首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Soil dust aerosol is the largest contributor to aerosol mass concentrations in the troposphere and has considerable effects on air quality and climate. Arid and semi-arid areas of East Asia are one of the important dust source regions thus it is crucial to understand dust mobilization and accurately estimate dust emissions in East Asia. However, present dust models still contain large uncertainties with dust emissions that remain a significant contributor to the overall uncertainties in the model. In this study, we attempt to reduce these uncertainties by using an inverse modeling technique and obtain optimized dust emissions. We use Moderate Resolution Imaging Spectrometer (MODIS) aerosol optical depths (AODs) and groundbased mass concentrations of particles less than 10 μm in aerodynamic diameter (PM10) observations over East Asia in May 2007. The MODIS AODs are validated with AErosol RObotic NETwork (AERONET) AODs. The inversion uses the maximum a posteriori method and the GEOS-Chem chemical transport model (CTM) as a forward model. The model error is large over dust source regions including the Gobi Desert and Mongolia. We find that inverse modeling analyses from the MODIS and PM10 observations consistently result in decrease of dust emissions over Mongolia and the Gobi Desert. Whereas over the Taklamakan Desert and Manchuria, the inverse modeling analyses from both observations yield contrast results such as increase of dust sources using MODIS AODs, while decrease of those using PM10 observations. We discuss some limitations of both observations to obtain the optimized dust emissions and suggest several strategies for the improvement of dust emission estimates in the model.  相似文献   

2.
The soil water index (SWI) from satellite remote sensing and the observational soil moisture from agricultural meteorological stations in eastern China are used to retrieve soil moisture. The analysis of correlation coefficient (CORR), root-mean-square-error (RMSE) and bias (BIAS) shows that the retrieved soil moisture is convincible and close to the observation. The method can overcome the difficulties in soil moisture observation on a large scale and the retrieved soil moisture may reflect the distribution of the real soil moisture objectively. The retrieved soil moisture is used as an initial scheme to replace initial conditions of soil moisture (NCEP) in the model MM5V3 to simulate the heavy rainfall in 1998. Three heavy rainfall processes during 13–14 June, 18–22 June, and 21–26 July 1998 in the Yangtze River valley are analyzed. The first two processes show that the intensity and location of simulated precipitation from SWI are better than those from NCEP and closer to the observed values. The simulated heavy rainfall for 21–26 July shows that the update of soil moisture initial conditions can improve the model’s performance. The relationship between soil moisture and rainfall may explain that the stronger rainfall intensity for SWI in the Yangtze River valley is the result of the greater simulated soil moisture from SWI prior to the heavy rainfall date than that from NCEP, and leads to the decline of temperature in the corresponding area in the heavy rainfall days. Detailed analysis of the heavy rainfall on 13–14 June shows that both land-atmosphere interactions and atmospheric circulation were responsible for the heavy rainfall, and it shows how the SWI simulation improves the simulation. The development of mesoscale systems plays an important role in the simulation regarding the change of initial soil moisture for SWI.  相似文献   

3.
Land Data Assimilation Systems have been developed to generate the surface initial conditions such as soil moisture and temperature for better prediction of weather and climate. We have constructed Korea Land Data Assimilation System (KLDAS) based on an uncoupled land surface modeling framework that integrates high-resolution in-situ observation, satellite data, land surface information from the WRF Preprocessing System (WPS) and the MODIS land products over the East Asia. To present better surface conditions, the KLDAS is driven by atmospheric forcing data from the in-situ rainfall gauges and satellite. In this study, we 1) briefly introduce the KLDAS, 2) evaluate the meteorological states near the surface and the surface fluxes reproduced by the KLDAS against the in-situ observation, and then 3) examine the performance of the mesoscale model initialized by the KLDAS. We have generated a 5-year, 10 km, hourly atmospheric forcing dataset for use in KLDAS operating across East Asia. The KLDAS has effectively reproduced the observed patterns of soil moisture, soil temperature, and surface fluxes. Further scrutiny reveals that the numerical simulations incorporating the KLDAS outputs show better agreement in both the simulated near-surface conditions and rainfall distribution over the Korean Peninsula, compared to those without the KLDAS.  相似文献   

4.
利用AERONET观测资料从气候学的角度比较分析了2001-2011年东亚地区沙尘天气发生时沙尘源区和下游区大气气溶胶光学特性。结果表明:沙尘期间沙尘源区气溶胶光学厚度明显大于下游区,而Angstr?m波长指数却小于下游区,当沙尘暴出现时会降至零甚至负值。气溶胶粒子尺度体积谱分布除敦煌为单峰外,其余各站均呈双峰分布,香河和北京的细粒子浓度明显大于西北地区,这可能是由细的沙尘粒子和污染气溶胶共同造成。在440-1020 nm范围内,中国地区气溶胶单次散射反照率平均值为0.93,韩国和日本站分别为0.93和0.94。沙尘源区与下游区相比,复折射指数实部偏大,虚部偏小。总体来说,沙尘天气下东亚地区在4个波段内平均不对称因子为0.70。  相似文献   

