首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A two-dimensional mesoscale model has been developed to simulate the air flow over the Gulf Stream area where typically large gradients in surface temperature exist in the winter. Numerical simulations show that the magnitude and the maximum height of the mesoscale circulation that develops downwind of the Gulf Stream depends on both the initial geostrophic wind and the large-scale moisture. As expected, a highly convective Planetary Boundary Layer (PBL) develops over this area and it was found that the Gulf Stream plays an important role in generating the strong upward heat fluxes causing a farther seaward penetration as cold air advection takes place. Numerical results agree well with the observed surface fluxes of momentum and heat and the mesoscale variation of vertical velocities obtained using Doppler Radars for a typical cold air outbreak. Precipitation pattern predicted by the numerical model is also in agreement with the observations during the Genesis of Atlantic Lows Experiment (GALE).List of Symbols u east-west velocity [m s–1] - v north-south velocity [m s–1] - vertical velocity in coordinate [m s–1] - w vertical velocity inz coordinate [m s–1] - gq potential temperature [K] - q moisture [kg kg–1] - scaled pressure [J kg–1 K–1] - U g the east-south component of geostrophic wind [m s–1] - V g the north-south component of geostrophic wind [m s–1] - vertical coordinate following terrain - x east-west spatial coordinate [m] - y north-south spatial coordinate [m] - z vertical spatial coordinate [m] - t time coordinate [s] - g gravity [m2 s–1] - E terrain height [m] - H total height considered in the model [m] - q s saturated moisture [kg kg–1] - p pressure [mb] - p 00 reference pressure [mb] - P precipitation [kg m–2] - vertical lapse rate for potential temperature [K km–1] - L latent heat of condensation [J kg–1] - C p specific heat at constant pressure [J kg–1 K–1] - R gas constant for dry air [J kg–1 K–1] - R v gas constant for water vapor [J kg–1 K–1] - f Coriolis parameter (2 sin ) [s–1] - angular velocity of the earth [s–1] - latitude [o] - K H horizontal eddy exchange coefficient [m2 s–1] - t integration time interval [s] - x grid interval distance inx coordinate [m] - y grid interval distance iny coordinate [m] - adjustable coefficient inK H - subgrid momentum flux [m2 s–2] - subgrid potential temperature flux [m K s–1] - subgrid moisture flux [m kg kg–1 s–1] - u * friction velocity [m s–1] - * subgrid flux temperature [K] - q * subgrid flux moisture [kg kg–1] - w * subgrid convective velocity [m s–1] - z 0 surface roughness [m] - L Monin stability length [m] - s surface potential temperature [K] - k von Karman's constant (0.4) - v air kinematic viscosity coefficient [m2 s–1] - K M subgrid vertical eddy exchange coefficient for momentum [m2 s–1] - K subgrid vertical eddy exchange coefficient for heat [m2 s–1] - K q subgrid vertical eddy exchange coefficient for moisture [m2 s–1] - z i the height of PBL [m] - h s the height of surface layer [m]  相似文献   

