首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bright and dark curvilinear structures observed between the two major chromospheric ribbons during the flare of 29 July 1973 on films from the Big Bear Solar Observatory are interpreted as a typical system of coronal loops joining the inner boundaries of the separating flare ribbons. These observations, made through a 0.25 Å H filter, only show small segments of the loops having Doppler shifts within approximately ± 22 km s–1 relative to the filter passband centered at H, H -0.5 Å or H +0.5 Å. However, from our knowledge of the typical behavior of such loop systems observed at the limb in H and at 5303 Å, it has been possible to reconstruct an appoximate model of the probable development of the loops of the 29 July flare as they would have been viewed at the limb relative to the position of a prominence which began to erupt a few minutes before the start of the flare. It is seen that the loops ascended through the space previously occupied by the filament. On the assumption that H fine structures parallel the magnetic field, we can conclude that a dramatic reorientation of the direction of the magnetic field in the corona occurred early in the flare, subsequent to the start of the eruption of the filament and prior to the time that the H loops ascended through the space previously occupied by the filament.  相似文献   

2.
A study is made of Lyman continuum observations of solar flares, using data obtained by the Harvard College Observatory EUV spectroheliometer on the Apollo Telescope Mount. We find that there are two main types of flare regions: an overall mean flare coincident with the H flare region, and transient Lyman continuum kernels which can be identified with the H and X-ray kernels observed by other authors. It is found that the ground level hydrogen population in flares is closer to LTE than in the quiet Sun and active regions, and that the level of Lyman continuum formation is lowered in the atmosphere from a mass column density m 5/sx 10–6 g cm–2 in the quiet Sun to m 3/sx 10–4 g cm–2 in the mean flare, and to m 10–3g cm–2 in kernels. From these results we derive the amount of chromospheric material evaporated into the high temperature region, which is found to be - 1015g, in agreement with observations of X-ray emission measures. A comparison is made between kernel observations and the theoretical predictions made by model heating calculations, available in the literature; significant discrepancies are found between observation and current particle-heating models.  相似文献   

3.
We study the spatial and spectral characteristics of the 3.5 to 30.0 keV emission in a solar flare of 9 May, 1980. We find that: (a) A classical thick target interpretation of the hard X-ray burst at energies E 10 keV implies that approximately all the electrons contained within the flare loop(s) have to be accelerated per second. (b) A thermal model interpretation does not fit the data, unless its characteristics are such that it does not represent an efficient alternative to the acceleration model. We thus conclude that: (c) Acceleration does take place during the early phase of the impulsive hard X-ray event, but substantial amount of the emission at low (<20 keV) energies is of thermal origin. (d) We show the evolution of the energy content in the flare volume, and find that the energy input requirements are such that 102 erg cm-3 s-1 have to be released within the flare structure(s), for a period of time comparable to that of the hard X-ray burst emission. We also point out that although the main flare component ( 90% of the soft X-ray emission) was confined to a compact magnetic kernel, there are evidences of interaction of this structure with a larger field structure connecting towards the leading portion of the active region, where secondary H brightenings were observed.  相似文献   

4.
We present two large flares which were exceptional in that each produced an extensive chain of H emission patches in remote quiet regions more than 105 km away from the main flare site. They were also unusual in that a large group of the rare type III reverse slope bursts accompanied each flare.The observations suggest that this is no coincidence, but that the two phenomena are directly connected. The onset of about half of the remote H emission patches were found to be nearly simultaneous with RS bursts. One of the flares (August 26, 1979) was also observed in hard X-rays; the RS bursts occurred during hard X-ray spikes. For the other flare (June 16, 1973), soft X-ray filtergrams show coronal loops connecting from the main flare site to the remote H brightenings. There were no other flares in progress during either flare; this, along with the X-ray observations, indicates that the RS burst electrons were generated in these flares and not elsewhere on the Sun. The remote H brightenings were apparently not produced by a blast wave from the main flare; no Moreton waves were observed, and the spatially disordered development of the remote H chains is further evidence against a blast wave. From geometry, time and energy considerations we propose: (1) That the remote H brightenings were initiated by direct heating of the chromosphere by RS burst electrons traveling in closed magnetic loops connecting the flare site to the remote patches; and (2) that after onset, the brightenings were heated by thermal conduction by slower thermal electrons (kT1 keV) which immediately follow the RS burst electrons along the same loops.  相似文献   

