首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The structure of the cosmic microwave background temperature is studied in the context of a Bianchi type-V tilted cosmological model. First integrals of the equations for the null geodesics are found by use of the symmetries of the model, enabling the celestial temperature distribution to be found. The quadrupole and dipole moments are calculated for some models, suggesting that the observed anisotropy in the cosmic microwave background can be understood in the context of a Bianchi type-V model of the Universe. The apparent magnitude-redshift relations are also calculated for these models.  相似文献   

2.
We adapt the smooth tests of goodness-of-fit developed by Rayner and Best to the study of the non-Gaussianity of interferometric observations of the cosmic microwave background (CMB). The interferometric measurements (visibilities) are transformed into signal-to-noise ratio eigenmodes, and then the method is applied directly in Fourier space. This transformation allows us to perform the analysis in different subsets of eigenmodes according to their signal-to-noise ratio level. The method can also deal with non-uniform or incomplete coverage of the UV plane. We explore here two possibilities: we analyse either the real and imaginary parts of the complex visibilities (Gaussianly distributed under the Gaussianity hypothesis) or their phases (uniformly distributed under the Gaussianity hypothesis). The power of the method in discriminating between Gaussian and non-Gaussian distributions is studied by using several kinds of non-Gaussian simulations. On the one hand, we introduce a certain degree of non-Gaussianity directly into the Fourier space using the Edgeworth expansion, and afterwards the desired correlation is introduced. On the other hand, we consider interferometric observations of a map with topological defects (cosmic strings). To these previous non-Gaussian simulations we add different noise levels and quantify the required signal-to-noise ratio necessary to achieve a detection of these non-Gaussian features. Finally, we have also studied the ability of the method to constrain the so-called non-linear coupling constant f NL using χ2 simulations. The whole method is illustrated here by application to simulated data from the Very Small Array interferometer.  相似文献   

3.
We have estimated the cosmic microwave background (CMB) variance from the three-year Wilkinson Microwave Anisotropy Probe ( WMAP ) data, finding a value which is significantly lower than the one expected from Gaussian simulations using the WMAP best-fitting cosmological model, at a significance level of 98.7 per cent. This result is even more prominent if we consider only the North ecliptic hemisphere (99.8 per cent). Different analyses have been performed in order to identify a possible origin for this anomaly. In particular, we have studied the behaviour of single-radiometer and single-year data as well as the effect of residual foregrounds and 1/f noise, finding that none of these possibilities can explain the low value of the variance. We have also tested the effect of varying the cosmological parameters, finding that the estimated CMB variance tends to favour higher values of n s than the one of the WMAP best-fitting model. In addition, we have also tested the consistency between the estimated CMB variance and the actual measured CMB power spectrum of the WMAP data, finding a strong discrepancy. A possible interpretation of this result could be a deviation from Gaussianity and/or isotropy of the CMB.  相似文献   

4.
A number of large current experiments aim to detect the signatures of the cosmic reionization at redshifts z > 6. Their success depends crucially on understanding the character of the reionization process and its observable consequences and designing the best strategies to use. We use large-scale simulations of cosmic reionization to evaluate the reionization signatures at redshifted 21-cm and small-scale cosmic microwave background (CMB) anisotropies in the best current model for the background universe, with fundamental cosmological parameters given by Wilkinson Microwave Anisotropy Probe three-year results. We find that the optimal frequency range for observing the 'global step' of the 21-cm emission is 120–150 MHz, while statistical studies should aim at 140–160 MHz, observable by GMRT. Some strongly non-Gaussian brightness features should be detectable at frequencies up to ∼190 MHz. In terms of sensitivity-signal trade-off relatively low resolutions, corresponding to beams of at least a few arcminutes, are preferable. The CMB anisotropy signal from the kinetic Sunyaev–Zel'dovich effect from reionized patches peaks at tens of μK at arcminute scales and has an rms of ∼1 μK, and should be observable by the Atacama Cosmology Telescope and the South Pole Telescope. We discuss the various observational issues and the uncertainties involved, mostly related to the poorly known reionization parameters and, to a lesser extend, to the uncertainties in the background cosmology.  相似文献   

