首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
冀东新太古代蛇绿岩套基本特征的初步报道   总被引:7,自引:0,他引:7  
李江海  T  KUSKY 《岩石学报》2001,17(3):422-424
在冀东遵化新太古代构造带内首次识别出了东湾子蛇绿岩套残片,它具备严格意义上蛇绿岩套层序,从顶部到底部依次为变形枕状溶岩和变沉积岩,席状岩墙杂岩,斜长花岗岩,辉长岩杂岩,镁铁质-超镁铁质杂岩堆积岩,超镁铁质构造岩。其中,席状岩墙杂岩规律巨大,由密集分布的基性岩墙组成,并显示特征的单向冷凝边,岩浆构造及层序指示该蛇绿岩套向西掀斜,并因构造变形使层序重复,根据已有的2.67-2.79Ga的Sm-Nd全岩等时线年龄,及其被奥长花岗岩体(锆石U-Pd2501+18/-16Ma)侵位,可以认为东湾子蛇绿岩套形成于新太古代。它的发现对于早期板块的构造的研究意义重大。  相似文献   

2.
雅鲁藏布江缝合带,作为新特提斯洋闭合和冈底斯弧诞生的板块聚合边界,过去通常以日喀则蛇绿岩带及相伴产出的高压低温变质带(肖序常和高延林,1984)和混杂堆积带(陈国铭等,1984)为典型标志。日喀则蛇绿岩带广布于雅鲁藏布江南岸,组合层序自南而北依次为变质橄榄岩带、镁铁—超镁铁杂岩、席状岩墙—岩床杂岩和基性熔岩(鲍佩声和  相似文献   

3.
苏北东海超镁铁岩分为南、北两带。北带以变质橄榄岩为主,南带以洋壳堆积超镁铁岩为主,是“肢解的蛇绿岩”。推测蛇绿岩形成于中—新元古代扬子古大陆板块北缘苏北—胶南地体与胶北地体间的洋盆环境。变质橄榄岩为高温超高压下原始地幔岩经中等程度熔融后的残余地幔橄榄岩。堆积超镁铁岩是原始地幔岩部分熔融或岩浆结晶分离的产物,富含石榴石,与榴辉岩块伴生,是在中—新元古代由洋壳向南俯冲消减过程中形成的相对低温超高压变质岩。它们遭受强烈破碎,被挤压到东海岩群下部不同构造层位中,成为东海俯冲带混杂岩中的深源岩块。  相似文献   

4.
桐柏地区蛇绿岩块体及其构造意义   总被引:3,自引:2,他引:3  
武长得 《地质论评》1990,36(6):494-503
本文根据野外工作和大量岩石学、岩石化学资料研究了桐柏地区的蛇绿岩块体。研究区内的蛇绿岩并非前人所描述的那样完整,真正属于蛇绿岩成员的仅是呈外来块体形式出现的超镁铁岩带,其中信阳卧虎的阿尔卑斯型超镁铁岩代表了蛇绿岩序列的变质的橄榄岩部分,桐柏大河一带的超镁铁杂岩代表了堆积岩层序。在同一地区出现的基性侵入岩和基性火山岩不是蛇绿岩的成分,应将它们剔出。基性火山岩是在弧后的边缘海盆地喷发的。蛇绿岩的侵位时代是早古生代末,大体与基性火山岩的喷发同时。上述事实表明,在早古生代沿松扒断裂带曾存在一个沟-弧-盆体系。  相似文献   

5.
松树沟蛇绿岩是东秦岭构造带内出露规模最大的超镁铁—镁铁质杂岩体。地质填图证实,该区存在结构十分复杂的大型逆冲推覆构造系统,其中北区松树沟超镁铁质主岩体内发育的高角度逆冲断层系向北拆离;而包括富水杂岩在内的南区镁铁质及超镁铁质岩块均向南大规模逆掩;剖面上总体构成不对称(向南滑脱为主)的“背冲型”样式。松树沟逆冲推覆构造研究对恢复蛇绿岩组合层序及其古构造环境具有重要的地质意义。  相似文献   

