). The solubility of gypsum in seawater as calculated and determined experimentally was 21.43 mM and 21.10 mM, respectively.  相似文献   

3.
Stoichiometric association constants, which have been measured for the ion pairs of Cl? and SO4?2 with Na+, K+, Mg2+, and Ca2+, were used to determine the speciation in an artificial sea water containing only these ions. The resulting distribution is quite different to that found in earlier models in which chloride ion association was ignored. The concentrations of chloride ion pairs with the cations are 4 to 5 times larger than the concentrations of the sulphate ion pairs with the same cations. The total activity coefficients of the neutral salts in sea water calculated from the model are in good agreement with the experimentally measured values. The concentration of MgSO40 calculated to be present agrees with the amount determined from ultrasonic absorption data. The calculated solubility of gypsum is also in good agreement with the measured values.  相似文献   

4.
Hydration, ion-water interactions, and water structure effects in seawater were studied by determining differences (Δβ) between the compressibilities of test salt solutions and the compressibilities of reference solutions. The reference solutions were distilled water and seawater (35%0), and the test salt solutions were either 0.13 m or 0.26m with respect to one of the following test salts: LiCl, NaCl, KCl, CsCl, NaF, NaI, MgCl2, CaCl2, BaCl2, Na2SO4, K2SO4, and MgSO4. The compressibility measurements (to 900 bars) were carried out at 2°C and also at 15°C using a differential method in which a pressure increase or a temperature increase causes Δβ to become less negative. At 1 bar and 15°C, the Δβ (0.26 m, distilled water reference) values ranged from ?1.14 × 10?6 bar? for NaI to ?3.84 × 10?6 bar?1 for Na2SO4, and the Δβ (0.26 m, seawater reference) values ranged from ?1.30 × 10?6 bar?1 for NaCl to ?3.04 × 10?6 bar?1 for Na2SO4. The Δβ values were used to calculate hydration numbers. Entropy of transfer, excess hydrogen bond breaking (determined by NMR), and effective radii of ions are properties which can be used to describe the influence of ions on water structure. The extent to which these properties correlate with Δβ values depends upon whether the ion is an anion or a cation, and this correlation forms the thesis that anions alter water structure in a different way than do cations.  相似文献   

5.
The stability of the ion pair NaSO4 was determined by measuring the change in sodium activity with medium composition at constant ionic strength, using a sodium-sensitive glass electrode. The stability constants of MgSO4 and MgCl+ were determined indirectly from measurements of the stability of MgF+ in different media. All measurements were performed at 1 atm pressure, 25 ± 0.1 °C and 0.7 M formal ionic strength. The stability constants for NaSO4?, MgSO4, MgF+ and MgCl+ are 1.8 ± 0.1, 6.3 ± 0.1, 22.9 ± 0.1 and 0.34 ± 0.02 M?1, respectively.  相似文献   

6.
The formation of the ion pairs MgSO4 and NaSO4? was investigated calorimetrically at 0.75 M ionic strength, 25°C, 1 atm. Simultaneous determinations of enthalpy changes, ΔH10, and stability constants, K1, were not possible, and values of K1 determined independently had to be introduced for the calculation of ΔH10. The values of ΔH10 obtained were 1–3 kJ mol?1 for MgSO4 and 0 kJ mol?1 for NaSO4?.  相似文献   

7.
The conditional stability constant of HSO4? has been determined at 25°C, 1 atm and a formal ionic strength of 0.7 M in solutions containing sodium, magnesium, chloride and sulphate. This was done spectrophotometrically (UV), using diphenylamine as indicator. The value obtained was 17.0 ± 0.1 (molar scale). Single ion activity coefficients for Na2SO4, K2SO4 and MgSO4 have been calculated according to the Bates et al. (1970) model, assuming that the sulphate ion is not hydrated. It was found that the single ion activity coefficient of sulphate changes very little between Na2SO4, K2SO4 and MgSO4 when the formal ionic strength is kept constant.These results have been used to obtain relations between the stability constants of NaSO4? and MgSO4 valid for seawater.  相似文献   