2.
Summary A numerical model was used to study the behaviour of prototype cold fronts as they approach the Alps. Two fronts with different orientations relative to the Alpine range have been considered. One front approaches from west, a second one from northwest. The first front is connected with southwesterly large-scale air-flow producing pre-frontal foehn, whereas the second front is associated with westerly largescale flow leading to weak blocking north of the Alps.Model simulations with fully represented orography and parameterized water phase conversions have been compared with control runs where either the orography was cut off or the phase conversions were omitted. The results show a strong orographic influence in case of pre-frontal foehn which warms the pre-frontal air and increases the cross-frontal temperature contrast leading to an acceleration of the front along the northern Alpine rim. The latent heat effect was found to depend much on the position of precipitation relative to the surface front line. In case of pre-frontal foehn precipitation only falls behind the surface front line into the intruding cold air where it partly evaporates. In contrary, precipitation already appears ahead of the front in the case of blocking. Thus, the cooling effect of evaporating rain increases the cross-frontal temperature difference only in the first case causing an additional acceleration of the front.List of symbols C pd specific heat capacity of dry air at constant pressure (C pd =1004.71 J kg–1 K–1) - C pv specific heat capacity of water vapour at constant pressure (C pv =1845.96 J kg–1 K–1) - C f propagation speed of a front - x, y horizontal grid spacing (cartesian system) - , horizontal grid spacing (geographic system) - t time step - E turbulent kinetic energy - f Coriolis parameter - g gravity acceleration (g=9.81 ms–1) - h terrain elevation - H height of model lid (H=9000 m) - k Karman constant (k=0.4) - K Mh horizontal exchange coefficient of momentum - K Hh horizontal exchange coefficient of heat and moisture - K Mz vertical exchange coefficient of momentum - K Hz vertical exchange coefficient of heat and moisture - l mixing length - l c specific condensation heat (l c =2500.61 kJ kg–1) - l f specific freezing heat (l f =333.56 kJ kg–1) - l s specific sublimation heat (l s =2834.17 kJ kg–1) - longitude - m 1,m 2,m 3 metric coefficients - p pressure - Exner function - Pr Prandtl number - latitude - M profile function - q v specific humidity - q c specific content of cloud droplets - q i specific content of cloud ice particles - q R specific content of rain drops - q S specific content of snow - R d gas constant of dry air (R d =287.06 J kg–1 K–1) - R v gas constant of water vapour (R v =461.51 J kg–1 K–1) - r E radius of earth (r E =6371 km) - Ri F flux Richardson number - density of dry air - t time - T temperature - dia period of diastrophy - potential temperature - v virtual potential temperature - e equivalent potential temperature - U relative humidity - u, v, w cartesian wind components - u F ,v F front-normal and front-parallel wind components - x, y, z cartesian coordinates - w * transformed vertical wind component - W R speed of falling rain - W S speed of falling snow - z * transformed vertical coordinate Abbreviations GND (above) ground level - MSL (above) mean sea level With 12 Figures  相似文献   

3.
Four bulk schemes (LKB, FG, D and DB), with the flux-profile relationships of Liuet al. (1979), Francey and Garratt (1981), Dyer (1974), and Dyer and Bradley (1982), are derived from the viscous interfacial-sublayer model of Liuet al. These schemes, with stability-dependent transfer coefficients, are then tested against the eddy-correlation fluxes measured at the 50 m flight level above the western Atlantic Ocean during cold-air outbreaks. The bulk fluxes of momentum (), sensible heat (H), and latent heat (E) are found to increase with various von Kármán constants (k M for k H forH, andk E forE). Except that the LKB scheme overestimates by 28% (46Wm–2), on the average, the fluxes estimated by the four bulk schemes appear to be in fairly good agreement with those of the eddy correlation method (magnitudes of biases within 10% for , 17% forH, and 13% forE). The results suggest that the overall fluxes and surface-layer scaling parameters are best estimated by FG and thatk H <k E . On the average, the FG scheme underestimates by 10% (0.032N m–2) andE by 4% (12Wm–2), and overestimatesH by 0.3% (0.5W m–2). The equivalent neutral transfer coefficients at 10 m height of the FG scheme compare well with some schemes of those tested by Blanc (1985).The relative importance of various von Kármán constants, dimensionless gradients and roughness lengths to the oceanic transfer coefficients is assessed. The dependence of transfer coefficients on wind speeds and roughness lengths is discussed. The transfer coefficients for andE agree excellently between LKB and FG. However, the ratio of the coefficient forH of LKB to that of FG, increasing with decreasing stability, is very sensitive to stability at low winds, but approaches the neutral value of 1.25 at high winds.  相似文献   