5.
A directional spherical wavelet analysis is performed to examine the Gaussianity of the Wilkinson Microwave Anisotropy Probe ( WMAP ) 1-yr data. Such an analysis is facilitated by the introduction of a fast directional continuous spherical wavelet transform. The directional nature of the analysis allows us to probe orientated structure in the data. Significant deviations from Gaussianity are detected in the skewness and kurtosis of spherical elliptical Mexican hat and real Morlet wavelet coefficients for both the WMAP and Tegmark, de Oliveira-Costa & Hamilton foreground-removed maps. The previous non-Gaussianity detection made by Vielva et al. using the spherical symmetric Mexican hat wavelet is confirmed, although their detection at the 99.9 per cent significance level is only made at the 95.3 per cent significance level using our most conservative statistical test. Furthermore, deviations from Gaussianity in the skewness of spherical real Morlet wavelet coefficients on a wavelet scale of 550 arcmin (corresponding to an effective global size on the sky of ∼26° and an internal size of ∼3°) at an azimuthal orientation of 72°, are made at the 98.3 per cent significance level, using the same conservative method. The wavelet analysis inherently allows us to localize on the sky those regions that introduce skewness and those that introduce kurtosis. Preliminary noise analysis indicates that these detected deviation regions are not atypical and have average noise dispersion. Further analysis is required to ascertain whether these detected regions correspond to secondary or instrumental effects, or whether in fact the non-Gaussianity detected is due to intrinsic primordial fluctuations in the cosmic microwave background.  相似文献   

6.
The absolute radiometer for cosmology, astrophysics, and diffuse emission (ARCADE) is a balloon-borne instrument designed to measure the temperature of the cosmic microwave background at centimeter wavelengths. ARCADE searches for deviations from a blackbody spectrum resulting from energy releases in the early universe. Long-wavelength distortions in the CMB spectrum are expected in all viable cosmological models. Detecting these distortions or showing that they do not exist is an important step for understanding the early universe. We describe the ARCADE instrument design, current status, and future plans.  相似文献   

7.
We obtain some cosmological models that are exact solutions of Einstein's field equations. The metric utilized is Marder's metric which is Bianchi Type I and the curvature source is a cloud of strings which are one dimensional objects. Bianchi type cosmological models play an important role in the study of the universe on a scale which anisotropy is not ignored. In this paper we have investigated the effect of cosmic strings on the cosmic microwave background anisotropy. Various physical and geometrical properties of the model are also discussed. The solutions have reported that the cosmic microwave background anisotropy may due to the cosmic strings.  相似文献   

8.
We present a Gaussianity analysis of the Wilkinson Microwave Anisotropy Probe ( WMAP ) 5-yr cosmic microwave background (CMB) temperature anisotropy data maps. We use several third-order estimators based on the spherical Mexican hat wavelet. We impose constraints on the local non-linear coupling parameter f nl using well-motivated non-Gaussian simulations. We analyse the WMAP maps at resolution of 6.9 arcmin for the Q , V , and W frequency bands. We use the KQ 75 mask recommended by the WMAP team which masks out 28 per cent of the sky. The wavelet coefficients are evaluated at 10 different scales from 6.9 to 150 arcmin. With these coefficients, we compute the third order estimators which are used to perform a  χ2  analysis. The  χ2  statistic is used to test the Gaussianity of the WMAP data as well as to constrain the f nl parameter. Our results indicate that the WMAP data are compatible with the Gaussian simulations, and the f nl parameter is constrained to  −8 < f nl < +111  at 95 per cent confidence level (CL) for the combined   V + W   map. This value has been corrected for the presence of undetected point sources, which add a positive contribution of  Δ f nl= 3 ± 5  in the   V + W   map. Our results are very similar to those obtained by the WMAP team using the bispectrum.  相似文献   

9.
10.
We investigate the relative sensitivities of several tests for deviations from Gaussianity in the primordial distribution of density perturbations. We consider models for non-Gaussianity that mimic that which comes from inflation as well as that which comes from topological defects. The tests we consider involve the cosmic microwave background (CMB), large-scale structure, high-redshift galaxies, and the abundances and properties of clusters. We find that the CMB is superior at finding non-Gaussianity in the primordial gravitational potential (as inflation would produce), while observations of high-redshift galaxies are much better suited to find non-Gaussianity that resembles that expected from topological defects. We derive a simple expression that relates the abundance of high-redshift objects in non-Gaussian models to the primordial skewness.  相似文献   

