首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ratio of P- to S-wave velocities (Vp/Vs) is regarded as one of the most diagnostic properties of natural rocks. It has been used as a discriminant of composition for the continental crust and provides valuable constraints on its formation and evolution processes. Furthermore, the spatial and temporal changes in Vp/Vs before and after earthquakes are probably the most promising avenue to understanding the source mechanics and possibly predicting earthquakes. Here we calibrate the variations in Vp/Vs in dry, anisotropic crustal rocks and provide a set of basic information for the interpretation of future seismic data from the Wenchuan earthquake Fault zone Scientific Drilling (WFSD) project and other surveys. Vp/Vs is a constant (φ0) for an isotropic rock. However, most of crustal rocks are anisotropic due to lattice-preferred orientations of anisotropic minerals (e.g., mica, amphibole, plagioclase and pyroxene) and cracks as well as thin compositional layering. The Vp/Vs ratio of an anisotropic rock measured along a selected pair of propagation-vibration directions is an apparent value (φij) that is significantly different from the value for its isotropic counterpart (φ0). The usefulness of apparent Vp/Vs ratios as a diagnostic of crustal composition depends largely on rock seismic anisotropy. A 5% of P- and S-wave velocity anisotropy is sufficient to make it impossible to determine the crustal composition using the conventional criteria (Vp/Vs<1.756 for felsic rocks, 1.756l.944 fluid-tidied porous/fractured or partially molten rocks) if the information about the wave propagation-polarization directions with respect to the tectonic framework is unknown. However, the variations in Vp/Vs measured from borehole seismic experiments can be readily interpreted according to the orientations of the ray path and the polarization of the shear waves with respect to the present-day principal stress directions (I.e., the orientation of cracks) and the frozen fabric (I.e., foliation and lineation).  相似文献   

2.
构建了等直径不同裂隙密度和等裂隙密度不同裂隙直径两组物理模型,进行不同围压条件下多方向的超声波速度测试,并运用Hudson理论进行了理论模型计算。结果显示,计算与实测结果吻合较好。随围压的增大,纵、横波速度均近线性增加,纵、横波各向异性基本保持不变;裂隙密度从2%增大到6%,纵波速度不同程度降低,其中慢纵波降低幅度相对较大,快横波变化不明显,而慢横波则大幅降低。随着裂隙密度的增大,纵、横波各向异性均增大,且横波各向异性增加速率大于纵波;裂隙直径从2 mm增大到3 mm,快纵波速度增加很小,慢纵波增加明显,横波速度均不发生改变。随着裂隙直径的增大,纵波各向异性逐渐降低,横波各向异性保持不变。最后结合试验结果分析了Hudson理论在不同深度进行参数预测的必要条件。研究结果有助于油气生产、地下水的开采与控制、污染处理等。   相似文献   

3.
Thirty‐three samples, including 22 eclogites, collected from the Dabie ultrahigh‐pressure (UHP) metamorphic belt in eastern China, have been studied for seismic properties. Compressional (Vp) and shear wave (Vs) velocities in three mutually perpendicular directions under hydrostatic pressures up to 1.0 GPa were measured for each sample. At 1.0 GPa, Vp (7.5–8.4 km s?1), Vs (4.2–4.8 km s?1), and densities (3.2–3.6 g cm?3) in the UHP eclogites are higher than those of UHP orthopyroxenite (7.3–7.5 km s?1, 4.1–4.3 km s?1, 3.2–3.3 g cm?3, respectively) and HP eclogites (7.1–7.9 km s?1, 4.0–4.5 km s?1, 3.1–3.5 g cm?3, respectively). Kyanitites (with 99.5% kyanite) show extremely high velocities and density (9.37 km s?1, 5.437 km s?1, 3.581 g cm?3, respectively). The eclogites show variation of Vp‐ and Vs‐anisotropy up to 9.70% and 9.17%, respectively. Poisson’s ratio (σ) ranges from 0.218 to 0.278 (with a mean of 0.255) for eclogites, 0.281–0.298 for granulites and 0.248 to 0.255 for amphibolites. The σ values for serpentinite (0.341) and marble (0.321) are higher than for other lithologies. The elastic moduli K, G, E of kyanitite were obtained as 163, 102 and 253 GPa, respectively. The Vp and density of representative UHP metamorphic rocks (eclogite & kyanitite) were extrapolated to mantle depth (15 GPa) following a reasonable geotherm, and compared to the one dimension mantle velocity and density model. The comparison shows that Vp and density in eclogite and kyanitite are greater than those of the ambient mantle, with differences of up to ΔVp > 0.3 km s?1 and Δρ > 0.3–0.4 g cm?3, respectively. This result favours the density‐induced delamination model and also provides evidence in support of distinguishing subducted high velocity materials in the upper mantle by means of seismic tomography. Such ultra‐deep subduction and delamination processes have been recognized by seismic tomography and geochemical tracing in the postcollisional magmatism in the Dabie region.  相似文献   