5.
A large intraseasonal variation in geopotential height over the Central Asia region, where the Asian subtropical jet is located, occurs between May and June, and the most dominant variation has a wave-like distribution. This variation in geopotential height influences precipitation across South and Southeast Asia. In this paper, we use composite analysis to determine the causes of this intraseasonal variation over Central Asia. The wave train propagates from the northern Atlantic Ocean to Central Asia over a period of a week, and generates an anomaly in geopotential height over the region. The tropical disturbance, which is similar to the Madden–Julian oscillation, appears a few days before the maximum of the anticyclonic anomaly over Central Asia, and is accompanied by active convection over the Indian Ocean and suppressed convection over Central America. Results of numerical experiments using a linear baroclinic model show that the active convection over the northern Indian Ocean causes the anticyclonic anomaly over Central Asia. The wave train that extends from the northern Atlantic Ocean to Central Asia is generated by negative thermal forcing over Central America, and the phase distribution of this wave train is similar to that observed in the composite analysis. Central Asia is the region where the effects of the tropics and middle latitudes overlap, and it is an important connection point between the Asian monsoon and middle latitudes.  相似文献   

6.
The rainfall from January to March in 2010 in East Asia is positive anomaly and the temporal evolution characteristics present the cycle of 20–40 days. In the present paper, the low-frequency circulations and its formation mechanism are analyzed. The results show that during the peak rainfall phase, the upstream of the rainfall regions is controlled by low-frequency cyclone, and the downstream is controlled by low-frequency anticyclone in the middle and low troposphere. In the upper troposphere, the westerly jet presents the oscillation characteristics between the north and the south. Both the integrated (from the surface to 100 hPa) diabatic heating and the horizontal vorticity advection contribute to the vertical velocity. In addition, the vorticity vertical advection has effects on the vertical speed, which is a self-feedback process. The latent heating in the precipitation has influences on the westerly jet in the upper troposphere. The interactions between the precipitation and the westerly jet are mainly manifested as the intraseasonal oscillations.  相似文献   

7.
The variability of the East Asian summer monsoon (EASM) is studied using a partially coupled climate model (PCCM) in which the ocean component is driven by observed monthly mean wind stress anomalies added to the monthly mean wind stress climatology from a fully coupled control run. The thermodynamic coupling between the atmospheric and oceanic components is the same as in the fully coupled model and, in particular, sea surface temperature (SST) is a fully prognostic variable. The results show that the PCCM simulates the observed SST variability remarkably well in the tropical and North Pacific and Indian Oceans. Analysis of the rainfall-SST and rainfall-SST tendency correlation shows that the PCCM exhibits local air-sea coupling as in the fully coupled model and closer to what is seen in observations than is found in an atmospheric model driven by observed SST. An ensemble of experiments using the PCCM is analysed using a multivariate EOF analysis to identify the two major modes of variability of the EASM. The PCCM simulates the spatial pattern of the first two modes seen in the ERA40 reanalysis as well as part of the variability of the first principal component (correlation up to 0.5 for the model ensemble mean). Different from previous studies, the link between the first principal component and ENSO in the previous winter is found to be robust for the ensemble mean throughout the whole period of 1958–2001. Individual ensemble members nevertheless show the breakdown in the relationship before the 1980’s as seen in the observations.  相似文献   

8.
Size-separated aerosol number concentrations and water-soluble constituents were measured in Toyama, the Hokuriku district, near the coast of the Japan Sea, during the spring and summer in 2003. The number concentrations of coarse particles were significantly high in April, which was due to Asian dust events called Kosa in Japanese. Particulate nssCa2+, which is mostly present in the coarse-mode particles, was significantly high in April. On the other hand, the concentrations of NH4+ and nssSO42−, which mainly exist as the accumulation-mode particles were not high in April. The mass-size distributions of water-soluble constituents were compared with the size-separated number concentrations of particles. Backward trajectory analysis was also employed to examine the transport process of the air mass in Toyama.  相似文献   