8.
The activities of most of the major seawater components at 1,001 bars have been estimated, and values for the ions deduced. Equations giving the effect of pressure on the activities of ionic species in seawater (S = 35‰) have been developed. The species covered are: NaSO4?, MgSO40, CaSO40, H+, the free base (NH3), the HCO3?/CO32 activity ratio and the ion activity product of calcium carbonate. Comparison of the latter with the “ideal” solubility of calcite (pure solid in equilibrium with a mixed electrolyte solution) indicates a degree of saturation compatible with the trends indicated by in situ measurements.  相似文献   

9.
Recently, the stoichiometric association constant for MgSO4o in seawater was presented as being inconsistent with thermodynamic data. The results obtained are refuted here as being inaccurate due to assumptions made concerning the activity coefficient of the MgSO4o ion pair.  相似文献   

10.
11.
Measurements of the specific absorption coefficients of phytoplankton (a*ph) are currently required to estimate primary productivity at regional to global scales using satellite imagery. The variability in a*ph and phytoplankton size fraction was determined during January 2002 in the southern region of the California Current. Median values of a*ph at 440 nm and 674 nm were 0.061 and 0.028 m2 (mg Chl-a)?1 and significant variability was found between inshore and offshore stations. A decrease of a*ph is associated with increased phytoplankton abundance and larger species. The a*ph tends to be high when the photoprotector zeaxanthin is present in elevated concentrations and phytoplankton abundance lower. The nano-microphytoplankton (>5 µm) community consisted of 28 diatom and 15 dinoflagellate genera with mean abundance values of 2.8 and 1.6 × 103 cells l?1, respectively. The picophytoplankton (<5 µm) community consisted of Prochlorococcus sp. (mean 8.2 × 106 cells l?1) and Synechococcus sp. (mean 19.5 × 106 cells l?1), as well as a mixture of picoeukaryotes (mean 8.6 × 106 cells l?1). The contributions of nano-microphytoplankton and picophytoplankton to the total biomass (µg C l?1) were 46% and 54%, respectively. This study showed that picophytoplankton cells increased 2.5 times up during January 2002 compared with the previous year. It was concluded that the waning of La Niña conditions had a clear effect on the pelagic ecosystem in January 2002 and that the higher microphytoplankton abundance in the California Current was dominated by local and regional seasonal processes.  相似文献   

12.
The dynamics of methane (CH4) flux in relation to populations of methanogenic and methanotrophic bacteria was studied under the different biophysical conditions of the Indian Sundarban mangrove ecosystem. Soil depth profile analysis (up to 60 cm) in the lower littoral zone (LLZ) revealed that a methanogenic population of 6.45 ± 0.19 × 104 cells/g dry weight (dry wt) of soil accounted for a CH4 production rate of 6.23 ± 3.53 × 103 µmol m?2 day?1, whereas in the surface soil, a methanogenic population of 3.34 ± 0.37 × 10cells/g dry wt of soil accounted for a CH4 production rate of 31.6 ± 0.57 µmol m?2 day?1. The CH4 oxidation rate at 60 cm depth in the LLZ was 24.42 ± 1.28 µmol m?2 day?1, with an average methanotrophic population of 1.33 ± 0.43 × 104 cells/g dry wt of soil, whereas in the surface soil, the oxidation rate and average population were 3.38 ± 1.43 × 10µmol m?2 day?1 and 12.80 ± 2.54 × 10cells/g dry wt of soil, respectively. A similar soil profile in terms of CH4 dynamics and the populations of methanogenic and methanotrophic bacteria was found in the mid‐littoral and upper littoral zones of the studied area. The results demonstrate that most of the produced CH4 (approximately 60%) was oxidized by methanotrophic bacteria present in the soil, thus revealing their principal role in regulating the CH4 flux from this unique ecosystem.  相似文献   

13.
It is shown that the values of pK1C and pK2C for carbonic acid, pKB for boric acid and the ionic product of water, pKw, in sea water may be explained on the basis of their determination in 0.7 Mw sodium chloride and the formation of the following ion-pairs: NaSO4?, MgSO4, CaSO4, MgCO3, CaCO3, MgHCO3+, CaHCO3+, MgOH+, HSO4?, MgB(OH)4+ and CaB(OH)4+. On the whole the calculated stability constants are lower than those given by Garrels and Thompson (1962).  相似文献   

