首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Grainfall processes in the lee of transverse dunes, Silver Peak, Nevada   总被引:6,自引:0,他引:6  
Grainfall deposition and associated grainflows in the lee of aeolian dunes are important in that they are preserved as cross‐beds in the geological record and provide a key to the interpretation of the aeolian rock record. Despite their recognized importance, there have been very few field, laboratory or numerical simulation studies of leeside depositional processes on aeolian dunes. As part of an ongoing study, the relationships among grainfall, wind (speed and direction), stoss sand transport rates and dune morphometry (height and aspect ratio) were investigated on four relatively small, straight‐crested transverse dunes at Silver Peak, Nevada. Between 55% and 95% of the total grainfall was found to be deposited within 1 m of the crest, and 84–99% within 2 m, depending primarily on dune size and shape. Grainfall decay rates on high dunes of large aspect ratio were observed to be very consistent, with a weak positive dependence on wind speed. For small dunes with low aspect ratios, grainfall deposition was more varied and decreased rapidly within 1 m of the dune crest, whereas at increased distance from the dune crest, it eventually approached the smaller decay rates observed on the large dunes. No dependence of grainfall on wind speed was observed for these small dunes. Comparison of field data with predictions from 1 ) saltation model of grainfall, based on the computation of saltation path lengths, indicates lack of agreement in the following areas: (1) deposition rate magnitude; (2) variation in decay rate with wind speed; and (3) the magnitude and location of the localized lee‐slope depositional maxima. The Silver Peak field results demonstrate the importance of dune aspect ratio and related wake effects in determining the rate and pattern of grainfall. This work confirms earlier speculation by 7 ) that temporary, turbulent suspension (or `modified saltation') of relatively large grains does occur within the dune wake, so that transport distances generally are larger than predicted by numerical simulations of `true' saltation.  相似文献   

2.
The pattern of grainfall deposition in the lee of aeolian dunes   总被引:1,自引:0,他引:1  
ABSTRACT
A simple model for the deposition pattern in the lee of aeolian dunes is presented that relies heavily upon a recently developed understanding of aeolian saltation. Grainfall deposition at any position on the lee face is the result of all saltation trajectories that leave any point on the surface of the dune upwind of the brink with sufficient initial velocity to travel the intervening distance. The deposition rate at any position on the lee slope is obtained by integrating over all combinations of initial position and required velocity, the velocity being weighted by its probability density.
The resulting calculated total deposition rate patterns show distinct maxima on the order of one to a few decimetres from the brink, beyond which deposition rates fall off roughly exponentially. An important length scale emerges that characterizes this decay with distance from the brink, the length increasing with wind velocity, and decreasing with grain diameter. It is shown that this length scale is on the order of one metre for typical grain size and wind conditions. That this is typically smaller than the length of the lee slope is what gives rise to the oversteepening and eventual avalanching of the lee sides of aeolian dunes. The position of a pivot point on the lee slope may be predicted, separating source regions from accumulation regions for grainflow avalanche deposits.
The calculated patterns provide not only a means for quantitative interpretation of active and fossil dune grainfall deposits, but they provide the initial geometry for grainflow avalanches. The initial failures should coincide with the steepest gradient in grainfall deposition, slightly downslope from the grainfall maximum.  相似文献   

3.
Successive aeolian saltation: studies of idealized collisions   总被引:3,自引:0,他引:3  
As observed by Bagnold and experimentally reconfirmed by other workers, the impact angles of saltating grains are remarkably constant over a wide range of conditions, lying between 10° and 16°. It can be shown that successive saltation contains a mechanism which very effectively confines impact angles to that range. This control mechanism is most effective at windspeeds less than about 15–30 m s-1, depending on grain diameter and mass. The control mechanism is evaluated from model calculations of grain populations saltating over a level bed consisting of a layer of loose grains. The grains are assumed to be spherical and uniform in size and mass, also rigid and perfectly elastic. The model also describes distributions of maximum height of grain paths and of lift-off-angles. Compared to other processes involved in aeolian saltation, successive saltation is the only process with a high probability of transferring energy from horizontal into vertical grain movement. This fact, together with the calculations presented, strongly suggests that successive saltation plays a major role in saltation in air. Successive saltation of uniform grains is theoretically impossible if the ground over which saltation occurs is tilted by about 15° against wind direction. Values of tilt angles in this range are observed in nature as stoss-side angles of dunes and ripples, leading to the concept that stoss-sides are tilted up by deposition until successive saltation is subdued.  相似文献   