5.
A study has been made of the variation in hard (E 10 keV) X-radiation, H and microwave emission during the impulsive phase of solar flares. Analysis shows that the rise-time in the 20–30-keV X-ray spike depends on the electron hardness, i.e., t rise exp (0.87 ). The impulsive phase is also marked by an abrupt, very intense increase in H emission in one or more knots of the flare. Properties of these H kernels include: (1) a luminosity several times greater than the surrounding flare, (2) an intensity rise starting about 20–30 s before, peaking about 20–25 s after, and lasting about twice as long as the hard spike, (3) an effective diameter of 3000–6000 km for class 1 flares, representing less than 1/8-1/2 of the main flare, (4) a location lower in the chromosphere than the remaining flare, (5) essentially no expansion prior to the hard spike, (6) a position within 6000 km of the boundary separating polarities, usually forming on both sides of the neutral line near both feet of the same tube of force, (7) a shape often resembling isogauss contours of the photospheric field indicated on magnetograms and (8) total radiated energy less than l/50 that of the hard electrons. Correspondingly, impulsive microwave events are characterized by: (1) the detection of a burst at 8800 MHz for every X-ray spike ifthe number of electrons above 100 keV is greater than 1033, (2) great similarity in burst structure with 20–32 keV X-rays but only at f > 5000 MHz, (3) typical low frequency burst cutoff between 1400–3800 MHz, and (4) maximum emission at f > 7500 MHz. Finally the H, X-ray and microwave data are combined to present a picture of the impulsive phase consistent with the above observations.  相似文献   

6.
Using photospheric and H observations and total radio flux data we study a two-ribbon flare in AR NOAA 4263 which was a part of a flare event complex on July 31, 1983. We find some facts which illuminate the special way of flare triggering in the analysed event. Around a double spot the photospheric vector magnetic field is discussed with respect to the chromospheric activities. In one of the spots the feet of long stretched loops are pushed down under steepening loops rooted in the same spot. This causes energy build-up by twist and shear in the stretched loops. One foot of the two-ribbon flare (triggered in the stretched and underpushed loop system) roots in a part of the spot umbra and penumbra where the field runs in extremely flat like a pressed spiral spring. A strange radio event, starting before the flares, can be interpreted as a precursor activity of the flare event complex. The radio data support the view that the analyzed flare process and the given magnetic field structure, respectively, are not very effective in energetic particle generation and escape.  相似文献   

7.
A limb, two-ribbon H flare on June 4, 1991, associated with a white-light flare and followed by an emission spray and post-flare loops, is studied. A region of rapidly enhanced brightness at the bottom of the H ribbon above the white-light flare is revealed. The energy released by the white-light flare at eff = 4100 is estimated to be about 1.5 × 1028 erg s–1.  相似文献   

8.
The evolutional characteristics of the red asymmetry of H flare line profiles were studied by means of a quantitative analysis of H flare spectra obtained with the Domeless Solar Telescope at Hida Observatory. Red-shifted emission streaks of H line are found at the initial phase of almost all flares which occur near the disk center, and are considered to be substantial features of the red asymmetry. It is found that a downward motion in the flare chromospheric region is the cause of the red-shifted emission streak. The downward motion abruptly increases at the onset of a flare, attains its maximum velocity of about 40 to 100 km s-1 shortly before the impulsive peak of the microwave burst, and rapidly decreases before the intensity of H line reaches its maximum. Referring to the numerical simulations made by Livshits et al. (1981) and Somov et al. (1982), we conclude that the conspicuous red-asymmetry or the red-shifted emission streak of H line is due to the downward motion of the compressed chromospheric flare region produced by the impulsive heating by energetic electron beam or thermal conduction.Contributions from the Kwasan and Hida Observatories, University of Kyoto, No. 258.  相似文献   

9.
We present the two-dimensional imaging observations of radio bursts in the frequency range 25–50 MHz made with the Clark Lake multifrequency radioheliograph during a coronal mass ejection event (CME) observed on 1984, June 27 by the SMM Coronagraph/Polarimeter and Mauna Loa K-coronameter. The event was spatially and temporally associated with precursors in the form of meter-decameter type III bursts, soft X-ray emission and a H flare spray. The observed type IV emission in association with the CME (and the H spray) could be interpreted as gyrosynchrotron emission from a plasmoid containing a magnetic field of 2.5 G and nonthermal electrons with a number density of 105 cm–3 and energy 350 keV.On leave from Indian Institute of Astrophysics, Kodaikanal, India.  相似文献   