4.
Lamé modulus (λ) and shear modulus (μ) are among the most important,intrinsic,elastic constants of rocks.Using λ and μ could be much more advantageous than using P- and S-wave velocities (Vp and Vs).He...  相似文献   

5.
江南造山带位于华南大陆扬子块体和华夏块体之间,其深部地壳结构与变形特征记录了扬子块体与华夏块体拼合与相互作用的痕迹,且在其内部与邻区发育了丰富的多金属矿床,并形成了巨型Cu-Au-Pb-Zn-Ag多金属成矿带,是深化认识华南大陆地壳演化、岩浆作用与成矿系统的关键地域。针对华南大陆地区的地壳结构与成矿过程,国家科技重点研发计划“华南陆内成矿系统的深部过程与物质响应”项目在该区实施了一条密集宽频带地震流动探测剖面,旨在探测其深部结构与物性变化特征和深部成矿背景。本文利用其中江西广昌-湖南浏阳段长320km的宽频带地震流动台站数据开展了远震P波接收函数研究,获得了剖面辖区深部地壳结构和Vp/Vs变化特征。研究结果表明:(1)剖面Moho界面深度在29~35km之间变化,呈近穹窿状分布,平均Moho界面深度为31km左右,低于全球大陆地壳平均值,且与地形高程在整体上呈镜像相关,均衡程度较好;(2)剖面沿线地壳Vp/Vs在1.64~1.83之间呈波浪状起伏变化,平均值为1.72左右,且华夏块体略高于江南造山带...  相似文献   

6.
Vp and Vs values have been measured experimentally and calculated for granulite-facies lower crustal xenoliths from central Ireland close to the Caledonian Iapetus suture zone. The xenoliths are predominantly foliated and lineated metapelitic (garnet–sillimanite–K-feldspar) granulites. Their metapelitic composition is unusual compared with the mostly mafic composition of lower crustal xenoliths world-wide. Based on thermobarometry, the metapelitic xenoliths were entrained from depths of c. 20–25 ± 3.5 km and rare mafic granulites from depths of 31–33 ± 3.4 km. The xenoliths were emplaced during Lower Carboniferous volcanism and are considered to represent samples of the present day lower crust.Vp values for the metapelitic granulites range between 6.26 and 7.99 km s− 1 with a mean value of 7.09 ± 0.4 km s− 1. Psammite and granitic orthogneiss samples have calculated Vp values of 6.51 and 6.23 km s− 1, respectively. Vs values for the metapelites are between 3.86 and 4.34 km s− 1, with a mean value of 4.1 ± 0.15 km s− 1. The psammite and orthogneiss have calculated Vs values of 3.95 and 3.97 km s− 1, respectively.The measured seismic velocities correlate with density and with modal mineralogy, especially the high content of sillimanite and garnet. Vp anisotropy is between 0.15% and 13.97%, and a clear compositional control is evident, mainly in relation to sillimanite abundance. Overall Vs anisotropy ranges from 1% to 11%. Poisson's ratio (σ) lies between 0.25 and 0.35 for the metapelitic granulites, mainly reflecting a high Vp value due to abundant sillimanite in the sample with the highest σ. Anisotropy is probably a function of deformation associated with the closure of the Iapetus ocean in the Silurian as well as later extension in the Devonian. The orientation of the bulk strain ellipsoid in the lower crust is difficult to constrain, but lineation is likely to be NE–SW, given the strike-slip nature of the late Caledonian and subsequent Acadian deformation.When corrected for present-day lower crustal temperature, the experimentally determined Vp values correspond well with velocities from the ICSSP, COOLE I and VARNET seismic refraction lines. Near the xenolith localities, the COOLE I line displays two lower crustal layers with in situ Vp values of 6.85–6.9 and 6.9–8.0 km s− 1, respectively. The upper (lower velocity) layer corresponds well with the metapelitic granulite xenoliths while the lower (higher velocity) layer matches that of the basic granulite xenoliths, though their metamorphic pressures suggest derivation from depths corresponding to the present-day upper mantle.  相似文献   

