首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Holocene right-slip along the central segment of the Panamint Valley totals 20 m and dip-slip is somewhat less. The most recent offset, about 2 m right-slip, probably occurred at least several hundred years ago. If a comparable amount of slip occurred during earlier earthquakes, mean seismic recurrence intervals would have been about 700–2500 years during the Holocene.  相似文献   

2.
At the western edge of the Basin and Range Province, the Owens Valley is the site of active seismicity and deformation. Morphometric analyses of three geomorphological features are used to determine the patterns and rates of neotectonic deformation: (l) a network of Pleistocene channels cut on top of the Bishop Tuff; (2) uplifted terraces of the Owens River; and (3) alluvial fans of the White Mountain front.In the Owens Valley, the three analyses are consistent with the same solution: net eastward tilt of the Owens Valley block at a rate of between 3.5 and 6.1°/Ma. Given the dip on the basement determined from geophysical data and extrapolating the rate of tilt in the Owens Valley back in time, it is inferred that the break-up of the Sierra Nevada and the northern Owens Valley occurred in the Pliocene, between around 2 and 4 Ma ago. The pattern of deformation in the northern Owens Valley matches anticlinal flexure on the Coyote warp, near the front of the Sierra Nevada, and faulting across the Volcanic Tableland is consistent with flexural extension. It is proposed that the Coyote warp is an expression of the tectonic hinge between westward rotation of the Sierra Nevada and eastward rotation of the Owens Valley since the Pliocene.  相似文献   

3.
The Maacama fault zone is a north-northwest trending, right-lateral zone of structural weakness in eastern Sonoma and Mendocino Counties, California, and fault-related landforms along its trace suggest that it may well have been active during Holocene time. Urbanization and dam construction in the vicinity of the zone have made it especially desirable to determine the extent and history of such geologically recent movements in order to better understand the seismic capability of faults within the zone.

The Maacama fault zone is a segment of one of two north-northwest trending zones of right-lateral faulting that diverge as major branches from the easterly side of the San Andreas fault zone north of Hollister. These branches extend at least as far north as Eureka and may mark the eastern boundaries of slivers of a separate tectonic plate.

This investigation was conducted to evaluate Holocene activity along the part of the Maacama fault zone in Mendocino County. The investigation shows that this zone comprises discontinuous, subparallel fault strands which extend from points south of the Sonoma—Mendocino county line to points north of Laytonville. Some fault segments are expressed by alignments of topographic features clearly caused by Holocene strike-slip movements. Other topographic features are less distinct and may well represent fault segments with pre-Holocene activity.

The Maacama fault zone creeps at a current rate of possibly as high as 2 mm/yr. The total amounts of Holocene offset are unknown.

Evidence obtained from exploratory trenches indicates that at least two surface rupture events have occurred within the past 16,200 years, that at least one has occurred within the past 8,310 years, and that there probably has been no surface rupturing within the past 1,140 years.

I conclude that surface offsets have occurred along major portions of the Maacama fault zone during Holocene time, and that this fault zone should be regarded as capable of producing a moderate to strong future earthquake with accompanying surface rupture in Mendocino County.  相似文献   


4.
This article considers the problem of the seismic activity of the Kheiton fault located in the northern part of Sakhalin Island. The fault is active, well expressed in relief, displaces Holocene deposits, and is studied by trenching. Its geomorphological expression, as well as the character of displacement of rock strata in the trench walls and the relief was investigated. Convincing evidence is provided for periodic sudden movements along the Kheiton fault with amplitudes of up to several meters, which in their turn have recently caused strong earthquakes.  相似文献   