10.
A detailed study of the evolution and cooling process of post-flare loops is presented for a large X9.2 solar flare of 2 November 1992 by using H images obtained with Domeless Solar Telescope at Hida Observatory and soft X-ray images of Yohkoh Soft X-ray Telescope (SXT). The detailed analysis with a new method allows us to determine more precise values of the cooling times from 107 K to 104 K plasma in the post-flare loops than in previous works. The subtraction of sequential images shows that soft X-ray dimming regions are well correlated to the H brightening loop structure. The cooling times between 107 K and 104 K are defined as the time difference between the start of soft X-ray intensity decrease and the end of H intensity increase at a selected point, where the causal relation between H brightening and soft X-ray dimming loops is confirmed. The obtained cooling times change with time; about 10 min at the initial stage and about 40 min at the later stage. The combined conductive and radiative cooling times are also calculated by using the temperature and density obtained from SXT data. Calculated cooling times are close to observed cooling times at the beginning of the flare and longer in the later stage.  相似文献   

11.
The flare of 11 November, 1980, 1725 UT occurred in a magnetically complex region. It was preceded by some ten minutes by a gradual flare originating over the magnetic inversion line, close to a small sunspot. This seems to have triggered the main flare (at 70 000 km distance) which originated between a large sunspot and the inversion line. The main flare started at 172320 UT with a slight enhancement of hard X-rays (E > 30 keV) accompanied by the formation of a dark loop between two H bright ribbons. In 3–8 keV X-rays a southward expansion started at the same time, with - 500 km s –1. At the same time a surge-like expansion started. It was observable slightly later in H, with southward velocities of 200 km s–1. The dark H loop dissolved at 1724 UT at which time several impulsive phenomena started such as a complex of hard X-ray bursts localized in a small area. At the end of the impulsive phase at 172540 UT, a coronal explosion occurred directed southward with an initial expansion velocity of 1800 km s–1, decreasing in 40 s to 500 km s–1.Now at Fokker Aircraft Industries, Schiphol, The Netherlands.  相似文献   

12.
Simultaneous visible, EUV, and X-ray observations of magnetic structures before and during the onset of the flare of 5 September 1973 are co-registered and interpreted. Ninety minutes before the flare, intense EUV knots fluctuate near the loops which subsequently flare. The pre-flare loop is observed in O IV 554, but not in X-rays, which show instead a parallel structure which is related either to a darkening filament or the subsequent flare kernels. As the full disk X-ray emission increases, first the EUV flare loop appears, then X-ray kernels form at the feet of two EUV loops, one of which overlies the activated filament. The flaring, at any given time, is confined to a single loop (or bundle of loops) whose long axis (barely) crosses the neutral line. As time progresses, the flaring moves to other (probably higher) loops sharing the off-band H footpoints but whose axes are rotated relative to the earlier loops by angles of about 30°. Previous interpretations of single-telescope observations are revised in this joint investigation.  相似文献   

13.
Flare-associated soft X-ray bursts (8–12 Å) are examined for 283 events observed by OSO-III. These bursts are shown to be predominantly thermal in nature. Their time-profiles are roughly similar to those of the associated H flares, although the X-ray burst begins about two minutes earlier, on the average. The strength of the soft X-ray burst is directly related to the area and brilliance of the flare, the age and flare-richness of the associated plage, and the general level of solar activity at the time of the burst. The peak enhancements in the soft X-ray and H emission rates during flares are of the same order of magnitude, as are the total flare energies radiated at these wavelengths. We estimate that soft X-radiation accounts for up to 10% of a flare's total electromagnetic emission.NRC/NAS Resident Research Associate.  相似文献   

14.
The assumption of a linearly expanding universe for the JBD-cosmological equations generates a set of solutions for the barotropic equations of statep= (=const.). These solutions turn out to be valid for closed space-except in the casep= which is for open space. The gravitational constant which is inversely proportional to the scalar field increases with time if >–1/3 and decreases for <–1/3. No solution exists for =1/3. The Brans-Dicke parameter is negative if <–1/3.  相似文献   

15.
Post-flare loops were observed on June 26, 1992 in the H line with the Multichannel Subtractive Double-Pass spectrograph (MSDP) on Pic-du-Midi and with the Swedish telescope on La Palma. The highly dynamic loops are inhomogeneous (blobs). The cool loops were observed 10–12 hours after the X 3.9 class flare which had a maximum on June 25 at 2011 UT. From 2D images obtained with the MSDP on June 26 we derive H intensities and Doppler velocities of the loop plasma. Using a geometrical reconstruction technique we show that these loops are mainly perpendicular to the solar surface and have the shape of a dipole magnetic configuration. We derive the bulk-flow velocities along the loop as a function of height using the Doppler velocities and the results from the loop reconstruction. Where the Doppler velocities are too small, we derive the bulk-flow velocities from the displacements of the falling blobs. We discuss existing deviations from free-fall velocity in the lower parts of the loops.  相似文献   