4.
Creep and saltation are the primary modes of surface transport involved in the fluid‐like movement of aeolian sands. Although numerous studies have focused on saltation, few studies have focused on creep, primarily because of the experimental difficulty and the limited amount of theoretical information available on this process. Grain size and its distribution characteristics are key controls on the modes of sand movement and their transport masses. Based on a series of wind tunnel experiments, this paper presents new data regarding the saltation flux, obtained using a flat sampler, and on the creeping mass, obtained using a specifically designed bed trap, associated with four friction velocities (0·41, 0·47, 0·55 and 0·61 m sec?1). These data yielded information regarding creeping and saltating sand grains and their particle size characteristics at various heights, which led to the following conclusions: (i) the creeping masses increased as a power function (q = ?1·02 + 14·19u*3) of friction wind velocities, with a correlation (R2) of 0·95; (ii) the flux of aeolian sand flow decreases exponentially with increasing height (q = a exp(–z/b)) and increases as a power function (q = ?26·30 + 428·40 u*3) of the friction wind velocity; (iii) the particle size of creeping sand grains is ca 1·15 times of the mean diameter of salting sand grains at a height of 0 to 2 cm, which is 1·14 times of the mean diameter of sand grains in a bed; and (iv) the mean diameter of saltating sand grains decreases rapidly with increasing height whereas, while at a given height, the mean diameter of saltating sand grains is positively correlated with the friction wind velocity. Although these results require additional experimental validation, they provide new information for modelling of aeolian sand transport processes.  相似文献   

5.
沙丘背风侧气流及其沉积类型与意义   总被引:6,自引:2,他引:6  
哈斯  王贵勇  董光荣 《沉积学报》2001,19(1):96-100,124
在腾格里沙漠东南缘对现代沙丘表面气流、沉积过程的野外观测结果表明,由于区域气流、沙丘形态及其相互作用等的不同使沙丘背风坡气流发生变化,在此发现三种背风坡次生气流 :分离流、附体未偏向流和附体偏向流。前者以弱的反向流为特征多发生在横向气流条件下坡度较陡的背风坡;后二者具有相对高的风速,其中附体流多发生在坡度缓和的背风坡,其方向在横向气流条件下保持原来的方向,而在斜向气流作用下发生偏转且其强度为原始风入射角的余弦函数。根据背风坡气流方向及强度,作者阐述了不同区域气流环境中沙丘背风坡沉积过程、层理类型及特征,探讨了交错层产状与区域气流方向之间的关系.  相似文献   