5.
Quaternary sedimentary deposits along the structural depression of the San Andreas fault (SAF) zone north of San Francisco in Marin County provide an excellent record of rates and styles of neotectonic deformation in a location near where the greatest amount of horizontal offset was measured after the great 1906 San Francisco earthquake. A high-resolution gravity survey in the Olema Valley was used to determine the depth to bedrock and the thickness of sediment fill along and across the SAF valley. In the gravity profile across the SAF zone, Quaternary deposits are offset across the 1906 fault trace and truncated by the Western and Eastern Boundary faults, whose youthful activity was previously unknown. The gravity profile parallel to the fault valley shows a basement surface that slopes northward toward an area of present-day subsidence near the head of Tomales Bay. Surface and subsurface investigations of the late Pleistocene Olema Creek Formation (Qoc) indicate that this area of subsidence was located further south during deposition of the Qoc and that it has migrated northward since then. Localized subsidence has been replaced by localized contraction that has produced folding and uplift of the Qoc. This apparent alternation between transtension and transpression may be the result of a northward-diverging fault geometry of fault strands that includes the valley-bounding faults as well as the 1906 SAF trace. The Vedanta marsh is a smaller example of localized subsidence in the fault zone, between the 1906 SAF trace and the Western Boundary fault. Analyses of Holocene marsh sediments in cores and a paleoseismic trench indicate thickening, and probably tilting, toward the 1906 trace, consistent with coseismic deformation observed at the site following the 1906 earthquake.New age data and offset sedimentary and geomorphic features were used to calculate four late Quaternary slip rate estimates for the SAF at this latitude. Luminescence dates of 112–186 ka for the middle part of the Olema Creek Formation (Qoc), the oldest Quaternary deposit in this part of the valley, suggest a late Pleistocene slip rate of 17–35 mm/year, which replaces the unit to a position adjacent to its sediment source area. A younger alluvial fan deposit (Qqf; basal age 30 ka) is exposed in a quarry along the medial ridge of the fault valley. This fan deposit has been truncated on its western side by dextral SAF movement, and west-side-down vertical movement that has created the Vedanta marsh. Paleocurrent measurements, clast compositions, sediment facies distributions, and soil characteristics show that the Bear Valley Creek drainage, now located northwest of the site, supplied sediment to the fan, which is now being eroded. Restoration of the drainage to its previous location provides an estimated slip rate of 25 mm/year. Furthermore, the Bear Valley Creek drainage probably created a water gap located north of the Qqf deposit during the last glacial maximum 18 ka. The amount of offset between the drainage and the water gap yields an average slip rate of 21–30 mm/year. Finally, displacement of a 1000-year-old debris lobe approximately 20 m from its hillside hollow along the medial ridge indicates a minimum late Holocene slip rate of 21–25 mm/year. Similarity of the late Pleistocene rates to the Holocene slip rate, and to previous rates obtained in paleoseismic trenches in the area, indicates that the rates may not have changed over the past 30 ka, and perhaps the past 200–400 ka. Stratigraphic and structural observations also indicate that valley-bounding faults were active in the late Pleistocene and suggest the need for further study to evaluate their continued seismic potential.  相似文献   

6.
7.
8.
Owens Lake is an alkaline salt lake in a closed basin in southeast California. It is normally nearly dry, but in early 1969, an abnormal runoff from the Sierra Nevada flooded it to a maximum depth of 2·4 m. By late summer of 1971, the lake was again nearly dry and the dissolved salts recrystallized. Changes in the chemistry, pH, and deuterium content were monitored during desiccation.During flooding, salts (mostly trona, halite, and burkeite) dissolved slowly from the lake floor. Their concentration in the lake waters increased as evaporation removed water and salts again crystallized, but winter temperatures caused precipitation of some salts and the following summer warming caused their solution, resulting in seasonal variations in the concentration patterns of some ions. The pH values (9·4–10·4) changed with time but showed no detectable diurnal pattern.The deuterium concentration increased during evaporation and appeared to be in equilibrium with vapor leaving the lake according to the Rayleigh equation. The effective α(D/H in liquid/D/H in vapor) decreased as salinity increased; the earliest measured value was 1·069 [as total dissolved solids (TDS) of lake waters changed from 136,200 to 250,400 mg/1]and the last value (calc.) was 1·025 (as TDS changed from 450,000 to 470,300 mg/1). Deuterium exchange with the atmosphere was apparently small except during late desiccation stages when the isotopic contrast became great. Eventually, atmospheric exchange, combined with decreasing α and lake size and increasing salinity, stopped further deuterium concentration in the lake. The maximum contrast between atmospheric vapor and lake deuterium contents was about 110%.  相似文献   