4.
We present turbulence spectra and cospectra derived from long-term eddy-covariancemeasurements (nearly 40,000 hourly data over three to four years) and the transferfunctions of closed-path infrared gas analyzers over two mixed hardwood forests inthe mid-western U.S.A. The measurement heights ranged from 1.3 to 2.1 times themean tree height, and peak vegetation area index (VAI) was 3.5 to 4.7; the topographyat both sites deviates from ideal flat terrain. The analysis follows the approach ofKaimal et al. (Quart. J. Roy. Meteorol. Soc. 98, 563–589, 1972) whose results were based upon 15 hours of measurements atthree heights in the Kansas experiment over flatter and smoother terrain. Both thespectral and cospectral constants and stability functions for normalizing and collapsingspectra and cospectra in the inertial subrange were found to be different from those ofKaimal et al. In unstable conditions, we found that an appropriate stabilityfunction for the non-dimensional dissipation of turbulent kinetic energy is of the form () = (1 - b-)-1/4 - c-, where representsthe non-dimensional stability parameter. In stable conditions, a non-linear functionGxy() = 1 + bxyc xy (cxy < 1) was found to benecessary to collapse cospectra in the inertial subrange. The empirical cospectralmodels of Kaimal et al. were modified to fit the somewhat more (neutraland unstable) or less (stable) sharply peaked scalar cospectra observed over forestsusing the appropriate cospectral constants and non-linear stability functions. Theempirical coefficients in the stability functions and in the cospectral models varywith measurement height and seasonal changes in VAI. The seasonal differencesare generally larger at the Morgan Monroe State Forest site (greater peak VAI) andcloser to the canopy.The characteristics of transfer functions of the closed-path infrared gas analysersthrough long-tubes for CO2 and water vapour fluxes were studied empirically. This was done by fitting the ratio between normalized cospectra of CO2 or watervapour fluxes and those of sensible heat to the transfer function of a first-order sensor.The characteristic time constant for CO2 is much smaller than that for water vapour. The time constant for water vapour increases greatly with aging tubes. Three methods were used to estimate the flux attenuations and corrections; from June through August, the attenuations of CO2 fluxes are about 3–4% during the daytime and 6–10% at night on average. For the daytime latent heat flux (QE), the attenuations are foundto vary from less than 10% for newer tubes to over 20% for aged tubes. Correctionsto QE led to increases in the ratio (QH + QE)/(Q* - QG) by about 0.05 to0.19 (QH is sensible heat flux, Q* is net radiation and QG is soil heat flux),and thus are expected to have an important impact on the assessment of energy balanceclosure.  相似文献   

5.
Mean atmospheric circulation, moisture budget and net heat exchange were studied during a pre-monsoon period (18th March to 3rd May, 1988), making use of the data collected on board Akademik Korolev in the central equatorial and southern Arabian Sea region. The net heat exchange (R n ) is found to be about 20 W m–2 for a small area (0–4° N; 55–60° E), 50% less than the dimatological value. The mean value of net radiation (140 W m–2) is less than the climatological value, which was due to higher cloud amount. The higher SST enhanced both the latent and sensible heat fluxes.The mean atmospheric circulation obtained from the upper air data is quite convincing. The mean exchange coefficient (C e ) estimated from the moisture budget is about 1.0 × 10–3 for a wind speed of 4 m s–1. This value is slightly lower than that obtained by the usual methods.National Institute of Oceanography, RC, 52-Kirlampudi layout, Visakhapatnam — 530 023.India Meteorological Department, Gauhati.  相似文献   

6.
The present study involved determination of the experimental energy receipt partitioning over the tropical Amazon forest. Diurnal variation of net radiation (Q *), sensible heat flux (Q H) and latent heat flux (Q E) is presented. The daytimeQ E is in phase withQ * and it is always an important term in the energy balance. The daily averagedQ E is 59 to 100% of the dailyQ * whereasQ H is 5 to 28% at the Amazon forest site (2° 57 S; 59° 57 W) for the sample periods. The results present evidence thatQ E over the Amazon forest is greater thanQ * in the afternoon hours. The role of sensible heat advection in maintaining largeQ E over the forest surface is discussed. Hourly Bowen ratio () values for two campaigns of the Amazon forest micrometeorological experiment are presented. During daylight hours, the differences in are not significant, and exhibit a systematic pattern. The only time that the variation in Bowen ratio increased significantly was at sunrise and sunset when the thermal structure of the air was changing from a strong inversion to lapse and vice versa. The diurnal values changed from –3.50 to 0.85. The mean hourly calculated from values from 07.00 to 16.00 h, varied from 0.05 to 0.85.Diese Studie beschäftigt sich mit der Aufteilung der empfangenen Energie über dem tropischen Amazonasurwald. Es wird der Tagesgang der Strahlungsbilanz (Q *), des fühlbaren (Q H) und des latenten Wärmestromes (Q E) vorgestellt. Während der Tagesstunden istQ E in Phase mitQ * und ist immer ein wichtiger Term der Energiebilanz. Das Tagesmittel vonQ E beträgt 59 bis 100%,Q H 5 bis 28% des täglichenQ * an den Meßtagen bei der Amazonasurwaldstation (2° 57 S; 59° 57 W). Die Ergebnisse legen nahe, daß in den NachmittagsstundenQ E über dem Amazonasurwald größer ist alsQ *. Die Rolle der Advektion von fühlbarer Wärme zur Aufrechterhaltung des großenQ E über der Waldoberfläche wird diskutiert. Für zwei Meßkampagnen wurden die stündlichen Bowenverhältnisse () vorgestellt. Während der Tagesstunden ergaben sich keine signifikanten Änderungen von, während bei Sonnenaufgang und -untergang, wenn der thermische Aufbau der Luft von einer starken Inversion zu neutral und umgekehrt wechselt, die Unterschiede deutlich anstiegen. Die Tageswerte von lagen zwischen –3.50 und 0.85. Die Stundenmittel von 7.00 bis 16.00 Uhr schwankten zwischen 0.05 und 0.85.
With 3 Figures  相似文献   