7.
There have been instances of premonitory variations in tilts, displacements, strains, telluric current, seismomagnetic effects, seismic velocities ( Vp, Vs) and their ratio (Vp/Vs), b-values, radon emission, etc. preceding large and moderate earthquakes, especially in areas near epicentres and along faults and other weak zones. Intensity and duration (T) of these premonitory quantities are very much dependent on magnitude (M) of the seismic event. Hence, these quantities may be utilised for prediction of an incoming seismic event well in advance of the actual earthquake. In the recent past, tilts, strain in deep underground rock and crustal displacements have been observed in the Koyna earthquake region over a decade covering pre- and postearthquake periods; and these observations confirm their reliability for qualitative as well as quantitative premonitory indices. Tilt began to change significantly one to two years before the Koyna earthquake of December 10, 1967, of magnitude 7.0. Sudden changes in ground tilt measured in a watertube tiltmeter accompanied an earthquake of magnitude 5.2 on October 17, 1973 and in other smaller earthquakes in the Koyna region, though premonitory changes in tilt preceding smaller earthquakes were not so much in evidence. However, changes in strains in deep underground rock were observed in smaller earthquakes of magnitude 4.0 and above. Furthermore, as a very large number of earthquakes (M = 1–7.0) were recorded in the extensive seismic net in the Koyna earthquake region during 1963–1975, precise b-value variations as computed from the above data, could reveal indirectly the state of crustal (tectonic) strain variations in the earthquake focal region and consequently act as a powerful premonitory index, especially for the significant Koyna earthquakes of December 10, 1967 (M = 7.0) and October 17, 1973 (M = 5.2). The widespread geodetic and magnetic levelling observations covering the pre- and postearthquake periods indicate significant vertical and horizontal crustal displacements, possibly accompanied by large-scale migration of underground magma during the large seismic event of December 10, 1967 in the Koyna region (M = 7.0). Duration (T) of premonitory changes in tilt, strains, etc., is generally governed by the equation of the type logT = A + BM (A and B are statistically determined coefficients). Similar other instances of premonitory evidences are also observed in micro-earthquakes (M = − 1 to 2) due to activation of a fault caused by nearby reservoir water-level fluctuations.  相似文献   

8.
We determine detailed 3-D Vp and Vs structures of the crust and uppermost mantle beneath the Kyushu Island, southwest Japan, using a large number of arrival times from local earthquakes. From the obtained Vp and Vs models, we further calculate Poisson’s ratio images beneath the study area. By using this large data set, we successfully image the 3-D seismic velocity and Poisson’s ratio structures beneath Kyushu down to a depth of 150 km with a more reliable spatial resolution than previous studies. Our results show very clear low Vp and low Vs anomalies in the crust and uppermost mantle beneath the northern volcanoes, such as Abu, Kujyu and Unzen. Low-velocity anomalies are seen in the mantle beneath most other volcanoes. In contrast, there are no significant low-velocity anomalies in the crust or in the upper mantle between Aso and Kirishima. The subducting Philippine Sea slab is imaged generally as a high-velocity anomaly down to a depth of 150 km with some patches of normal to low seismic wave velocities. The Poisson’s ratio is almost normal beneath most volcanoes. The crustal seismicity is distributed in both the high- and low-velocity zones, but most distinctly in the low Poisson’s ratio zone. A high Poisson’s ratio region is found in the forearc crustal wedge above the slab in the junction area with Shikoku and Honshu; this high Poisson’s ratio could be caused by fluid-filled cracks induced by dehydration from the Philippine Sea slab. The Poisson’s ratio is normal to low in the forearc mantle in middle-south Kyushu. This is consistent with the absence of low-frequency tremors, and may indicate that dehydration from the subducting crust is not vigorous in this region.  相似文献   