9.
Detailed geologic mapping of the San Andreas fault zone in Los Angeles County since 1972 has revealed evidence for diverse histories of displacement on branch and secondary faults near Palmdale. The main trace of the San Andreas fault is well defined by a variety of physiographic features. The geologic record supports the concept of many kilometers of lateral displacement on the main trace and on some secondary faults, especially when dealing with pre-Quaternary rocks. However, the distribution of upper Pleistocene rocks along branch and secondary faults suggests a strong vertical component of displacement and, in many locations, Holocene displacement appears to be primarily vertical. The most recent movement on many secondary and some branch faults has been either high-angle (reverse and normal) or thrust. This is in contrast to the abundant evidence for lateral movement seen along the main San Andreas fault. We suggest that this change in the sense of displacement is more common than has been previously recognized.The branch and secondary faults described here have geomorphic features along them that are as fresh as similar features visible along the most recent trace of the San Andreas fault. From this we infer that surface rupture occurred on these faults in 1857, as it did on the main San Andreas fault. Branch faults commonly form “Riedel” and “thrust” shear configurations adjacent to the main San Andreas fault and affect a zone less than a few hundred meters wide. Holocene and upper Pleistocene deposits have been repeatedly offset along faults that also separate contrasting older rocks. Secondary faults are located up to 1500 m on either side of the San Andreas fault and trend subparallel to it. Moreover, our mapping indicates that some portions of these secondary faults appear to have been “inactive” throughout much of Quaternary time, even though Holocene and upper Pleistocene deposits have been repeatedly offset along other parts of these same faults. For example, near 37th Street E. and Barrel Springs Road, a limited stretch of the Nadeau fault has a very fresh normal scarp, in one place as much as 3 m high, which breaks upper Pleistocene or Holocene deposits. This scarp has two bevelled surfaces, the upper surface sloping significantly less than the lower, suggesting at least two periods of recent movement. Other exposures along this fault show undisturbed Quaternary deposits overlying the fault. The Cemetery and Little Rock faults also exhibit selected reactivation of isolated segments separated by “inactive” stretches.Activity on branch and secondary faults, as outlined above, is presumed to be the result of sympathetic movement on limited segments of older faults in response to major movement on the San Andreas fault. The recognition that Holocene activity is possible on faults where much of the evidence suggests prolonged inactivity emphasizes the need for regional, as well as detailed site studies to evaluate adequately the hazard of any fault trace in a major fault zone. Similar problems may be encountered when geodetic or other studies, Which depend on stable sites, are conducted in the vicinity of major faults.  相似文献   

10.
This paper deals with the segmentation and inversion of the Hangjinqi fault zone (HFZ), which is the dominant structure in the northern part of the Ordos basin in North China. HFZ was reactivated during the Late Triassic and obliquely inverted during the Middle Jurassic shortening. Subsurface geological mapping and structural analysis were carried out to determine the segmentation and kinematic history of the deformation. The HFZ was a left-stepping fault zone and was made up of three segments: the Porjianghaizi fault (PF), Wulanjilinmiao fault (WF) and Sanyanjing fault (SF), which are separated by two relay ramps. Two distinct phases can be identified in its structural evolution: (1) during the Late Triassic compressional deformation, the HFZ was characterized by shortening and thrusting to the north; and (2) During the Middle Jurassic phase the HFZ was oblique to the extensional fault trends, the reverse faults were reactivated as dextral strike-slip faults as a result of transtensional inversion. The inversion ratio of the HFZ indicates an increase in deformational degree from east to west over the whole region. The first deformation stage resulted from the N–S compression between the South China and North China plates during the Late Triassic. The second deformation stage of compression was related to the west-northwestward subduction of the paleo-Pacific plate during the Middle Jurassic. In the Jurassic deformation framework, the HFZ may be interpreted as an accommodation structure parallel to the Yanshan–Yinshan orogenic belt developed in the northern Ordos area.  相似文献   

11.
The Syunik rhombus-like structure in the Khanarassar active dextral fault zone of Armenia is a typical pull-apart basin, formed between terminal parts of two adjacent en echelon fault segments. Some component of subsidence associated with the faults of the structure is found between the en echelon segments; nevertheless, the dextral component continues to be predominant even on the boundaries of the pull-apart basin. The late Pleistocene and Holocene lava volcanoes of the basin are also associated with those faults that have a component of extension. The relative ages of fault displacements and volcanic eruptions have been identified by the mutual correlation of lavas, moraines and topographic features and by archaeological and radiocarbon dating. According to the interpretation of rupturing and volcanism, major earthquakes and volcanic eruptions appear inter-related and three pulses of such activity during the earlier and middle Holocene have been identified.  相似文献   