7.
The standard deviation of temperature T is proposed as a temperature scale and as a velocity scale to describe the behaviour of turbulent flows in the Atmospheric Surface Layer (ASL), instead of * andu * of the Monin—Obukhov similarity theory, and ofT f andU f used for free convection stability conditions. On the basis of experimental evidence reported in the literature, it is shown that T T f andv * U f in the free convection region, and T * andv * U * in nearneutral and stable conditions. This implies that the proposed scales can be applied for all stabilities. Furthermore, a new length scale is proposed and its relation with Obukhov length is given. Also, a simple semi-empirical expression is presented with which T andv * can be evaluated in a rather simple way. Some examples of practical applications are given, e.g., a stability classification for unstable conditions.  相似文献   

8.
The influence of soil moisture on evaporation from a 6-m grass-covered lysimeter and from Class A pans was assessed for one summer using the -parameter of the Priestley-Taylor evaporation model appropriate for the individual surfaces computed on a daily basis. Net radiation over the pan was estimated from above-grass measurements using a correlation established between the two, using measurements made in the previous two summers. Changes in heat storage of the water were considered in the derivation of for the pan. A unique relationship for the particular conditions of the site was determined between the for the lysimeter and soil moisture, approaching 1.29 at soil moisture near field capacity, but decreasing to as low as 0.5 for dry soil. The corresponding relationship for the pan showed more scatter, but this was improved by using 5-day running means of evaporation and stratifying the data in terms of wind speed to yield a family of curves. Values for at wet soil conditions varied from 1.07 for 100 km day–1 wind run to 1.17 for 250 km day–1 wind run. For each curve, values of increased by about 20%; as the soil dried. The relationships may be used to reduce observed Class A pan evaporation to equivalent values for wet-soil conditions and to estimate near-surface soil moisture and actual evapotranspiration for this particular site. Extension of the technique to other areas requires derivation of similar relationships appropriate for those other locations  相似文献   