11.
12.
We investigate numerically the contribution to the cosmic gamma-ray background from cosmic-ray ions and electrons accelerated at intergalactic shocks associated with cosmological structure formation. We show that the kinetic energy of accretion flows in the low-redshift intergalactic medium is thermalized primarily through moderately strong shocks, which allow for an efficient conversion of shock ram pressure into cosmic-ray pressure. Cosmic rays accelerated at these shocks produce a diffuse gamma-ray flux which is dominated by inverse Compton emission from electrons scattering off cosmic microwave background photons. Decay of neutral π mesons generated in p–p inelastic collisions of the ionic cosmic-ray component with the thermal gas contribute about 30 per cent of the computed emission. Based on experimental upper limits on the photon flux above 100 MeV from nearby clusters we constrain the efficiency of conversion of shock ram pressure into relativistic CR electrons to  ≲1 per cent  . Thus, we find that cosmic rays of cosmological origin can generate an overall significant fraction of order 20 per cent and no more than 30 per cent of the measured gamma-ray background.  相似文献   

13.
We discuss the problems faced in trying to deduce the evolution of cosmological perturbations in brane-world models. There are two natural ways to formulate the problem: one which makes the equations of motion simple and the other which makes the boundary condition simple. Unfortunately the problem is difficult to solve, even numerically, in either formalism. We present a more phenomenological approach which, while it does not solve the problem for any given model, illustrates some generic features one might expect to see in the tensor part of the cosmic microwave background power spectrum. We find that the observed scale invariance of the cosmic microwave background provides bounds on brane world models. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
We present measurements of the clustering of hot and cold patches in the microwave background sky as measured from the Wilkinson Microwave Anisotropy Probe 5-year data. These measurements are compared with theoretical predictions which assume that the cosmological signal obeys Gaussian statistics. We find significant differences from the simplest Gaussian-based prediction. However, the measurements are sensitive to the fact that the noise is spatially inhomogeneous (e.g. because different parts of the sky were observed for different lengths of time). We show how to account for this spatial inhomogeneity when making predictions. Differences from the Gaussian-based expectation remain even after this more careful accounting of the noise. In particular, we note that hot and cold pixels cluster differently within the same temperature thresholds at few-degree scales. While these findings may indicate primordial non-Gaussianity, we discuss other plausible explanations for these discrepancies. In addition, we find some deviations from Gaussianity at sub-degree scales, especially in the W band, whose origin may be associated with extragalactic dust emission.  相似文献   

15.
Modifying slightly the big bang theory, the author has recently developed a new cosmological model called black hole universe. This new cosmological model is consistent with the Mach principle, Einsteinian general theory of relativity, and observations of the universe. The origin, structure, evolution, and expansion of the black hole universe have been presented in the recent sequence of American Astronomical Society (AAS) meetings and published recently in a scientific journal: Progress in Physics. This paper explains the observed 2.725 K cosmic microwave background radiation of the black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present universe with hundred billion-trillions of solar masses. According to the black hole universe model, the observed cosmic microwave background radiation can be explained as the black body radiation of the black hole universe, which can be considered as an ideal black body. When a hot and dense star-like black hole accretes its ambient materials and merges with other black holes, it expands and cools down. A governing equation that expresses the possible thermal history of the black hole universe is derived from the Planck law of black body radiation and radiation energy conservation. The result obtained by solving the governing equation indicates that the radiation temperature of the present universe can be ∼2.725 K if the universe originated from a hot star-like black hole, and is therefore consistent with the observation of the cosmic microwave background radiation. A smaller or younger black hole universe usually cools down faster. The characteristics of the original star-like or supermassive black hole are not critical to the physical properties of the black hole universe at present, because matter and radiation are mainly from the outside space, i.e., the mother universe.  相似文献   

16.
This paper focuses attention on a qualitative analysis of the evolution of two-fluid flat FRW cosmological models.In the first model one of the fluid represents matter content of the universe comoving with respect to the another fluid that is the cosmic microwave background radiation (CMBR), these two fluids are interacting.The first model is most relevant to describe the scenario before the recombination epoch when matter and radiation were in an interactive phase and the photons was bound to electron through Thomson scattering. The second model describe two noninteracting fluids where the matter is comoving to the space-time coordinates and the CMBR is moving axially, relative to the matter thus modeling the relative velocity between galaxies and the CMBR (Phys. Rev. Lett. 39:898–901, 1977). This model portray the cosmic evolution in the postrecombination epoch when the two-fluid are noninteracting.In this epoch the photons got themselves free to form the CMBR being observed presently.   相似文献   