14.
Oxy-anionic species of V, As, Se, Mo, Sb, Te and W were measured in solution and suspension in samples obtained during several cruises in the Dutch Wadden Sea, the offshore region of the Southern Bight (North Sea) and in the estuaries of the Rhine and Scheldt. Dissolved concentrations at salinities above 34·5 × 10?3 ( = 34·5%. S) agreed generally well with published open ocean values. It is suggested that Se speciation differs from the open ocean.In the Wadden Sea, concentrations of V, Se, Mo and Sb were linearly related to salinity (10–35 × 10?3). The good agreement between measured and extrapolated values at a salinity of 0·5 × 10?3 suggests conservative behaviour in the Rhine estuary (with residence time of freshwater in the order of a few days).Dissolved concentration vs. salinity plots in the Scheldt estuary (residence time 2–3 months) showed pronounced minima and maxima. These occurred in the low or medium salinity range for V, As and Sb. Linear behaviour was observed for Se and Mo (in some cases, relatively large differences between cruises were detected). Deviations from linearity in the plots are interpreted in terms of thermodynamic equilibrium conditions involving species with different solubilities (V), local input from land (As, Se, Sb, Te) and removal from solution (As), probably through coprecipitation with Fe(OH)3.In the offshore samples, the contributions of particulate forms to the total element concentrations were small (<15%). At higher SPM concentrations (about 30 mg dm?3), this percentage remained small for Se, Mo and Sb (<15%); it was substantial for V and As (25–50%).  相似文献   

15.
Five geographically and genetically diverse strains of the brine shrimp, Artemia salina, were tested for response to copper sulphate. Mean survival times (MST) were determined for each strain following continuous exposure to concentrations of 10?1, 1, 101, 102, 103, 104 and 105 ppm CuSO4. In addition, lifetime reproductive performance parameters were evaluated for 15 females from each strain after 24 h exposure to 0·067 × 10?9 CuSO4.Two-factorial ANOVA revealed that treated females produced fewer offspring per brood and fewer broods per female, resulting in an overall decline in the mean number of offspring per day per female over the reproductive span. When the standard 24 h MST results are compared with the 24 h dose level of CuSO4 found to impair reproductive performance, the latter was from 24,000 to 156,000 times more sensitive, depending upon strain.  相似文献   

16.
The stability of the ion pair CaSO4 was determined from measurement of the change in calcium ion activity with medium composition at constant ionic strength. A calcium selective PVC-matrix liquid membrane electrode was used to monitor the calcium ion activity. All measurements were performed at 1 atm, 25 ± 0.1°C and 0.7 M formal ionic strength. The evaluation of the stability constant depends on the degree of complexation between calcium and chloride and between sodium and sulphate. The dependence of KCaSO4, on KNaSO4 and KCaCl can be described by the following relations:KCaSO4=17.7 KCaCl+16.5 (KNaSO4=1.8)KCaSO4=18.8 KCaCl+17.3 (KNaSO4=2) for KCaCl=0–1A value of KCaSO4=25.4 is suggested.  相似文献   

17.
A novel technique to determine complexing capacities for zinc is presented. The free zinc concentration is determined by cathodic stripping voltammetry preceded by adsorptive collection of complexes of zinc with ammonium pyrrolidine dithiocarbamate (APDC). The reduction peak of zinc is depressed as a result of ligand competition by natural organic material in the sample. Sufficient time is allowed to reach equilibrium between this material and added APDC, and equilibrium is maintained during the measurement. Both electrochemically reversible and irreversible complexes can therefore be investigated. Values for KZnAPDC are calibrated against NTA and EDTA in seawater of several salinities; log KZnAPDC was found to be 4.40 at 36‰, 4.36 at 24‰, 4.43 at 12‰, and 4.87 at 2.3‰. The ligand concentration and conditional stability constant, KZnL, for complexing ligands in a sample from the Irish Sea were determined in the presence of 4 × 10?5 M APDC and with added zinc concentrations between 5 × 10?9 and 3 × 10?7 M. The data best fitted a complexation model containing two ligands with concentrations of 2.6 and 6.2 and 10?8 M, and with values for log KZnL of 8.4 and 7.5, respectively. These results are comparable to those obtained with other equilibrium techniques, but the values of the constants are greater than those from ASV measurements.  相似文献   