9.
We have devised a partial differential equation for the prediction of dust concentration in a thin layer near the ground. In this equation, erosion (detachment), transport, deposition and source are parameterised in terms of known quantities. The interaction between a wind prediction model in the boundary layer and this equation affects the evolution of the dust concentration at the top of the surface layer. Numerical integrations are carried out for various values of source strength, ambient wind and particle size. Comparison with available data shows that the results appear very reasonable and that the model should be subjected to further development and testing.Notation (x, y, z, t) space co-ordinates and time (cm,t) - u, v components of horizontal wind speed (cm s–1) - u g, vg components of the geostrophic wind (cm s–1) - V=(u2+v2)1/2 (cm s–1) - (û v)= 1/(h – k) k h(u, v)dz(cm s–1) - V * friction velocity (cm s–1) - z 0 roughness length (cm) - k 1 von Karman constant =0.4 - V d deposition velocity (cm s–1) - V g gravitational settling velocity (cm s–1) - h height of inversion (cm) - k height of surface layer (cm) - potential temperature (°K) - gr potential temperature at ground (°K) - K potential temperature at top of surface layer (°K) - P pressure (mb) - P 0 sfc pressure (mb) - C p/Cv - (t)= /z lapse rate of potential temperature (°K cm–1) - A(z) variation of wind with height in transition layer - B(z) variation of wind with height in transition layer - Cd drag coefficient - C HO transfer coefficient for sensible heat - C dust concentration (g m–3) - C K dust concentration at top of surface layer (g m–3) - D(z) variation with height of dust concentration - u, v, w turbulent fluctuations of the three velocity components (cm s–1) - A 1 constant coefficient of proportionality for heat flux =0.2 - Ri Richardson number - g gravitational acceleration =980 cm s–2 - Re Reynolds number = - D s thickness of laminar sub-layer (cm) - v molecular kinematic viscosity of air - coefficient of proportionality in source term - dummy variable - t time step (sec) - n time index in numerical equations On sabbatical leave at University of Aberdeen, Department of Engineering, September 1989–February 1990.  相似文献   

10.
Summary A radiative transfer model has been used to determine the large scale effective 6.6 GHz and 37 GHz optical depths of the vegetation cover. Knowledge of the vegetation optical depth is important for satellite-based large scale soil moisture monitoring using microwave radiometry. The study is based on actual observed large scale surface soil moisture data and observed dual polarization 6.6 and 37 GHz Nimbus/SMMR brightness temperatures over a 3-year period. The derived optical depths have been compared with microwave polarization differences and polarization ratios in both frequencies and with Normalized Difference Vegetation Index (NDVI) values from NOAA/AVHRR. A synergistic approach to derive surface soil emissivity from satellite observed brightness temperatures by inverse modelling is described. This approach improves the relationship between satellite derived surface emissivity and large scale top soil moisture fromR 2=0.45 (no correction for vegetation) toR 2=0.72 (after correction for vegetation). This study also confirms the relationship between the microwave-based MPDI and NDVI earlier described and explained in the literature.List of Symbols f frequency [Hz] - f i(p) fractional absorption at polarizationp - h surface roughness - h h cos2 - H horizontal polarization - n i complex index of refraction - p polarization (H orV) - R s microwave surface reflectivity - T B(p) brightness temperature at polarizationp - T * normalized brightness temperature - T polarization difference (T v-T H) - T s temperature of soil surface - T c temperature of canopy - T max daily maximum air temperature - T min daily minimum air temperature - V vertical polarization - soil moisture distribution factor; also used for the constant to partition the influence of bound and free water components to the dielectric constant of the mixture - empirical complex constant related to soil texture - microwave transmissivity of vegetation (=e ) - * effective transmissivity of vegetation (assuming =0) - microwave emissivity - s emissivity of smooth soil surface - rs emissivity of rough soil surface - vs emissivity of vegetated surface - soil moisture content (% vol.) - K dielectric constant [F·m–1] - K fw dielectric constant of free water [F·m–1] - K ss dielectric constant of soil solids [F·m–1] - K m dielectric constant of mixture [F·m–1] - K o permittivity of free space [8.854·10–12 F·m–1] - high frequency limit ofK wf [F·m–1] - wavelength [m] - incidence angle [degrees from nadir] - polarization ratio (T H/T V) - b soil bulk density [gr·cm–3] - s soil particle density [gr·cm–3] - R surface reflectivity in red portion of spectrum - NIR surface reflectivity in near infrared portion of spectrum - eff effective conductivity of soil extract [mS·cm–1] - vegetation optical depth - 6.6 vegetation optical depth at 6.6 GHz - 37 vegetation optical depth at 37 GHz - * effective vegetation optical depth (assuming =0) - single scattering albedo of vegetation With 12 Figures  相似文献   