17.
We develop a general formalism for analysing parameter information from non-Gaussian cosmic fields. The method can be adapted to include the non-linear effects in galaxy redshift surveys, weak lensing surveys and cosmic velocity field surveys as part of parameter estimation. It can also be used as a test of non-Gaussianity of the cosmic microwave background. Generalizing maximum-likelihood analysis to second order, we calculate the non-linear Fisher information matrix and likelihood surfaces in parameter space. To this order we find that the information content is always increased by including non-linearity. Our methods are applied to a realistic model of a galaxy redshift survey, including non-linear evolution, galaxy bias, shot-noise and redshift-space distortions to second order. We find that including non-linearities allows all of the degeneracies between parameters to be lifted. Marginalized parameter uncertainties of a few per cent will then be obtainable using forthcoming galaxy redshift surveys.  相似文献   

18.
Confronted with microwave background observations by WMAP and with consternating supernova locations in the magnitude–redshift diagram modern cosmology feels enforced to call for cosmic vacuum energy as a necessary cosmological ingredient. Most often this vacuum energy is associated with Einstein’s cosmological constant Λ or with so-called “dark energy”. A positive value of Λ describes an inflationary action on cosmic dynamics which in view of recent cosmological data appears as an absolute need. In this article, however, we question the hypothesis of a constant vacuum energy density since not justifiable on physical grounds. Instead we show that gravitational binding energy of cosmic matter, connected with ongoing structure formation during cosmic expansion, acts similar to vacuum energy, since it reduces the effective gravitating proper mass density. Thus one may be encouraged to believe that actions of cosmic vacuum energy and gravitational binding energy concerning their cosmological effects are closely related to each other, perhaps in some respects even have identical phenomenologies.  相似文献   

19.
The effects of large-scale fluctuations on small-scale isothermal modes at the epoch of recombination are analysed. We find the following. (a) Albeit the fact that primordial fluctuations were at this epoch still well in the linear regime, a significant non-linear radiation hydrodynamic interaction could have taken place. (b) Short-wavelength isothermal fluctuations are unstable. Their growth rate is an exponential function of the amplitude of the large-scale fluctuations and is therefore very sensitive to the initial conditions. (c) The observed cosmic microwave background radiation (CMBR) fluctuations are of order of the limit above which the effect should be significant. Thus, depending on their exact value, the effect may be negligible or lead to structure formation out of the isothermal fluctuations within the period of recombination. (d) If the cosmological parameters are within the prescribed regime, the effect should be detectable through induced deviations in the Planck spectrum. (e) The sensitivity of the effect to the initial conditions provides a tool to set limits on various cosmological parameters with emphasis on the type and amplitude of the primordial fluctuation spectrum. (f) Under proper conditions, the effect may be responsible for the formation of sub-globular-cluster sized objects at particularly high redshifts. (g) Under certain circumstances, it can also affect horizon-sized large-scale structure.  相似文献   

20.
张宇颖 《天文学进展》2002,20(3):265-281
存在于星系团电离气体中的大量高温电子会对宇宙微波背景的光子产生逆康普顿散射,引起所谓的Sunyaev-Zel‘dovich(SZ)效应,SZ效应是研究星系团的一种非常有效的手段。特别中SZ效应只与星系团的内禀性质有关,而与所处的位置无关,这有利于发现高红移的星系团,因此对星系团的演化有着极其重要的意义,正在建造中的SZ巡天望远望,将提供 条全新的确定宇宙参数的有效途径,如物质密度参量(ΩM),真空能密度参量(ΩΛ)和8h^-1Mpc尺度内的质量涨落均方差(σ8),SZ星系团巡天确定宇宙参数,特别是定量分析利用SZ星系团巡天确定宇宙参数中可能存在的所有不确定因素,可以更好地限制宇宙学模型。在SZ星系团巡天完成之前,人们必须对这些不确定因素有清楚的了解,以便能利用未来的SZ星系团退天结果有效地测量宇宙参数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号