6.
新疆西准噶尔地区两类蛇绿岩的地质特征及其成因研究   总被引:5,自引:0,他引:5  
本文将西准噶尔地区蛇绿岩分为两类:一类是变质橄榄岩 橄长岩 辉长岩岩石组合(简称PTG系列);另一类则是变质橄榄岩 辉石岩 辉长岩岩石组合(简称PPG系列)。前者以达拉布特、和布克赛尔蛇绿岩带为代表,后者以唐巴勒、玛依勒山蛇绿岩带为代表。PTG系列遵循富Al的演化趋势,而PPG系列则遵循富Ca的演化趋势;从而造成两类蛇绿岩之间在岩石组合、矿物学、岩石化学、稀土元素等地球化学以及所含铬铁矿床的种属上均有明显的差异。 两类蛇绿岩中变质橄榄岩的成因机制是上地幔岩部分熔融,两者之间的差异则是由部分熔融程度决定的。而壳层岩石(指堆积杂岩、岩墙杂岩、熔岩)则是由岩浆结晶作用形成的;堆积杂岩中出现辉石岩 辉长岩和橄长岩 辉长岩的不同岩石组合则与堆积岩岩浆房出露的深度和氧化状态有关。  相似文献   

7.
岩石化学研究表明,洋后变质超镁铁岩是由变质方辉橄榄岩和变质超镁铁堆积岩组成。变质方辉橄榄岩的微量元素地球化学及矿物化学特征表明,应为亏损的残余地幔产物。通过系统的岩石地球化学、矿物化学及年代学研究,认为洋后变质超镁铁岩可能为华南晚震旦-早古生代的蛇绿岩组成部分。  相似文献   

8.
新疆黄山地区蛇绿岩块的地质、地球化学特征及构造意义   总被引:13,自引:4,他引:9  
黄山地区镁铁-超镁铁堆积杂岩,岩体小而分异好,岩体边部受构造作用强烈,属蛇绿岩中的堆积杂岩,过渡元素的配分曲线为较明显的“W”型。稀土元素配分曲线为LREE弱富集的平坦型。其中辉长岩单元为高钛型(TiO_2最大值为5.20%),这些均反映了堆积杂岩形成环境为洋中脊,分布于现在的位置是板块运动的结果。结合上述事实,通过沉积建造分析,该区在中石炭统曾存在沟弧盆体系。  相似文献   

9.
吉林省蛇绿岩问题   总被引:8,自引:2,他引:8  
按照1972年彭罗斯国际蛇绿岩讲座人地所提出的定义,吉林省北部造山带中所见的含铬和含镍的两大类镁铁和超镁铁质杂岩,经初步野外调查,均未发现类似塞浦路斯。特罗多斯等典型蛇绿岩所具有的完整假层序,成分特征亦显差异,其至是重要的区别。  相似文献   

10.
玉石沟铬铁矿床的成因   总被引:2,自引:0,他引:2  
玉石沟铬铁矿床产于北祁连蛇绿岩型超镁铁岩中,可分为产于堆积超镁铁岩中的堆积铬铁矿床和产于地幔橄榄岩中的豆荚状铬铁矿床两种类型。堆积铬铁矿床由玄武岩浆分离结晶作用形成,位于辉长岩下约20m处的纯橄岩或辉石岩中;豆荚状铬铁矿床由地幔岩部分熔融作用形成,产于地幔橄榄岩上部或顶部基性程度最高的纯橄岩或纯橄岩-斜辉辉橄岩杂岩带,位于堆积杂岩下约200~1700m范围内。  相似文献   

11.
海阳所堆积辉长岩由橄长岩、橄榄辉长岩和辉长岩组成。在橄长岩和橄榄辉长岩中发育有典型的变质反应结构:主要为橄榄石与斜长石之间形成由斜方辉石、尖晶石、角闪石和石榴石等矿物组成的多期次次变边,并有三个不同世代变质矿物,早期Cpx+Opx+Spl,中期Amp,晚期Grt;期次是钛铁矿与斜长石之间形成石榴石次变边,相对比较简单,只有一个世代变质矿物,为Grt+Amp+Rut或Grt+Rut岩中石榴石是通过斜长石与角闪石或斜长石与钛铁矿之间的变质反应形成的,虽为峰值变质作用的产物,但变质反应的期次及类型不同导致了所形成石榴石的温度和压力有所不同。堆积辉长岩形成演化的温压计算表明,堆积辉长岩在经过近等压降温的岩浆作用之后的变质作用早期,仍为近等压降温,而晚期则表现为近等温升压。这一特殊的P-T演化可能反映了堆积辉长冷侵位与深俯冲特征。  相似文献   