11.
A Forest SO2 Absorption Model (ForSAM) was developed to simulate (1) SO2 plume dispersion from an emission source, (2) subsequent SO2 absorption by coniferous forests growing downwind from the source. There are three modules: (1) a buoyancy module, (2) a dispersion module, and (3) a foliar absorption module. These modules were used to calculate hourly abovecanopy SO2 concentrations and in-canopy deposition velocities, as well as daily amounts of SO2 absorbed by the forest canopy for downwind distances to 42 km. Model performance testing was done with meteorological data (including ambient SO2 concentrations) collected at various locations downwind from a coal-burning power generator at Grand Lake in central New Brunswick, Canada. Annual SO2 emissions from this facility amounted to about 30,000 tonnes. Calculated SO2 concentrations were similar to those obtained in the field. Calculated SO2 deposition velocities generally agreed with published values.Notation c air parcel cooling parameter (non-dimensional) - E foliar absorption quotient (non-dimensional) - f areal fraction of foliage free from water (non-dimensional) - f w SO2 content of air parcel - h height of the surface layer (m) - H height of the convective mixing layer (m) - H stack stack height (m) - k time level - k drag coefficient of drag on the air parcel (non-dimensional) - K z eddy viscosity coefficient for SO2 (m2·s–1) - L Monin-Obukhov length scale (m) - L A single-sided leaf area index (LAI) - n degree-of-sky cloudiness (non-dimensional) - N number of parcels released with every puff (non-dimensional) - PAR photosynthetically active radiation (W m–2) - Q emission rate (kg s–2) - r b diffusive boundary-layer resistance (s m–1) - r c canopy resistance (s m–1) - r cuticle cuticular resistance (s m–1) - r m mesophyllic resistance (s m–1) - r s stomatal resistance (s m–1) - r exit smokestack exit radius (m) - R normally distributed random variable with mean of zero and variance of t (s) - u * frictional velocity scale, (m s–1) - v lateral wind vector (m s–1) - v d SO2 dry deposition velocity (m s–1) - VCD water vapour deficit (mb) - z can mean tree height (m) - Z zenith position of the sun (deg) - environmental lapse rate (°C m–1) - dry adiabatic lapse rate (0.00986°C m–1) - von Kármán's constant (0.04) - B vertical velocities initiated by buoyancy (m s–1) - canopy extinction coefficient (non-dimensional) - ()a denotes ambient conditions - ()can denotes conditions at the top of the forest canopy - ()h denotes conditions at the top of the surface layer - ()H denotes conditions at the top of the mixed layer - ()s denotes conditions at the canopy surface - ()p denotes conditions of the air parcels  相似文献   

12.
On the contribution of atmospheric moisture to dew formation   总被引:4,自引:0,他引:4  
The relative contributions of dewfall (a flux of water vapour from air to surface) and distillation (a flux of water vapour from soil to canopy) to dew formation on closed canopy and bare soil surfaces are assessed, and the dependence of dew amount upon wind speed, absolute temperature, atmospheric stability, relative humidity, soil characteristics and cloudiness, all of which are significant factors, is evaluated. Some of these evaluations provide refinements to similar ones given in Monteith (1961). High dewfall rates are usually 0.06 mm hr–1 over canopy or bare soil, though upon a canopy under soil-saturated and air-saturated conditions, rates of dew formation may reach 0.07–0.09 mm hr–1 with contributions from distillation. Various sets of observations are reanalyzed to illustrate the importance of the horizontal advection of moisture in the nocturnal boundary layer (NBL) to observed high rates of dew formation arising from the atmospheric contribution of water vapour (dewfall). These locally observed high dewfall rates must be the result of small-scale or mesoscale horizontal advection of moisture in the NBL, since the humidity changes within the typically shallow NBL required to balance the loss of water at the surface are not observed. Over extensive areas of uniform surface (horizontal scales 10 km), such continuously high dewfall rates could only be balanced by a local supply of atmospheric moisture since advection of moisture would necessarily be small.  相似文献   