16.
Flaring arches     
Flaring arches is a name assigned to a particular component of some flares. This component consists of X-ray and H emission which traverses a coronal arch from one to the other of its chromospheric footpoints. The primary footpoint is at the site of a flare. The secondary footpoint, tens of thousands of kilometers distant from the source flare, but in the same active region, brightens in H concurrent with the beginning of the hard X-ray burst at the primary site. From the inferred travel time of the initial exciting agent we deduce that high speed electron streams travelling through the arch must be the source of the initial excitation at the secondary footpoint. Subsequently, a more slowly moving agent gradually enhances the arch first in X-rays and subsequently in H, starting at the primary footpoint and propagating along the arch trajectory. The plasma flow in H shows clearly that material is injected into the arch from the site of the primary footpoint and later on, at least in some events, a part of it is also falling back.Thus a typical flaring arch has three, and perhaps four consecutive phases: (1) An early phase characterized by the onset of hard X-ray burst and brightening of the secondary footpoint in H. (2) The main X-ray phase, during which X-ray emission propagates through the arch. (3) The main H phase, during which H emitting material propagates through the arch. And (4) an aftermath phase when some parts of the ejected material seem to flow in the reverse direction towards the primary site of injection.An extensive series of flaring arches was observed from 6 to 13 November, 1980 at the Big Bear Solar Observatory and with the Hard X-Ray Imaging Spectrometer (HXIS) on board the SMM in a magnetically complex active region. The two most intense arches for which complete H and X-ray data are available and which occurred on 6 November at 17 21 UT (length 57000 km) and on 12 November at 16 57 UT (length 263 000 km) are discussed in this paper.  相似文献   

17.
K X-ray line emission from S, Ar, Ca and Fe is calculated for conditions likely to exist in solar flares. We consider both the non-thermal and thermal phases of flares as indicated by X-ray observations. Impulsive non-thermal events seen at the onset of a flare at photon energies > 20 keV generally give rise to small K line fluxes (<250 photons cm-2 s-1) on the basis of data presented by Kane and Anderson. The amount of S K radiation in particular depends sensitively on the lower-energy bound of the non-thermal electron distribution giving rise to the impulsive burst, offering a possible means of determining this. Thermal K emission is significant for only Fe ions. For S, Ar and Ca, the temperatures required for a sizeable number of electrons with energies greater than the K-ionization potential will also strip these elements to ionization stages too high for K transitions to be possible. Comparison of thermal K emission from iron during an intense solar flare leads to a very high emission measure on the basis of these calculations, but such a value seems to be compatible with an analysis of the 1–3 Å continuum during the same event.NAS/NRC Resident Research Associate.Visiting Scientist, High Altitude Observatory, NCAR, Boulder, Colo. 80302.  相似文献   

18.
Data from SSRT form the basis for initiating a study of the properties of long-lived, compact microwave sources located outside sunspots. A step-like birth of such a source was detected and is described in this study. This sheds light on the relationship between the step-like phenomenon detected with SSRT and the peculiar source phenomenon observed at RATAN-600. Peculiar sources precede large flares and are projected onto the photospheric neutral line. It seems likely that the build-up of a large flare is also step-like in character. We also discuss a source overlying the neutral line which accompanied a large active region that did not produce any large flare.  相似文献   

19.
We study the active region NOAA 6718 and the development of a (2N, M3.6) flare in radio and H. Due to our knowledge of the magnetic field structure in the active region we are able to associate the different radio flare burst components with the stages in the H flare evolution. A discussion of the data in terms of chromospheric flare kernel heating reveals that in the present case the observed flare-related radio burst continuum switch-off is caused by the penetration of hot, ablated gas into the coronal radio source.  相似文献   

20.
A method is described for reconstructing the true geometry of a solar loop observed on the disk which takes account of tilt in its own plane. Reconstructions of three H loops yield small tilt angles (14°) and provide further evidence that H loops show a close correspondence to the field lines of a magnetic dipole. The method offers new opportunities for exploring the physics of individual solar loops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号