12.
The ophiolitic sequence which crops out along the Aspropotamos Valley, Northern Pindos, Greece is composed from the bottom to the top of cumulates, dolerites, basaltic lavas, upper pillow lavas with basaltic/andesitic composition, and scarce basaltic dykes. The intrusive sequence, which is the subject of the present paper, exhibits magmatic layering more pronounced at the bottom than at the top where isotropic gabbros occur; they grade into the overlying dolerites. Troctolites with rare ultramafites prevail in the lower section and olivine gabbros in the upper section; at the top two-pyroxene gabbros appear. The rocks are mainly adcumulates and mesocumulates with subordinate heteradcumulates. The cumulus phases separated in the order: olivine and Cr-spinel, plagioclase, clinopyroxene, orthopyroxene. Olivine, plagioclase and pyroxenes frequently exhibit adeumulus overgrowth. Intercumulus phases may be plagioclase, clinopyroxene, orthopyroxene, pale brown amphibole and magnetite. Where pore material is present, it is composed of plagioclase, clinopyroxene, orthopyroxene, hornblende and ores. Cr-spinel occurs mainly at the bottom of the sequence (Cr2O3 between 30·5 and 39·8 per cent), while magnetite appears as a very rare phase in the upper section. Olivine, orthopyroxene, clinopyroxene exhibit slight cryptic variation (Mg × 100/(Mg + Fe) in the range 90–79, 90–70, 93–72 respectively). The investigated dolerites are non-cumulus rocks where clinopyroxene may be more magnesian than in the uppermost gabbros. The cumulate sequence and dolerites underwent variable but generally slight spilitization, in contrast to the overlying lavas. The sequence was generated through crystal accumulation probably from periodic pulses of tholeiitic magma; newly injected magma batches mixing with magma fractions already differentiated in the magma chamber. The high fluid pressure evidenced by the fluid inclusions in plagioclase and the whole chemical trend of the cumulate sequence are consistent with a genesis above a subduction zone, as already hypothesized for the overlying lavas.  相似文献   

13.
Gabbroic intrusions of the El-Aradiya area are a part of the Neoproterozoic basement cropping out in the central Eastern Desert of Egypt. They are composed mainly of gabbroic cumulates (diopside-plagioclase cumulate and plagioclase-augite cumulate) and fine-grained noncumulate gabbro. Mineral chemistry data indicate that the plagioclase core compositions of the gabbroic cumulates range between An90 and An60, whereas fine-grained noncumulate gabbro plagioclase core compositions are An61−56 and rim compositions are An54−42. The clinopyroxenes are diopside and augite in the gabbroic cumulate, and augite in the fine-grained noncumulate gabbro. Chemical re-equilibration between pyroxenes of gabbroic cumulates vary from 1150-900°C and for fine-grained noncumulate gabbro range from 1200-1100°C. The amphiboles are calcic, varying from tschermakite and tschermakitic hornblende, and Mg-hornblende in the gabbroic cumulate and only Mg-hornblende in the fine-grained noncumulate gabbro. They indicate an island-arc tholeiitic setting for gabbroic intrusions of the El-Aradiya area. Major and trace element data suggest arc tholeiite characters, a comagmatic suite and subduction-related magma with enrichment of LILE and depletion in HFSE relative to MORB. The estimated parent magma is similar to tholeiitic Aleutian arc primary magma. The gabbroic intrusions are analogous to intrusions emplaced in an immature island-arc setting in which the oceanic crust was thin.  相似文献   