9.
Three-dimensional P and S wave velocity models of the crust under the Granada Basin in Southern Spain are obtained with a spatial resolution of 5 km in the horizontal direction and 2 to 4 km in depth. We used a total of 15407 P and 13704 S wave high-quality arrival times from 2889 local earthquakes recorded by both permanent seismic networks and portable stations deployed in the area. The computed P and S wave velocities were used to obtain three-dimensional distributions of Poisson's ratio (σ) and the porosity parameter (Vp×Vs). The 3-D velocity images show strong lateral heterogeneities in the region. Significant velocity variations up to ±7% in P and S velocities are revealed in the crust below the Granada Basin. At shallow depth, high-velocity anomalies are generally associated with Mesozoic basement, while the low-velocity anomalies are related to the neogene sedimentary rocks. The south–southeastern part of the Granada Basin exhibits high σ values in the shallowest layers, which may be associated with saturated and unconsolidated sediments. In the same area, Vp×Vs is high outside the basin, indicating low porosity of the mesozoic basement. A low-velocity zone at 18-km depth is found and interpreted as a weak–ductile crust transition that is related to the cut-off depth of the seismic activity. In the lower crust, at 34-km depth, a clear slow Vp and Vs anomalous zone may indicate variations in lithology and/or with the rigidity of the lower crust rocks.  相似文献   

10.
A total of 13 regional Ocean Bottom Seismograph (OBS) profiles with an accumulated length of 2207 km acquired on the Vøring Margin, NE Atlantic have been travel time modelled with regards to S-waves. The Vp/Vs ratios are found to decrease with depth through the Tertiary layers, which is attributed to increased compaction and consolidation of the rocks. The Vp/Vs ratio in the intra-Campanian to mid-Campanian layer (1.75–1.8) in the central Vøring Basin is significantly lower than for the layers above and beneath, suggesting higher sand/shale ratio. This layer was confirmed by drilling to represent a layer of sandstone. This mid-Cretaceous ‘anomaly’ is also present in the northern Vøring Basin, as well as on the southern Lofoten Margin further north. The Vp/Vs ratio in the extrusive rocks on the Vøring Plateau is estimated to be 1.85, conformable with mafic (basaltic) rocks. Landward of the continent/ocean transition (COT), the Vp/Vs ratio in the layer beneath the volcanics is estimated to be 1.67–1.75. These low values suggest that this layer represents sedimentary rocks, and that the sand/shale ratio might be relatively high here. The Vp/Vs ratio in the crystalline basement is estimated to be 1.67–1.75 in the basin and on the landward part of the Vøring Plateau, indicating the presence of granitic/granodioritic continental crust. In the lower crust, the Vp/Vs ratio in the basin decreases uniformly from southwest to northeast, from 1.85–1.9 to 1.68–1.73, suggesting a gradual change from mafic (gabbroic) to felsic (granodioritic) lower crust. Significant (3–5%) azimuthal S-wave anisotropy is observed for several sedimentary layers, as well as in the lower crust. All these observations can be explained by invoking the presence of liquid-filled microcracks aligned vertically along the direction of the present day maximum compressive stress (NW–SE).  相似文献   

11.
The crustal structure along a 312 km transect, stretching from the axial mountains of the North Atlantic Knipovich Ridge to the continental shelf of Svalbard, has been obtained using seismic reflection data and wide angle OBS data. The resulting seismic Vp and Vs models are further constrained by a 2-D-gravity model. The principal objective of this study is to describe and resolve the physical and compositional properties of the crust in order to understand the processes and creation of oceanic crust in this extremely slow-spreading counterpart of the North Atlantic Ridge Systems. Vp is estimated to be 3.50–6.05 km/s for the upper oceanic crust (oceanic layer 2), with a marked increase away from the ridge. The measured Vp of 6.55–6.95 km/s for oceanic layer 3A and 7.10–7.25 km/s for layer 3B, both with a Vp/Vs ratio of 1.81, except for slightly higher values at the ridge axis, does not allow a clear distinction between gabbro and mantle-derived peridotite (10–40% serpentized). The thickness of the oceanic crust varies a lot along the transect from the minimum of 5.6 km to a maximum of 8.1 km. The mean thickness of 6.7 km for the oceanic crust is well above the average thickness for slow-spreading ridges (<10 mm/year half-spreading rate). The areas of increased thickness could be explained by large magma production-rates found in the zones of axial highs at the ridge axis, which also have generated the off-axial highs adjacent the ridge. We suggest that these axial and off-axial highs along the ridge control the lithological composition of the oceanic crust. This approach suggests normal gabbroic oceanic crust to be found in the areas bound by the active magma segments (the axial and off-axial highs) and mantle-derived peridotite outside these zone.  相似文献   