6.
《Sedimentology》2018,65(4):993-1042
Reconstruction of the palaeoenvironmental context of Martian sedimentary rocks is central to studies of ancient Martian habitability and regional palaeoclimate history. This paper reports the analysis of a distinct aeolian deposit preserved in Gale crater, Mars, and evaluates its palaeomorphology, the processes responsible for its deposition, and its implications for Gale crater geological history and regional palaeoclimate. Whilst exploring the sedimentary succession cropping out on the northern flank of Aeolis Mons, Gale crater, the Mars Science Laboratory rover Curiosity encountered a decametre‐thick sandstone succession, named the Stimson formation, unconformably overlying lacustrine deposits of the Murray formation. The sandstone contains sand grains characterized by high roundness and sphericity, and cross‐bedding on the order of 1 m in thickness, separated by sub‐horizontal bounding surfaces traceable for tens of metres across outcrops. The cross‐beds are composed of uniform thickness cross‐laminations interpreted as wind‐ripple strata. Cross‐sets are separated by sub‐horizontal bounding surfaces traceable for tens of metres across outcrops that are interpreted as dune migration surfaces. Grain characteristics and presence of wind‐ripple strata indicate deposition of the Stimson formation by aeolian processes. The absence of features characteristic of damp or wet aeolian sediment accumulation indicate deposition in a dry aeolian system. Reconstruction of the palaeogeomorphology suggests that the Stimson dune field was composed largely of simple sinuous crescentic dunes with a height of ca 10 m, and wavelengths of ca 150 m, with local development of complex dunes. Analysis of cross‐strata dip azimuths indicates that the general dune migration direction and hence net sediment transport was towards the north‐east. The juxtaposition of a dry aeolian system unconformably above the lacustrine Murray formation represents starkly contrasting palaeoenvironmental and palaeoclimatic conditions. Stratigraphic relationships indicate that this transition records a significant break in time, with the Stimson formation being deposited after the Murray formation and stratigraphically higher Mount Sharp group rocks had been buried, lithified and subsequently eroded.  相似文献   

7.
An empirical model of aeolian dune lee-face airflow   总被引:12,自引:0,他引:12  
Airflow data, gathered over dunes ranging from 60-m tall complex-crescentic dunes to 2-m tall simplecrescentic dunes, were used to develop an empirical model of dune lee-face airflow for straight-crested dunes. The nature of lee-face flow varies and was found to be controlled by the interaction of at least three factors (dune shape, the incidence angle between the primary wind direction and the dune brinkline and atmospheric thermal stability). Three types of lee-face flow (separated, attached and deflected along slope, or attached and undeflected) were found to occur. Separated flows, characterized by a zone of low-speed (0–3O% of crestal speed) back-eddy flow, typically occur leeward of steep-sided dunes in transverse flow conditions. Unstable atmospheric thermal stability also favours flow separation. Attached flows, characterized by higher flow speeds (up to 84% of crestal speed) that are a cosine function of the incidence angle, typically occur leeward of dunes that have a lower average lee slope and are subject to oblique flow conditions. Depending on the slope of the lee face, attached flow may be either deflected along slope (lee slopes greater than about 20°), or have the same direction as the primary flow (lee slopes less than about 20°). Neutral atmospheric thermal stability also favours flow attachment. As each of the three types of lee-face flow is defined by a range of wind speeds and directions, the nature of lee-face flow is intimately tied to the type of aeolian depositional process (i.e. wind ripple or superimposed dune migration, grainflow, or grainfall) that occurs on the lee slope and the resulting pattern of dune deposits. Therefore, the model presented in this paper can be used to enhance the interpretation of palaeowind regime and dune type from aeolian cross-strata.  相似文献   