14.
The rhyolite of Little Glass Mountain (73–74% SiO2) is a single eruptive unit that contains inclusions of quenched andesite liquid (54–61% SiO2) and partially crystalline cumulate hornblende gabbro (53–55% SiO2). Based on previous studies, the quenched andesite inclusions and host rhyolite lava are related to one another through fractional crystallization and represent an example of a fractionation-generated composition gap. The hornblende gabbros represent the cumulate residue associated with the rhyolite-producing and composition gap-forming fractionation event. This study combines textural (Nomarski Differential Interference Contrast, NDIC, imaging), major element (An content) and trace element (Mg, Fe, Sr, K, Ti, Ba) data on the style of zonation of plagioclase crystals from representative andesite and gabbro inclusions, to assess the physical environment in which the fractionation event and composition gap formation took place. The andesite inclusions (54–61% SiO2) are sparsely phyric with phenocrysts of plagioclase, augite and Fe-oxide±olivine, +/–orthopyroxene, +/–hornblende set within a glassy to crystalline matrix. The gabbro cumulates (53–55% SiO2) consist of an interconnected framework of plagioclase, augite, olivine, orthopyroxene, hornblende and Fe-oxide along with highly vesicular interstitial glass (70–74% SiO2). The gabbros record a two-stage crystallization history of plagioclase+olivine+augite (Stage I) followed by plagioclase+orthopyroxene+ hornblende+Fe-oxide (Stage II). Texturally, the plagioclase crystals in the andesite inclusions are characterized by complex, fine-scale oscillatory zonation and abundant dissolution surfaces. Compositionally (An content) the crystals are essentially unzoned from core-to-rim. These features indicate growth within a dynamic (convecting?), reservoir of andesite magma. In contrast, the plagioclase crystals in the gabbros are texturally smooth and featureless with strong normal zonation from An74 at the core to around An30. K, and Ba abundances increase and Mg abundances decrease steadily towards the rim. Ti, Fe, and Sr abundances increase and then decrease towards the rim. The trace element variations are fully consistent with the two-stage crystallization sequence inferred from the gabbro mineralogy. These results indicate progressive closed-system in situ crystallization in a quiescent magmatic boundary layer environment located along the margins of the andesite magma body. The fractional crystallization that generated the host rhyolite lava is one of inward solidification of a crystallizing boundary layer followed by melt extraction and accumulation of highly evolved interstitial liquid. This mechanism explains the formation of the composition gap between parental andesite and rhyolite magma compositions.  相似文献   

15.
《Gondwana Research》2002,5(2):519-534
The Capivaras Diorite, in the Vila Nova region, NW of the Sul-rio-grandense Shield, is composed of six NE- to NNE-oriented rock bodies of late-tectonic emplacement relative to the D3 deformation phase which forms subvertical high-strain zones in basement gneiss sequences. Within these intrusive bodies, a shape foliation is present, generally parallel to contacts and displaying a local solid-state deformational component. The internal structure of the Capivaras Diorite main intrusion is marked by a zone of intense flow and mingling, characterized by strong shape foliation and layers of variable texture and composition, which result from cumulative processes, heterogeneous flow and interaction of coeval, compositionally contrasting magmas. The central part of this intrusion is texturally homogeneous and slightly foliated, even though cumulative processes have remained important during its formation. Along the contact with basement gneisses, fine-grained diorites are found, which are considered to be compositionally close to the parental magma of the Capivaras Diorite. This magma has a mildly alkaline affinity and shows moderate to high contents of Zr, Ti and P. Highly-fractionated REE patterns, low Nb contents, as well as high contents of K, Sr, Ba, and Rb, are suggestive of its provenance from mantle sources which have been previously affected by subduction processes, such as those of mature magmatic arcs or post-collisional settings. Magmatic evolution was controlled by cumulative processes and gave origin to pyroxene orthocumulates, plagioclase-pyroxene orthocumulates, pyroxene adcumulates, and more rarely plagioclase adcumulates. The cumulative origin of these rocks is indicated by field, textural and geochemical features, which are distinct from those of crystallized liquids. The compositional diversity of cumulates has led to the generation of compositionally different melts. The early-formed pyroxene cumulates have caused Ca, Al, Na, Ba, and Sr enrichment in the magmatic liquid, leading to plagioclase crystallization and accumulation. Coarse-grained mafelsic cumulates were formed during the late stages of magmatic crystallization, due to volatile enrichment of the intercumulus liquid. Considering geological relations, as well as tectonic and compositional features of the Capivaras Diorite, it is interpreted as part of Neoproterozoic magmatism related to the post-collisional stage of Brasiliano/Pan-African Orogenic Cycle in southern Brazil.  相似文献   