9.
A new approach to estimating wind conditions over the Gulf of Finland aquatorium during the flood event observed on February 3, 2008 is considered in this paper. This approach is based on joint assimilation of the higher frequency model output data and measurements obtained from a geostationary satellite. High accuracy of the computed current values of the maximum wind speed and direction has been noted. To provide the advanced flood warning, an adapted methodology based on the regional NWP model hourly data only has been applied. It was found that computed dynamics of changes in expected values of wind speed and direction over the east part of the Gulf of Finland aquatorium well coheres with the actual dynamics of the flood height. Profitability of the developed maps for analysis and forecasting of wind conditions over the sea areas where wind observations are unavailable.  相似文献   

10.
利用西北太平洋编号台风资料、NCEP/NCAR再分析资料和NOAA向外长波辐射(outgoing longwave radiation,OLR)资料等,选取西北太平洋热带气旋频数异常偏少的2010年和1998年,诊断分析ENSO事件及其东亚夏季风环流异常与热带气旋频数异常的关系,给出东亚夏季风系统部分成员影响热带气旋频数的天气学图像:由春入夏,赤道东太平洋海温异常偏暖,赤道哈得来环流偏强,沃克环流偏弱;西太平洋副热带高压异常强大,位置偏西;季风槽位置偏南,东西向不发展;南海、西太平洋越赤道气流偏弱;异常热源和水汽汇偏南,南海和菲律宾以东地区对流活动受到抑制,热带对流活跃区位于赤道以南;热带气旋生成个数明显偏少,位置偏西。  相似文献   

11.
曾剑  张强  王春玲 《气象学报》2016,74(6):876-888
东亚夏季风边缘摆动区既是气候敏感区,也是生态脆弱区和农牧交错带,其特殊陆面能量空间分布格局和演变特征对理解该区域天气和气候变化有重要意义。然而受限于陆面观测资料缺乏,对这部分陆面特征的认识仍非常有限。通过对34 a陆面模拟集成产品的分析,发现夏季风边缘摆动区内潜热和感热通量在空间上表现出明显的过渡特征,由摆动区外的相对均衡状态进入到摆动区内的“突变转换”;陆面能量平衡具有明显的区域特征,能量平衡各分量在纬向和经向都表现出了“阶梯型”的变化。就演变而言,区域平均感热和潜热没有表现出规律性的递减或递增趋势,波动幅度在±20%以内,但在20世纪末存在一个较为明显的摆动相位转换:1997年之前夏季风边缘摆动区夏季风相对活跃,潜热通量总体高于其气候值而感热通量则低于其气候值,之后出现了相反的现象。此外,区内感热和潜热通量对气候环境干湿性质非常敏感,两者存在明显的线性关系。   相似文献   

12.
利用2010—2019年杭州闪电定位资料,通过数理统计、线性回归等方法分析了杭州市雷电活动时空变化特征及其与海拔的关系。结果表明:杭州地闪活动呈东多西少、南多北少的分布,密度高值区出现在西南部,低海拔地区的地闪频次较高海拔地区的地闪频次高。夏季地闪活动最为频繁,主要集中在7月和8月,春、秋季地闪频次差别不大,冬季地闪频次较其他三个季节少一个量级。夏季和秋季的地闪活动多发生在午后至傍晚,春季地闪活动在凌晨发生较为频繁,这可能与具有夜发性特征中尺度对流系统持续时间长有关。地闪强度绝对值主要集中在10—60 kA,正地闪均值随着海拔高度增加而增大,负地闪和总地闪的雷电流均值随海拔高度的上升呈“V”形变化。正地闪、负地闪和总地闪≤16 kA比例和≥100 kA的比例均随海拔高度增加而减小。在100—200 m的丘陵和200—500 m的小起伏山地,绕击率较高,超过1500 m的山区,≤16 kA的雷电流造成的绕击风险小;400 m及以下地区,≥100 kA的雷电流造成的反击概率大,高于1600 m的大起伏山地基本不会发生反击现象。  相似文献   

13.
春季热带地区OLR低频振荡及其与长江中下游连阴雨   总被引:7,自引:0,他引:7  
施宁  朱盛明 《大气科学》1991,15(2):53-62
本文应用NOAA卫星接收的1975—1983年向外长波辐射(OLR)资料研究了春季热带地区低频振荡的基本特征,得出东半球热带地区盛行周期为30天左右的低频振荡,这种振荡最显著的区域在0—10°S、70—90°E的印度洋地区。文章阐述了过渡季节这种低频振荡的经向和纬向传播特征。 本文还进一步指出,在热带低频振荡的不同阶段,ITCZ、北半球副热带以及西风带环流系统也呈现出显著的周期变化,并查证了低频振荡作为长江中下游连阴雨和连晴过程的背景事实。因此本研究工作也为长江中下游连阴雨和连晴天气的中、长期可预报性提供  相似文献   