8.
Pyroclastic currents are catastrophic flows of gas and particles triggered by explosive volcanic eruptions. For much of their dynamics, they behave as particulate density currents and share similarities with turbidity currents. Pyroclastic currents occasionally deposit dune bedforms with peculiar lamination patterns, from what is thought to represent the dilute low concentration and fluid‐turbulence supported end member of the pyroclastic currents. This article presents a high resolution dataset of sediment plates (lacquer peels) with several closely spaced lateral profiles representing sections through single pyroclastic bedforms from the August 2006 eruption of Tungurahua (Ecuador). Most of the sedimentary features contain backset bedding and preferential stoss‐face deposition. From the ripple scale (a few centimetres) to the largest dune bedform scale (several metres in length), similar patterns of erosive‐based backset beds are evidenced. Recurrent trains of sub‐vertical truncations on the stoss side of structures reshape and steepen the bedforms. In contrast, sporadic coarse‐grained lenses and lensoidal layers flatten bedforms by filling troughs. The coarsest (clasts up to 10 cm), least sorted and massive structures still exhibit lineation patterns that follow the general backset bedding trend. The stratal architecture exhibits strong lateral variations within tens of centimetres, with very local truncations both in flow‐perpendicular and flow‐parallel directions. This study infers that the sedimentary patterns of bedforms result from four formation mechanisms: (i) differential draping; (ii) slope‐influenced saltation; (iii) truncative bursts; and (iv) granular‐based events. Whereas most of the literature makes a straightforward link between backset bedding and Froude‐supercritical flows, this interpretation is reconsidered here. Indeed, features that would be diagnostic of subcritical dunes, antidunes and ‘chute and pools’ can be found on the same horizon and in a single bedform, only laterally separated by short distances (tens of centimetres). These data stress the influence of the pulsating and highly turbulent nature of the currents and the possible role of coherent flow structures such as Görtler vortices. Backset bedding is interpreted here as a consequence of a very high sedimentation environment of weak and waning currents that interact with the pre‐existing morphology. Quantification of near‐bed flow velocities is made via comparison with wind tunnel experiments. It is estimated that shear velocities of ca 0·30 m.s?1 (equivalent to pure wind velocity of 6 to 8 m.s?1 at 10 cm above the bed) could emplace the constructive bedsets, whereas the truncative phases would result from bursts with impacting wind velocities of at least 30 to 40 m.s?1.  相似文献   

9.
Data from a moderate energy, meso-tidal beach on the east side of Delaware Bay, New Jersey, USA, revealed the significance of both beach width as a source for aeolian transport and the effect of tidal rise on source width. Wind speeds averaged over 17·1 min, recorded 6 m above the crest of a 0·5 m high dune, ranged from 11·6 to 12·7 m s?1 during the experiment. The highest observed rate of transport on the beach was 0·0085 kg m?1 s?1, monitored at rising low tide when the average wind speed was 11·6 m s?1 across 0·35 mm diameter surface sediments. The wind direction was oblique to the shoreline, creating a source width of 34 m. The reduction in the width of the beach as a source for aeolian transport during rising tide was approximately arithmetic, whereas the reduction in volume of sediment trapped was exponential. Aeolian transport effectively ceased when source width was less than 8 m. Wind conditions, moisture content of the surface sediments and presence of binding salts did not appear to vary dramatically, and no coarse grained lag deposit formed on the surface of the beach. The decrease in rate of sediment trapped through time in the tidal cycle is attributed to differences in source width. Sediment deposited in the litter behind the active beach by strong winds during the rising tide was eroded during the high water period by the high waves and storm surge generated by these winds, and net losses of sediment were observed despite initial aeolian accretion.  相似文献   

10.
Dynamic processes acting on a longitudinal (seif) sand dune   总被引:4,自引:0,他引:4  
HAIM TSOAR 《Sedimentology》1983,30(4):567-578
ABSTRACT Field measurements were made on a longitudinal dune in the Sinai Desert in order to understand its morphology and dynamics. The field measurements contradicted the wind structure indicated by the helicoidal flow theory. Rather, it was found that winds coming from two basically different directions at different times and striking the dune obliquely were responsible for sand transport and erosion or deposition along the lee flank.
The essence of this mechanism is the deflection of the wind airflow on the lee flank of the dune to a direction parallel to the crest line. The occurrence of erosion or deposition depends upon the angle of incidence between the wind and the crest line. When this angle is < 40° the velocity of the deflected wind is higher than on the crest line or the windward flank and longitudinal sand transport occurs. When the angle is less acute (> 40°) the velocity of the deflected wind drops and deposition takes place on the lee flank.
The angle of incidence in each wind storm is changed intermittently between 30° and 100° along the dune because the dune meanders and because of the sinuous outline of the crest line. In this manner sand transport and erosion or deposition occurs along the lee flank depending on the angle of incidence between the wind and the crest line. As a result of the deflection of the wind the dune elongates at an average rate of more than 1 m per month. Peaks and saddles along the crest line advance at an average rate of 0.7 m per month.
The lack of uniformity in the effects of the wind on both sides of the dune creates a lack of uniformity in the rate of erosion and deposition. This can explain the formation of peaks along the crest line of the dune.  相似文献   