12.
Field-based structural analysis of an exhumed, 10-km-long strike-slip fault zone elucidates processes of growth, linkage, and termination along moderately sized strike-slip fault zones in granitic rocks. The Gemini fault zone is a 9.3-km-long, left-lateral fault system that was active at depths of 8–11 km within the transpressive Late-Cretaceous Sierran magmatic arc. The fault zone cuts four granitic plutons and is composed of three steeply dipping northeast- and southwest-striking noncoplanar segments that nucleated and grew along preexisting cooling joints. The fault core is bounded by subparallel fault planes that separate highly fractured epidote-, chlorite-, and quartz-breccias from undeformed protolith. The slip profile along the Gemini fault zone shows that the fault zone consists of three 2–3-km-long segments separated by two ‘zones’ of local slip minima. Slip is highest (131 m) on the western third of the fault zone and tapers to zero at the eastern termination. Slip vectors plunge shallowly west-southwest and show significant variability along strike and across segment boundaries. Four types of microstructures reflect compositional changes in protolith along strike and show that deformation was concentrated on narrow slip surfaces at, or below, greenschist facies conditions. Taken together, we interpret the fault zone to be a segmented, linked fault zone in which geometrical complexities of the faults and compositional variations of protolith and fault rock resulted in nonuniform slip orientations, complex fault-segment interactions, and asymmetric slip-distance profiles.  相似文献   

13.
郯庐断裂带北段构造特征及构造演化序列   总被引:7,自引:3,他引:7  
根据大量野外地质调查和盆地地震资料分析,认为郯庐断裂北段在中-新生代发生多期不同性质的活动,形成各具特色的构造变形现象。密山县知一镇敦密断裂韧性剪切带具有左旋走滑特征,其中黑云母~(40)Ar/~(36)Ar-~(39)Ar/~(36)Ar等时线年龄为161±3Ma,是郯庐断裂带被利用发生第二期左旋走滑运动并向北扩展到中国东北-俄罗斯远东地区的产物。四平市叶赫乡佳伊断裂带中负花状断裂形成于早白垩世早中期,是郯庐断裂北段在早白垩世遭受左旋走滑-拉张作用的典型代表。四平市石岭镇佳伊断裂大型走滑-逆冲断褶带、桦甸县敦密断裂"逆地堑"、沈阳-哈尔滨逆冲断裂形成于晚白垩世嫩江运动-晚白垩世末期,这一时期脆性右旋走滑-逆冲事件规模大,影响范围广,导致整个郯庐断裂北段遭受到强烈改造。佳伊断裂带和敦密断裂带中古近纪盆地在横剖面上呈不对称地堑,并且不对称地堑沿断裂带走向发生断、超方向左右变位,是郯庐断裂带北段在古近纪时受右旋走滑、伸展双重机制控制的产物。根据郯庐断裂带北段中-新生代不同地质时期变形特征,建立了郯庐断裂北段构造演化序列。即郯庐断裂北段构造演化分为左旋韧性剪切(J_2末期)、左旋张扭(K_1早中期)、右旋压扭(K_2晚期-末期)、右旋走滑断陷(E)和构造反转(E_3末期)五个阶段。其演化历史主要受控于环太平洋构造域的构造作用。  相似文献   