12.
The Latur earthquake (Mw 6.1) of 29 September 1993 is a rare stable continental region (SCR) earthquake that occurred on a previously unknown blind fault. In this study, we determined detailed three-dimensional (3-D) P- and S-wave velocity (Vp, Vs) and Poisson's ratio (σ) structures by inverting the first P- and S-wave high-quality arrival time data from 142 aftershocks that were recorded by a network of temporary seismic stations. The source zone of the Latur earthquake shows strong lateral heterogeneities in Vp, Vs and σ structures, extending in a volume of about 90 × 90 × 15 km3. The mainshock occurred within, but near the boundary, of a low-Vp, high-Vs and low-σ zone. This suggests that the structural asperities at the mainshock hypocenter are associated with a partially fluid-saturated fractured rock in a previously unknown source zone with intersecting fault surfaces. This might have triggered the 1993 Latur mainshock and its aftershock sequence. Our results are in good agreement with other geophysical studies that suggest high conductivity and high concentration of radiogenic helium gas beneath the source zone of the Latur earthquake. Our study provides an additional evidence for the presence of fluid related anomaly at the hidden source zone of the Latur earthquake in the SCR and helps us understand the genesis of damaging earthquakes in the SCR of the world.  相似文献   

13.
The large-scale seismic refraction and wide-angle reflection experiment POLONAISE'97 together with LT-7 and TTZ profiles carried out with the most modern techniques gave a high resolution of crustal structure of the Trans-European Suture Zone (TESZ) in NW and central Poland. The results of seismic investigations show the presence of relatively low velocity rocks (Vp < 6.1 km/s) down to a depth of 20 km beneath the Polish Basin (PB), and a high velocity lower crust (Vp = 6.8–7.3 km/s). The crustal thickness in the TESZ is intermediate between that of the East European Craton (EEC) to the northeast (40–45 km) and that of the Variscan crust (VB) to the southwest ( 30 km). Velocities in the uppermost mantle are relatively high (Vp = 8.25–8.45 km/s). The crust is three-layered with substantial differences in the velocities and thickness of individual layers. The area of the TESZ in NW and central Poland can be divided into at least two crustal blocks (terranes), called here Pomeranian Unit (PU, in the northwest) and Kuiavian Unit (KU, in the southeast). The postulated boundary between KU and PU is rather sharp at particular levels of the crust. Velocity distribution in the middle and lower crystalline crust in the TESZ area resemble values recognized in the EEC area, the fundamental difference being the much smaller thickness of both these layers. Our hypothesis/speculation is that the attenuated lower and middle crust of the TESZ belong to proximal terranes built of the EEC crust detached in the southeast and re-accreted to the EEC due to the process of anti-clockwise rotation of the Baltica paleocontinent during the Ordovician–Early Silurian.  相似文献   

14.
Measurements of compressional wave velocity Vp were made in a gas apparatus to 500°C at 10 kbar in three cores of an anisotropic dunite specimen from Twin Sisters Mountain. The axial directions of the three chosen cores coincide with the preferred directions and concentration of olivine crystallographic axes (a [100], b [010], andc [001]).Measured (δVp/δT)p values at 10 kbar in the three cores (−6.7, −5.4 and −6.2 · 10−4 km/sec · deg, respectively), and the mean value for the dunite (−6.1 · 10−4 km/sec · deg) are larger than the Voigt-Reuss-Hill values calculated from single-crystal data. This discrepancy is explained by the presence of internal thermal stresses, due to anisotropic expansion of olivine grains, causing grain boundary cracks to widen.It is concluded that high negative values of (δVp/δT)p for rocks reported in the literature should be carefully evaluated in terms of the formation of new cracks or widening of cracks already present under high pressure-temperature environments.  相似文献   