13.
A method for determining evaporation rates and thermodynamic properties of aqueous solution droplets is introduced. The method combines evaporation rate measurements using modified TDMA technique with data evaluation using an accurate evaporation model. The first set of data has been collected and evaluated for succinic acid aqueous solution droplets.Evaporation rates of succinic acid solution droplets have been measured using a TDMA system at controlled relative humidity (65%) and temperature (298 K). A temperature-dependent expression for the saturation vapour pressure of pure liquid phase succinic acid at atmospheric temperatures has been derived by analysing the evaporation rate data with a numerical model. The obtained saturation vapour pressure of liquid phase succinic acid is ln(p) = 118.41 − 16204.8/T − 12.452ln(T). The vapour pressure is in unit of Pascal and the temperature in Kelvin. A linear expression for the enthalpy of vaporization for liquid state succinic acid is also presented.According to the results presented in the following, a literature expression for the vapour pressure of liquid phase succinic acid defined for temperatures higher than 461 K [Yaws, C.L., 2003. Yaws' Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel] can be extrapolated to atmospheric temperatures with very good accuracy. The results also suggest that at 298 K the mass accommodation coefficient of succinic acid is unity or very close to unity.  相似文献   

14.
Frequency spectra of atmospheric turbulenceS (f) in the inertial subrange are considered in the free convection regime over the sea surface in a case of motionless instrument measurements (Eulerian frequency spectra). The frequency spectra formulaef * S (f)/ 2 =c (f */f)5/3 for wind velocity (=1–3), temperature (=t) and humidity (=e) fluctuations are derived on the basis of similarity theory and the –5/3 law. These relations also can be derived from a consideration of convective large-scale advection of small eddies. The frequency scalef * = (N 1 2/)1/2 (H/z 2)1/3 is the lower bound of the inertial subrange and it is of order 10–2 Hz.The spectra formulae are compared with direct measurements of atmospheric turbulence from the fixed research tower in the coastal zone of the Black Sea in calm weather. It is shown that these formulae are realized at least over two to three decades of the frequency range (approximately from 10–2 to 10 Hz) and values of the numerical coefficients are found. The derived formulae can be used for calculations of sensible and latent heat fluxes by measuring the high-frequency range of spectra at a fixed point at low wind speeds when the conventional inertial dissipation method is not applicable.  相似文献   

15.
The spatio-temporal variations of the water budget components in the Amazon region are investigated by using a combination of hydrometeorological observations and moisture fluxes derived from the NCEP/NCAR reanalyses, for the period 1970–1999. The key new finding of this study identifies the major differences in the water balance characteristics and variability between the northern and southern parts of the basin. Our results show that there is a seasonality and interannual variability of the water balance that varies across the basin. At interannual time scales, anomalies in the water balance components in the northern Amazon region show relatively stronger links with tropical Pacific interannual variability. Over the entire region, precipitation exceeds evaporation and the basin acts as a sink of moisture (P>E). However, on some occasions the basin can act as a source for moisture (P<E) under extreme conditions, such as those related to deficient rainfall in northern Amazonia during the strong El Niño of 1983. Our estimates of the Amazon regions water balance do not show a closure of the budget, with an average imbalance of almost 50%, suggesting that some of the moisture that converges in the Amazon region is not accounted for. The imbalance is larger over the southern Amazon region than over the northern region, and it also exhibits interannual variability. Large uncertainties are detected in the evaporation and moisture-convergence fields derived from the reanalyses, and in the case of evaporation it can be as large as 10–20% when compared with the few field observations across the basin. Observed precipitation fields derived from station data and from grid-box products also show some discrepancies due to sampling problems and interpolation techniques. The streamflow observed at the mouth of the river is obtained after corrections on the series observed taken at a gauging site almost 200 km inland. However, variability in the evaporation, moisture convergence, and observed rainfall and runoff matches quite well.  相似文献   

16.
Summary Rainfall in West Africa is examined in relation to monthly mean equivalent potential temperature ( e )at the earth's surface. The study revealed that monthly mean equivalent potential temperature ( e ) and monthly rainfall (R) generally decreased northwards from the equator.A good relationship existed betweenR and e in the northern zone of West Africa (i.e., north of 7.5° N). No definite relationship existed in the southern zone. In the northern zone, the departure of e from its annual mean ( ) first became positive about a month before the onset of the rains. Positive departures from ) generally resulted in more than normal (or average) rainfall in this zone. In general, little or no rainfall occurred in West Africa whenever e was less than 320 K.
Zusammenfassung Der Niederschlag (MonatssummeR) in Westafrika wird in Zusammenhang mit der mittleren monatlichen Äquivalent-temperatur ( e ) an der Erdoberfläche untersucht. Es zeigte sich, daß die Monatswerte beider Elemente im allgemeinen vom Äquator nach Norden abnehmen.ZwischenR und e ergab sich für das nördliche Westafrika (nördlich von 7.5° N) eine gute, für die südliche Zone jedoch keine beweisbare Übereinstimmung. In der nördlichen Zone übertraf e das Jahresmittel erstmals etwa einen Monat vor Beginn der Regenzeit. Positive Abweichungen vom mittleren e hatten immer übernormalen Niederschlag in dieser Zone zur Folge. Dagegen gab es wenig oder keinen Niederschlag in Westafrika, wenn e unter 320 K lag.