14.
The Tan-Lu fault zone (TLFZ) is the largest of the major faults in eastern China. Many strong earthquakes have occurred on its section in North China, but no quake greater than M  6 has been documented in history at its northeastern section, the Yilan-Yitong fault (YYF) in Northeast China. It is usually considered that this fault has been inactive since late Quaternary and incapable of generating moderate-sized quakes. This conclusion is, however, questioned by our recent work based on high-resolution satellite image interpretation and field investigation. We found a 70-km-long surface scarp near Fangzheng county in Heilongjiang province (HLJP) and a 20-km-long scarp near Shulan county in Jilin province (JLP), and both are associated with the YYF. The trenches across these two scarps reveal a 14C displacement date of 1730 ± 40 years BP at Fangzheng and of 4410 ± 30 years BP at Shulan. The dextral offsets of the Songhua River and Second Songhua River and nearly horizontal fault striations indicate that the new activity of the YYF has been dominated by dextral strike slipping with a normal component. These new data suggest that, at least for partial sections, the YYF has been active since the Holocene, implying a potential seismic hazard. However, current quake-protection standards in this region are very low due to the previous view that the YYF fault has not been active since the late Quaternary. If an M  7 quake takes place on this fault, it will be a devastating event. Therefore, it is necessary to conduct a detailed study on the whole YYF and to reassess its future seismic risk.  相似文献   

15.
Generation of dust particles from the Owens Lake playa creates a severe air pollution hazard in the western United States. Much of the dust produced from the dry lakebed is derived from salts formed by evaporation of saline groundwater that often contains high concentrations of dissolved arsenic (As). The objectives of this research were to study the spatial distribution of dissolved arsenic in the shallow groundwater, and to examine factors affecting arsenic solubility and speciation. Evapoconcentration, redox potential, pH, and mineral solubility were examined as factors regulating arsenic biogeochemistry. Dissolved arsenic concentrations ranged from 0.1 to 96 mg L−1 and showed a general increase from the shoreline to the center of the lakebed. Arsenic concentrations were strongly correlated to electrical conductivity (EC) and δD suggesting that evapoconcentration is an important process regulating total As concentrations. Arsenite [As(III)] was the dominant form of inorganic arsenic at Eh values less than about −170 mV while arsenate [As(V)] was predominant at higher Eh values. Organic arsenic was negligible (<0.21%) in all shallow groundwater samples. Dissolved arsenic concentrations do not appear to be strongly regulated by solid-phase reactions. Solid-phase arsenic concentrations generally ranged between 4.0 and 42.6 mg kg−1 and a maximum concentration range (20 to 40 mg kg−1) was reached as solution concentration increased up to 80 mg L−1, indicating minimal sorption and/or precipitation of arsenic. Chemical equilibrium modeling indicated that orpiment (As2S3) was the only solid phase with a positive saturation index (indicating over-saturation), but only at high arsenic and sulfide concentrations. The findings of this research are important for assessing the potential environmental impacts of elevated arsenic concentrations on dust mitigation efforts taking place at Owens Dry Lake.  相似文献   

16.
Geological deformation in the northern New Madrid seismic zone, near Olmsted, Illinois (USA), is analyzed using integrated compressional-wave (P) and horizontally polarized-wave (SH) seismic reflection and regional and dedicated borehole information. Seismic hazards are of special concern because of strategic facilities (e.g., lock and dam sites and chemical plants on the Ohio River near its confluence with the Mississippi River) and because of alluvial soils subject to high amplification of earthquake shock. We use an integrated approach starting with lower resolution, but deeper penetration, P-wave reflection profiles to identify displacement of Paleozoic bedrock. Higher resolution, but shallower penetration, SH-wave images show deformation that has propagated upward from bedrock faults into Pleistocene loess. We have mapped an intricate zone more than 8 km wide of high-angle faults in Mississippi embayment sediments localized over Paleozoic bedrock faults that trend north to northeast, parallel to the Ohio River. These faults align with the pattern of epicenters in the New Madrid seismic zone. Normal and reverse offsets along with positive flower structures imply a component of strike-slip; the current stress regime favors right-lateral slip on northeast-trending faults. The largest fault, the Olmsted fault, underwent principal displacement near the end of the Cretaceous Period 65 to 70 million years ago. Strata of this age (dated via fossil pollen) thicken greatly on the downthrown side of the Olmsted fault into a locally subsiding basin. Small offsets of Tertiary and Quaternary strata are evident on high-resolution SH-wave seismic profiles. Our results imply recent reactivation and possible future seismic activity in a critical area of the New Madrid seismic zone. This integrated approach provides a strategy for evaluating shallow seismic hazard-related targets for engineering concerns.  相似文献   