16.
Troctolitic gabbros from Valle Fértil and La Huerta Ranges, San Juan Province, NW‐Argentina exhibit multi‐layer corona textures between cumulus olivine and plagioclase. The corona mineral sequence, which varies in the total thickness from 0.5 to 1 mm, comprises either an anhydrous corona type I with olivine|orthopyroxene|clinopyroxene+spinel symplectite|plagioclase or a hydrous corona type II with olivine|orthopyroxene|amphibole|amphibole+spinel symplectite|plagioclase. The anhydrous corona type I formed by metamorphic replacement of primary olivine and plagioclase, in the absence of any fluid/melt phase at <840 °C. Diffusion controlled metamorphic solid‐state replacement is mainly governed by the chemical potential gradients at the interface of reactant olivine and plagioclase and orthopyroxene and plagioclase. Thus, the thermodynamic incompatibility of the reactant minerals at the gabbro–granulite transition and the phase equilibria of the coronitic assemblage during subsequent cooling were modelled using quantitative μMgO–μCaO phase diagrams. Mineral reaction textures of the anhydrous corona type I indicate an inward migration of orthopyroxene on the expense of olivine, while clinopyroxene+spinel symplectite grows outward to replace plagioclase. Mineral textures of the hydrous corona type II indicate the presence of an interstitial liquid trapped between cumulus olivine and plagioclase that reacts with olivine to produce a rim of peritectic orthopyroxene around olivine. Two amphibole types are distinguished: an inclusion free, brownish amphibole I is enriched in trace elements and REEs relative to green amphibole II. Amphibole I evolves from an intercumulus liquid between peritectic orthopyroxene and plagioclase. Discrete layers of green amphibole II occur as inclusion‐free rims and amphibole II+spinel symplectites. Mineral textures and geochemical patterns indicate a metamorphic origin for amphibole II, where orthopyroxene was replaced to form an inner inclusion‐free amphibole II layer, while clinopyroxene and plagioclase were replaced to form an outer amphibole+spinel symplectite layer, at <770 °C. Calculation of the possible net reactions by considering NCKFMASH components indicates that the layer bulk composition cannot be modelled as a ‘closed’ system although in all cases the gain and loss of elements within the multi‐layer coronas (except H2O, Na2O) is very small and the main uncertainties may arise from slight chemical zoning of the respective minerals. Local oxidizing conditions led to the formation of orthopyroxene+magnetite symplectite enveloping and/or replacing olivine. The sequence of corona reaction textures indicates a counter clockwise P–T path at the gabbro–granulite transition at 5–6.5 kbar and temperatures below 900 °C.  相似文献   

17.
Pleistocene lavas from Monte S. Angelo and Chiesa Vecchia volcanoes on Lipari contain two suites of inclusions. A metapelitic suite consists of gneisses and granulites with combinations of cordierite, garnet, corundum, hercynite, andalusite, sillimanite, orthopyroxene, ilmenite, magnetite, biotite, plagioclase, and quartz. A gabbroic suite has cumulus texture and contains plagioclase, orthopyroxene, clinopyroxene, and magnetite. All megacryst phases in the lavas appear to be derived from rock fragments, with the exception of euhedral strongly zoned calcic plagioclase, and none has grown by homogeneous nucleation from liquid represented by the groundmass, which is peraluminous rhyolite (>70 wt% SiO2, >6 wt% K2O). Ground-mass microcrysts were nearly all derived from disaggregated metapelites; overgrowths of alkali feldspar on plagioclase and of orthopyroxene on clinopyroxene, and quartz intergrown with alkali feldspar, are the only phases that grew from the rhyolitic liquid. Euhedral cordierite, hercynite, and plagioclase at the margins of some rock fragments grew by reaction of metapelite with liquid.For grains in contact within metapelite inclusions, geothermometers and geobarometers yield estimates of equilibration conditions in the range of 800±100° C and 5±1 kbar. Compositions of phases in the same thin section, but not in the same inclusion, yield broadly erratic P and T estimates indicating disequilibrium among metapelite inclusions. Pyroxene thermometry in the gabbro suite indicates a crystallization temperature of 1020±50° C and a lack of subsequent thermal equilibration with the rhyolitic liquid.The metapelite suite may partly be restite, but much is xenolithic, derived from a vertical interval of perhaps several kilometers, and may have undergone a much earlier episode of melting. The gabbro fragments are accidental xenoliths incorporated as the magma rose. Contaminants (metapelite and gabbro) account for 50 vol.% of the lavas, and cause them to be classified as high-K andesite according to whole-rock major element analysis.The rhyolitic liquid may have originated by partial fusion of metapelites in the lower crust, or by fractional crystallization of mafic mantle-derived magma combined with assimilation of metapelite; the bulk of the evidence favors assimilation-fractional crystallization. Miocene and younger metapelite-contaminated rhyolites also occur in Tuscany, SE Spain, E Morocco, and NW Tunisia, and are associated in each region with mafic silica-undersaturated lavas, implying crustal underplating around the western Mediterranean before, during, and after formation of the Tyrrhenian basin.  相似文献   