15.
Simultaneous measurements of compressional and shear wave velocities, Vp and Vs, in acidic and basic igneous rocks and volcanic glasses, were made up to 900°C and at 10–20 kbar.The effects of pressure and temperature on Vp and Vs in glasses and glassy rocks change at about 600°C, presumably the glass transition temperature. These effects are directly related to the silica content in the samples. and for obsidian are negative at room temperature and 245°C, but are positive at 655°C. The velocity—pressure relations for obsidian display an obvious hysteresis phenomena. for basalt glass is slightly negative, but is positive for usual substances at room temperature, and for obsidian and glassy andesite are positive up to about 600°C but are negative above that temperature. However, for basalt glass as well as other crystalline rocks, and are negative at all temperatures. Glass once heated above the glass transition temperature Tg under pressure P1 retains the memory of pressure P1 after it is cooled down below Tg and while subjected to another pressure P2. An abrupt shift of the velocities correlating to pressure P2 occurs when the glass is again heated to Tg. VpT and VsT relations for obsidian, glassy andesite, and basalt glass clearly exhibit this pressure memory.  相似文献   

16.
P and S velocity and attenuation estimates in the lower crust are obtained from a set of wide angle reflection–refraction profiles in the region of active tectonics at the NE edge of the Tibetan Plateau and discussed together with respect to similar data at its Himalaya–south Tibet edge.The quality factor is estimated in the lower half of the crust by accounting for the differential effect on amplitude–frequency observed between waves of different penetrations, and both in P and S modes. Attenuation values allow to exclude a significant proportion of partial melt and to estimate the homologous temperature, ratio of in situ to solidus absolute temperatures. The latter depend on the physical conditions being of dry, wet or dehydration melting, which are found different among the regions of the northern Bayan Har and northern Qang Tang boundaries between blocks, as well as the Tethyan–Himalayas, south of the Indus–Tsangpo suture. Their in situ temperatures differ also as estimated from their different Vp for a similar felsic composition.Joint measurement of several parameters, Vp, Vs, Qp and Qs reveals the composition, mineralogy, temperature and hydration conditions of the lower half of the thickened crust of Tibet that may be discussed in terms of evolution. The material presently in the thickened crust, even its lower part, has a felsic composition, upper to middle crustal lithology, and the temperature conditions estimated suggest that basic material that could have underlain it could be eclogitized and not appear anymore above the seismic Moho.Under northern Qang Tang, the felsic material in the lower half of the crust appears as hot and dry. Its burial may have occurred earlier or may have been moderate in the postcollisional phase. This is consistent with a model of indentation of the Qang Tang crust by an originally thinner Bayan Har crust to bring part of its crust to greater depth, suggested from imaging the crustal architecture. Under northern Bayan Har, the material in the lower half of the crust appears as felsic, at low temperature and not dry conditions. This is evidence that it has been transported from a shallower depth, and this recently enough not to be yet dehydrated and temperature equilibrated in a conductive geotherm. It supports a model of recent overriding of the middle crust of the north Kun Lun block to the north independently suggested from the image of crustal architecture. The Tethyan Himalayas case appears bracketed by these two cases in northern Tibet for Vp and temperature conditions, but shows highest attenuation in the lower crust that is colder but less dry than under northern Qang Tang.  相似文献   