17.
Geologic, geomorphic and seismologic data indicate that west of Lake Cachuma the Santa Ynez fault branches into several major W- and NW-trending splay faults. Two of the faults bracket the wedge-shaped Santa Maria basin. The most compelling evidence for the existence of these two faults is the fact that the Santa Maria basin is floored by Franciscan basement overlain only by Miocene and younger sedimentary rocks, whereas across the inferred traces of each of these faults, the adjacent terrains consist of Franciscan basement overlain by thick sequences of Early Tertiary strata, as well as by Miocene and younger rocks. The third splay fault strikes northwestward through the central Santa Maria basin. Narrow zones of tightly appressed, left-stepping en-echelon folds are locally adjacent to the faults along the south edge, and through the center of the basin. The geometrical arrangement of these folds is indicative of formation over buried sinistral wrench faults. Evidence for Holocene surface rupturing is lacking or nebulous at best, but epicenters of damaging historical earthquakes are spatially, and by inference, genetically related to the central Santa Maria basin faults, indicating that they comprise the presently active strands among the several splay faults.  相似文献   

18.
张岩  裘建国 《华东地质》2004,25(2):96-101
遂昌柘岱口-湖山北东向断裂带在晚侏罗世至晚白垩世晚期经历了多期次、不同性质的活动,断裂活动与该地区两个大规模萤石矿田的形成关系密切.晚侏罗世晚期到早白垩世早期断裂活动表现为拉张松驰作用,为黄沙腰萤石矿田的形成提供了导矿和容矿构造空间,萤石矿主体赋存于北东向断裂带内.晚白垩世晚期,断裂活动表现为挤压环境,断裂带具有导矿作用,矿体受控于派生之北西向次级断裂内,湖山萤石矿田的形成具有此特征.  相似文献   

19.
The internal structure and permeability of the Neodani fault, which was last activated at the time of the 1891 Nobi earthquake (M8.0), were examined through field survey and experiments. A new exposure of the fault at a road construction site reveals a highly localized feature of the past fault deformation within a narrow fault core zone. The fault of the area consists of three zone units towards the fault core: (a) protolith rocks; (b) 15 to 30 m of fault breccia, and (c) 200 mm green to black fault gouge. Within the fault breccia zone, cataclastic foliation oblique to the fault has developed in a fine-grained 2-m-wide zone adjacent to the fault. Foliation is defined by subparallel alignment of intact lozenge shaped clasts, or by elongated aggregates of fine-grained chert fragments. The mean angle of 20°, between the foliation and the fault plane suggests that the foliated breccia accommodated a shear strain of γ<5 assuming simple shear for the rotation of the cataclastic foliation. Previous trench surveys have revealed that the fault has undergone at least 70 m of fault displacement within the last 20,000 years in this locality. The observed fault geometry suggests that past fault displacements have been localized into the 200-mm-wide gouge zone. Gas permeability analysis of the gouges gives low values of the order of 10−20 m2. Water permeability as low as 10−20 m2 is therefore expected for the fault gouge zone, which is two orders of magnitude lower than the critical permeability suggested for a fault to cause thermal pressurization during a fault slip.  相似文献   

20.
Five stratigraphic units and five soils of late Pleistocene to Holocene age crop out in dissected badlands on Corn Creek Flat, 30 km northwest of Las Vegas, Nevada, and at Tule Springs, nearer to Las Vegas. The record is dominantly fluvial but contains evidence of several moister, marsh-forming periods: the oldest (Unit B) dates perhaps to the middle Wisconsin, and the more widespread Unit D falls between 30,000 and 15,000 yr B.P. Unit D therefore correlates with pluvial maximum lacustrine deposits elsewhere in the Great Basin. Standing water was not of sufficient depth or extent during either period to form lake strandlines. Between 14,000 and 7200 yr B.P. (Unit E), standing surface water gradually decreased, a trend also apparent in Great Basin pluvial lake chronologies during the same period. Groundwater carbonate cementation and burrowing by cicadas (Cicadae) accompany the moist-phase units. After 7200 yr B.P., increased wind action, decreased biotic activity, and at least 25 m of water-table lowering accompanied widespread erosion of older fine-grained deposits. Based on pack-rat midden and pollen evidence, this coincides with major vegetation changes in the valley, from sagebrush-dominated steppe to lower Mohave desertscrub.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号