18.
PRELIMINARY STUDY ON THE OPHIOLITIC MELANGE IN THE YALU TSANGPU GRAND CANYON AREA  相似文献   

19.
The North Puruliya Shear zone (NPSZ) is characterized by occurrence of mafic-ultramafic rocks aligned parallel to the shear zone, intruding the high grade Proterozoic rocks of Chhotanagpur Gneissic Complex. The ultramafic rocks occur as small lenses, pockets, veins, thin dykes and are intimately associated with mafic (gabbro, norite) rocks. Pyroxenites (viz. olivine websterite, websterite, plagioclase websterite) and hornblendite are the two important members of the ultramafic rocks containing clinopyroxene, orthopyroxene, olivine, plagioclase, amphibole, phlogopite and ilmenite. The mafic-ultramafic rocks show evidence of shearing and retrogressive metamorphism. Linear correlation of chemical attributes suggests fractionation-controlled magmatic differentiation. Enrichment of LILE and LREE in the mafic-ultramafic suite suggests an enriched mantle source and pronounced negative Eu-anomalies in all the rock types except hornblendite suggest fractionation of plagioclase under low fO2 condition. Progressive iron enrichment trend in rocks of the mafic-ultramafic suite also indicate magmatic differentiation under low fO2 condition. Early fractionation and accumulation of clinopyroxene and plagioclase from a basaltic magma may have given rise to the ultramafic rocks of the area. Little change in the Nb/Zr and Ce/Zr ratios of ultramafic and mafic rocks (except alkali norite) strongly support low crustal contamination. A few samples of norite and gabbro-norites appeared to be variably contaminated by a crustal component or affected by late granitic intrusion resulting in enrichment of alkali in the former.  相似文献   

20.
The Kurancali ultramafic-mafic cumulate body, an allochthonous ophiolitic sliver in central Anatolia, is characterized by the presence of abundant hydrous phases (phlogopite, pargasite) besides augitic diopside, plagioclase, and accessory amounts of rutile, sphene, apatite, zircon, and calcite. Based on modes of the essential minerals, the olivine-orthopyroxene-free cumulates are grouped as clinopyroxenite, hydrous clinopyroxenite, phlogopitite, hornblendite, layered gabbro, and diorite. Petrographical, mineralogical and geochemical features of the rocks infer crystallization from a hydrous magma having high-K calc-alkaline affinity with slightly alkaline character, and point to metasomatised mantle as the magma source. Our evidence implies that the metasomatising component, which modified the composition of the mantle wedge source rock in an intra-oceanic subduction zone, was a H2O, alkali and carbonate-rich aluminosilicate fluid and/or melt, probably derived from a subducted slab. We suggest that the metasomatic agents in the subarc mantle led to the generation of a hydrous magma, which produced the Kurancali cumulates in an island-arc basement in a supra-subduction-zone setting during the closure of the Izmir-Ankara-Erzincan branch of the Alpine Neotethys Ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号