With 7 Figures  相似文献   

17.
The daytime boundary-layer heating process and the air-land heat budget were investigated over the coastal sea-breeze region by means of observations over the Sendai plain in Japan during the summer. In this area, the onset of the sea breeze begins at the coast around 0900 LST, intruding about 35 km inland by late afternoon. The cold sea breeze creates a temperature difference of over 10°C between the coastal and inland areas in the afternoon. On the other hand, warm air advection due to the combination of the counter-sea breeze and land-to-sea synoptic wind occurs in the layer above the cold sea breeze in the coastal region. Owing to this local warm air advection, there is no significant difference in the daytime heating rate over the entire atmospheric boundary layer between the coastal and inland areas. The sensible heat flux from the land surface gradually decreases as distance from the coastline increases, being mainly attributed to the cold sea breeze. The daytime mean cold air advection due to the sea breeze is estimated asQ adv local =–29 W m–2 averaged over the sea breeze region (035 km from the coastline). This value is 17% of the surface sensible heat fluxH over the same region. The results of a two-dimensional numerical model show that the value ofQ adv local /H is strongly affected by the upper-level synoptic wind direction. The absolute value ofQ adv local /H becomes smaller when the synoptic wind has the opposite direction of the sea breeze. This condition occurred during the observations used in the present study.  相似文献   

18.
Impacts of different closure schemes in the Mixed Spectral Finite-Difference model (Beljaarset al., 1987) for neutrally stratified atmospheric surface-layer flow over complex terrain are studied. Six different closure schemes, (Z+z 0), Mixing Length,E–(Z+z 0),E–,E–– andq 2 l are compared. Model results for flow over an infinite series of sinusoidal ridges are examined in the context of the inner and outer layers defined by Jackson and Hunt (1975). Results are compared with rapid distortion estimates of the changes in normal stresses. The effects of streamline curvature are also examined in a qualitative sense.  相似文献   

19.
Data from the Antarctic winter at Halley Base have been used in order to evaluate qualitatively and quantitatively how the stratification in the low atmosphere (evaluated with the gradient Richardson number, Ri) influences the eddy transfers of heat and momentum. Vertical profiles of wind and temperature up to 32 m, and turbulent fluxes ( , and ) measured from three ultrasonic thermo-anemometers installed at 5, 17 and 32 m are employed to calculate Ri, the friction velocity (u *) and the eddy diffusivities for heat (K h ) and momentum (K m ). The results show a big dependence of stability onK m ,K h andu *, with a sharp decrease of these turbulent parameters with increasing stability. The ratio of eddy diffusivities (K h /K m ) is also analyzed and presents a decreasing tendency as Ri increases, reaching values even less than 1, i.e., there were situations where the turbulent transfer of momentum was greater than that of heat. Possible mechanisms of turbulent mixing are discussed.  相似文献   

20.
The characteristics of a Lyman-alpha humidiometer have been carefully examined in an air-conditioned test chamber. The results confirm that when carefully used, this humidiometer is suitable for measurements of turbulent humidity fluctuations. Measurements with a Lyman-alpha humidiometer were carried out in the surface boundary layer over the ocean. The relation between turbulent intensity ( a = a ov2) and the friction humidity (a *) can be expressed as a = l.6a *. The spectrum of turbulent humidity for wind speeds larger than 3 m s –1 conforms to the similarity law in the surface boundary layer. The spectrum has two characteristic normalized frequencies, namely, a higher peak and a secondary peak (or a shoulder).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号