17.
Creation of pathways for melt to migrate from its source is the necessary first step for transport of magma to the upper crust. To test the role of different dehydration‐melting reactions in the development of permeability during partial melting and deformation in the crust, we experimentally deformed two common crustal rock types. A muscovite‐biotite metapelite and a biotite gneiss were deformed at conditions below, at and above their fluid‐absent solidus. For the metapelite, temperatures ranged between 650 and 800 °C at Pc=700 MPa to investigate the muscovite‐dehydration melting reaction. For the biotite gneiss, temperatures ranged between 850 and 950 °C at Pc=1000 MPa to explore biotite dehydration‐melting under lower crustal conditions. Deformation for both sets of experiments was performed at the same strain rate (ε.) 1.37×10?5 s?1. In the presence of deformation, the positive ΔV and associated high dilational strain of the muscovite dehydration‐melting reaction produces an increase in melt pore pressure with partial melting of the metapelite. In contrast, the biotite dehydration‐melting reaction is not associated with a large dilational strain and during deformation and partial melting of the biotite gneiss melt pore pressure builds more gradually. Due to the different rates in pore pressure increase, melt‐enhanced deformation microstructures reflect the different dehydration melting reactions themselves. Permeability development in the two rocks differs because grain boundaries control melt distribution to a greater extent in the gneiss. Muscovite‐dehydration melting may develop melt pathways at low melt fractions due to a larger volume of melt, in comparison with biotite‐dehydration melting, generated at the solidus. This may be a viable physical mechanism in which rapid melt segregation from a metapelitic source rock can occur. Alternatively, the results from the gneiss experiments suggest continual draining of biotite‐derived magma from the lower crust with melt migration paths controlled by structural anisotropies in the protolith.  相似文献   

18.
The development of thermodynamic models for tonalitic melt and the updated clinopyroxene and amphibole models now allow the use of phase equilibrium modelling to estimate P–T conditions and melt production for anatectic mafic and intermediate rock types at high‐T conditions. The Permian mid‐lower crustal section of the Ivrea Zone preserves a metamorphic field gradient from mid amphibolite facies to granulite facies, and thus records the onset of partial melting in metabasic rocks. Interlayered metabasic and metapelitic rocks allows the direct comparison of P–T estimates and partial melting between both rock types with the same metamorphic evolution. Pseudosections for metabasic compositions calculated in the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O (NCKFMASHTO) system are presented and compared with those of metapelitic rocks calculated with consistent end‐member data and a–x models. The results presented in this study show that P–T conditions obtained by phase equilibria modelling of both metabasic and metapelitic rocks give consistent results within uncertainties, allowing integration of results obtained for both rock types. In combination, the calculations for both metabasic and metapelitic rocks allows an updated and more precisely constrained metamorphic field gradient for Val Strona di Omegna to be defined. The new field gradient has a slightly lower dP/dT which is in better agreement with the onset of crustal thinning of the Adriatic margin during the Permian inferred in recent studies.  相似文献   

19.
Studying seismic wave propagation across rock masses and the induced ground motion is an important topic, which receives considerable attention in design and construction of underground cavern/tunnel constructions and mining activities. The current study investigates wave propagation across a rock mass with one fault and the induced ground motion using a recursive approach. The rocks beside the fault are assumed as viscoelastic media with seismic quality factors, Qp and Qs. Two kinds of interactions between stress waves and a discontinuity and between stress waves and a free surface are analyzed, respectively. As the result of the wave superposition, the mathematical expressions for induced ground vibration are deduced. The proposed approach is then compared with the existing analysis for special cases. Finally, parametric studies are carried out, which includes the influences of fault stiffness, incident angle, and frequency of incident waves on the peak particle velocities of the ground motions.  相似文献   

20.
The deformations of the sedimentary cover at near-latitudinal geotraverses west and east of the Mid-Atlantic Ridge in the equatorial part of ocean are compared with potential fields and variations of the V p/V s attribute at a depth of ~470 km. The features of sedimentary cover deformations in abyssal basins are formulated, as well as their differences from the undisturbed bedding of sediments. The elements of chain of phenomena with common spatial manifestations and cause-and-effect relationships have been established, including heterogeneous horizontal movements, which make up macrojointing above “cold” mantle blocks at a depth of ~470 km; serpentinization of upper-mantle rocks; the formation of superposed magnetic anomalies; the release of the fluids, which acoustically bleach out the sedimentary sequence in seismic imaging; and decompaction of rocks leading to vertical motions and forced folding. The origin of the Atlantic marginal dislocation zone is explained. The coincidence of the deformation boundary in the equatorial Atlantic with the zero contour line of the V p/V s attribute is revealed. This coincidence is an indicator of the rheological state of the upper mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号