14.
The East Asian westerly jet(EAJ), an important midlatitude circulation of the East Asian summer monsoon system,plays a crucial role in affecting summer rainfall over East Asia. The multimodel ensemble of current coupled models can generally capture the intensity and location of the climatological summer EAJ. However, individual models still exhibit large discrepancies. This study investigates the intermodel diversity in the longitudinal location of the simulated summer EAJ climatology in the present-day climate and its implications for rainfall over East Asia based on 20 CMIP5 models. The results show that the zonal location of the simulated EAJ core is located over either the midlatitude Asian continent or the western North Pacific(WNP) in different models. The zonal shift of the EAJ core depicts a major intermodel diversity of the simulated EAJ climatology. The westward retreat of the EAJ core is related to a warmer mid–upper tropospheric temperature in the midlatitudes, with a southwest–northeast tilt extending from Southwest Asia to Northeast Asia and the northern North Pacific, induced partially by the simulated stronger rainfall climatology over South Asia. The zonal shift of the EAJ core has some implications for the summer rainfall climatology, with stronger rainfall over the East Asian continent and weaker rainfall over the subtropical WNP in relation to the westward-located EAJ core.  相似文献   

15.
Interdecadal changes in the Asian winter monsoon (AWM) variability are investigated using three surface air temperature datasets for the 55-year period of 1958–2012 from (1) the National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis 1 (NCEP), (2) combined datasets from the European Centre for Medium-range Weather Forecasts (ECMWF) 40-yr reanalysis and interim data (ERA), and (3) Japanese 55-year reanalysis (JRA). Particular attention has been paid to the first four empirical orthogonal function (EOF) modes of the AWM temperature variability that together account for 64% of the total variance and have been previously identified as predictable modes. The four modes are characterized as follows: the first mode by a southern warming over the Indo-western Pacific Ocean associated with a gradually increasing basin-wide warming trend; the second mode by northern warming with the interdecadal change after the late 1980s; the third and fourth modes by north-south triple pattern, which reveal a phase shift after the late 1970s. The three reanalyses agree well with each other when producing the first three modes, but show large discrepancy in capturing both spatial and temporal characteristics of the fourth mode. It is therefore considered that the first three leading modes are more reliable than the rest higher modes. Considerable interdecadal changes are found mainly in the first two modes. While the first mode shows gradually decreasing variance, the second mode exhibits larger interannual variance during the recent decade. In addition, after the late 1970s, the first mode has a weakening relationship with the El Niño-Southern Oscillation (ENSO) whereas the second mode has strengthening association with the Artic Oscillation (AO). This indicates an increasing role of AO but decreasing role of ENSO on the AWM variability. A better understanding of the interdecadal change in the dominant modes would contribute toward advancing in seasonal prediction and the predictability of the AWM variability.  相似文献   

16.
Insoluble dust concentrations and volume-size distributions have been measured for the new 581 m deep Dome C-EPICA ice core (Antarctica). Over the 27000 years spanned by the record, microparticle measurements from 169 levels, to date, confirm evidence of the drastic decrease in bulk concentration from the Last Glacial Maximum (LGM) to the Holocene (interglacial) by a factor of more than 50 in absolute value and of about 26 in flux. Unique new features revealed by the EPICA profile include a higher dust concentration during the Antarctic Cold Reversal phase (ACR) by a factor of 2 with respect to the Holocene average. This event is followed by a well-marked minimum that appears to be concomitant with the methane peak that marks the end of the Younger Dryas in the Northern Hemisphere. Particle volume-size distributions show a mode close to 2 7m in diameter, with a slight increase from the LGM to the Holocene; the LGM/Holocene concentration ratio appears to be dependent on particle size and for diameters from 2 to 5 7m it changes from 50 to 6. Glacial samples are characterised by well-sorted particles and very uniform distributions, while the interglacial samples display a high degree of variability and dispersion. This suggests that different modes of transport prevailed during the two climatic periods with easier penetration of air masses into Antarctica in the Holocene than during Glacial times. Assuming that southern South America remained the main dust source for East Antarctica over the time period studied, the higher dust content recorded during the ACR which preceded the Younger Dryas period, represents evidence of a change in South America environmental conditions at this time. A wet period and likely mild climate in South America is suggested at circa 11.5-11.7 kyr BP corresponding to the end of the Younger Dryas. The Holocene part of the profile also shows a slight general decrease in concentration, but with increasingly large particles that may reflect gradual changes at the source.  相似文献   