18.
The extent and kinetics of Np(V)O2+ adsorption from dilute aqueous solutions and seawater onto a variety of synthetic and natural solids were determined at 25°C and 1 atm total pressure. Extensive and complex adsorption reactions were found, contrary to speculations in the literature that NpO2+ should behave as a simple monovalent ion with a low affinity for surfaces. When normalized to adsorption per unit solid surface area, the ranking for the synthetic solids was aragonite ? calcite > goethite ? MnO2 ≈ clays. Natural materials generally followed the same behavior patterns as their synthetic counterparts. The dissolved/adsorbed ratio was found to be constant over a wide range (10?13–10?7M) of NpO2+ concentrations. At higher concentrations the extent of adsorption decreased until a solubility limit was reached at approximately 10?5 M.Solution composition had the most significant influence for NpO2+ adsorption on goethite, where much more extensive adsorption occurs in dilute solutions than in seawater. When seawater is added to a dilute solution, extensive desorption of NpO2+ from goethite occurs. Tests conducted on NpO2+ adsorbed on carbonates indicated that it remained in the V oxidation state.There is a growing consensus that Pu dissolved in natural waters also occurs dominantly in the V oxidation state as PuO2+ ion. Consequently, these results for NpO2+ may serve as a guide for Pu behavior when also in the V oxidation state. The fact that most adsorbed Pu is found in the III or IV oxidation states indicates that reduction of Pu may occur subsequent to adsorption in the V oxidation state.  相似文献   

19.
A case study was carried out in 2000 in the shallow coastal area of the Northern Adriatic Sea (Gulf of Trieste) where untreated domestic sewage and industrial wastes are discharged at rate of 5500 m3·day?1. The sewage plume above the outfall was followed using faecal coliforms (FC) and overturning length scale (lT). The latter was rejected as a marker as the discharge conditions prohibit following the turbulence of sewage water. Intermittent sewage discharge is reflected in the minimal effect of eutrophication. Increase of phytoplankton biomass is thus only minor compared with the unpolluted area regardless of elevated concentrations of sewage‐derived nutrients (confirmed by correlation coefficients between FC and NH4+, TP, PO43?: 0.78, 0.71 and 0.67, respectively). Deteriorated trophic status, determined by the TRIX index, was observed only in the surface layer (average TRIX: 5.67). High FC content well above the regulation limit (up to 2.6 × 105 FC·100 ml?1) represents, therefore, the major negative impact of the improperly treated waste for the risk to human health.  相似文献   

20.
Abstract

Thirty sites were sampled in three New Zealand rivers (Waikato, Maitai, and Wakapuaka) during late summer 1977. Samples were collected from just below the surface at mid river or in the tailraces below hydro‐electric dams.

Parameters measured included bacterial numbers (direct counts), heterotrophic potential (Vmax ), adenosine triphosphate (ATP), chlorophyll a (Chi a), and concentrations of nitrogen and phosphorus compounds.

Bacterial populations per millilitre fluctuated threefold (6.4–19.4 × 105) along the Waikato River and were lower and more consistent in the two South Island rivers (1.46–2.55 × 105). In contrast, Vmax varied 5000‐fold in the Waikato River, from a characteristically oligotrophic value of 0.0035 μg. l?1·h?1 (Lake Taupo outlet) to a eutrophic value of 18.4 μg. l?1·h?1 at the Mihi bridge. Vmax for the two South Island rivers ranged from 0.0091 to 0.189 μg. l?1 · h?1.

ATP, Chi a, Kjeldahl nitrogen, nitrate nitrogen, and total phosphorus concentrations for the 20 sites on the Waikato River varied in a similar way to the Vmax and bacterial data. There were large peaks at the Mihi bridge, lower values for the dam tailraces and significant increases for the sites below Hamilton. Concentrations for these parameters were lower and more consistent along the lengths of the two South Island rivers.

Most parameters were significantly correlated with each other for the Waikato River samples. The strongest correlations were between Vmax and bacterial numbers and between Vmax and nitrate nitrogen. In the Maitai and Wakapuaka River series these correlations were also significant, but the only other significant correlations recorded there were between ATP and nitrate nitrogen, and between ATP and bacterial numbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号