17.
储鹏  姚素香 《气象科学》2020,40(4):458-466
利用ERA-interim再分析资料和中国降水观测数据,分析了夏季东亚副热带西风急流的季节内变化以及对我国降水的可能影响,结果表明:亚洲地区夏季200 hPa纬向风在空间上主要表现为南北振荡和东西振荡特征,在时间上具有10~40 d的周期;在低频尺度(10~40 d)上,纬向风异常由西北先向东传播,到达东亚地区后再向南传播;伴随低频纬向风季节内演变,高原以北的急流中心向东和东南移动,急流轴也呈现南北振荡的特征;降水异常对200 hPa风场低频振荡有显著响应,在东亚地区,低频纬向风与低频降水南移,降水在黄淮地区出现,并逐渐移至长江及其以南地区;急流附近的低频西(东)风异常在其南侧形成负(正)切变涡度,对应我国东部地区位势高度的升高(降低),使得南亚高压东伸(西退),从而使我国东部雨带的位置发生显著变化。  相似文献   

18.
The authors analyzed the lead-lag connection of the Atlantic Multidecadal Oscillation (AMO) with East Asian surface air temperatures (EATs) using instrumental records, and compared the results with the Pacific Decadal Oscillation (PDO). The maximum correlation was found when EATs led the AMO by five to seven years (with a correlation coefficient of 0.72, whereas the correlation coefficient was 0.91 when the AMO led EATs by 24-28 years). This is different from the PDO, which mostly correlated with EATs when the PDO led EATs by 13-15 years (with a correlation coefficient of 0.67, whereas the correlation coefficient was 0.76 when EATs led the PDO by 24-26 years). The PDO led the AMO by 19-21 years (with a correlation coefficient of 0.71, whereas the correlation coefficient was 0.84 when the AMO led the PDO by 16-18 years). These results support a previous understanding that EATs positively correlate with the AMO, and imply that the observed East Asian warming trend may have been slowing down since the early 2010s.  相似文献   

19.
基于MTSAT卫星遥感监测的浙江省及周边海区大雾分布特征   总被引:2,自引:0,他引:2  
利用日本静止气象卫星MTSAT逐时资料,综合地面气象观测数据,对浙江省及其周边海区陆地和海上2008—2012年的大雾进行了专题信息提取,并给出了浙江省陆域、周边海域0.05°×0.05°网格点的小时尺度的遥感大雾产品,结果表明:(1)基于MTSAT卫星观测数据,采用分级判识太阳高度角阈值和归一化大雾指数的方法,构建的浙江及其周边地区陆地和海上遥感大雾监测模型,大雾判识精度总体超过75%,基本满足使用需求。(2)浙江省陆域近5年大雾年平均累计为411.7 h,约占全年的4.7%,基本呈南多北少,山区多平原少的格局,其中浙江南部高山区、舟山和温州部分海岛及西部山区为大雾多发区,且大雾季节分布为冬秋季较多,春夏季较少,22时至09时是浙江省陆域大雾的高发时段,10时以后大雾逐渐消散,至后半夜、凌晨前后,大雾频次逐渐增多。(3)研究区海雾主要发生在大陆近海,呈现由近海向外海减少的空间格局,东海海域年大雾累计为311.7 h,以东海西南部地区大雾出现最多,浙江省沿海大雾的高发区位于温州海域及钱塘江口。研究区海域大雾具有明显的季节特征,主要表现为春季较多,夏季次之,秋冬季较少的分布格局,且海上主要受平流雾影响,大雾不易消散,持续时间较长。从各海区大雾发生频次从高到低依次为:东海东南部、台湾以东洋面、东海中东部、黄海西南部、东海中西部、台湾海峡、东海西北部、黄海东南部、东海西南部和东海东北部。  相似文献   

20.
利用农业气象站观测资料对长江中下游地区1988-2010年遥感土壤湿度进行了验证,并与NCEP和ERA-Interim土壤湿度做了对比分析。研究表明,ECV遥感土壤湿度冬季平均土壤湿度最高,春季和秋季次之,夏季平均土壤湿度最低;这种季节性干湿变化与农业气象站观测资料一致。但是,NCEP和ERA-Interim土壤湿度再分析资料,则夏季平均土壤湿度高,春季和秋季次之,而冬季平均土壤湿度最低;这种季节性变化与ECV遥感土壤湿度和农业气象站观测资料呈反位相。就年际变化而言,ECV遥感土壤湿度与农业气象站观测资料和两套再分析资料均有较高的一致性,并在春季和秋季最高,尤其是在长江以北地区和长江以南洞庭湖、鄱阳湖两大湖区,相关系数达到0.7~0.9;而夏季一致性最低,相关系数仅为0.4左右。在研究时段,ECV土壤湿度在冬季明显增加,在夏季则有明显下降趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号