11.
A transverse crescentic draa in the Algodones dune field, California, was monitored for a year using surface process mapping, aerial photography and supplemental wind measurement. The draa is oriented by the long-term resultant wind, whereas its superimposed features are in equilibrium with the bedform-modified secondary airflow. Surface airflow and the movement of superimposed bedforms is typically oblique or parallel to the draa brinkline, particularly on the lee slope. Comparison of measurements of draa movement and sand deposition on the lee slope, with expected rates calculated from wind data and draa size, confirm that there is a significant component of sand flow parallel to the draa brinkline. The internal structure being generated at the base of the draa lee slope is inferred from the surface processes active there. Within the space of a kilometer two types of compound cross-strata, separated by an area of simple cross-strata, are being produced. This has significant implications for interpretations of ancient aeolian strata. Variations in internal structure types found in lateral sequence may be generated by one complex bedform, and these cross-strata may be simple or compound. Second-order bounding surface orientations indicate resultant primary palaeowind directions; compound cross-strata dip directions indicate secondary flow conditions. The existence of cross-strata dip directions oblique or perpendicular to the second-order surface indicates longitudinal secondary flow on the lee face, but not necessarily a longitudinal or oblique draa. Without further detailed knowledge about various draa configurations and behaviour, stratification attributed to draas can be used only to interpret activity on the lower draa lee face.  相似文献   

12.
Sand was marked by fluorescent dye in order to trace sand movement and deposition on a longitudinal (seif) sand dune in the Sinai desert. The wind regime was monitored simultaneously. Tracing the dyed sand was possible after light to moderate sand storms and was graphically represented on maps.The dune was subjected to a seasonally bidirectional wind regime, with the wind hitting the dune obliquely on either side. On the windward flank the sand was transported parallel to the wind direction. On the lee flank sand movement was deflected towards parallelism with the crest line. Sand movement was deflected if the dune had a sharp profile which favored separation of wind flow on the lee flank. The deflection depended on the angle of incidence between the wind and the crest line: when the angle of incidence was < 40°, sand on the lee flank was transported parallel to the crest line; when the angle of incidence was nearly perpendicular to the crest, movement along the lee flank abated and deposition occurred. Where the dune was low, flat and blunt, as in a zibar dune, there was no boundary-layer separation and no deflection of sand movement on the lee flank. The deflected movement along the lee flank resulted in elongation of the longitudinal (seif) dune.  相似文献   

13.
The sorting of sediment mixtures at the lee slope of deltas (at the angle of repose) is studied with experiments in a narrow, deep flume with subaqueous Gilbert-type deltas using varied flow conditions and different sediment mixtures. Sediment deposition and sorting on the lee slope of the delta is the result of (i) grains falling from suspension that is initiated at the top of the delta, (ii) kinematic sieving on the lee slope, (iii) grainflows, in which protruding large grains are dragged downslope by subsequent grainflows. The result is a fining upward vertical sorting in the delta. Systematic variations in the trend depend on the delta height, the migration celerity of the delta front and the flow conditions above the delta top. The dependence on delta height and migration celerity is explained by the sorting processes in the grainflows, and the dependence on flow conditions above the delta top is explained by suspension of fine sediment and settling on the lee side and toe of the delta. Large differences in sorting trends were found between various sediment mixtures. The relevance of these results with respect to sorting in dunes and bars in rivers and laboratory flumes is discussed and the elements for a future vertical sorting model are suggested.  相似文献   

14.
The dynamics of star dunes: an example from the Gran Desierto, Mexico   总被引:9,自引:0,他引:9  
N. LANCASTER 《Sedimentology》1989,36(2):273-289
Observations of patterns of erosion and deposition and surface wind velocity and direction on a 40 m high star dune in the Gran Desierto sand sea indicate that interactions between dune form and airflow as winds change direction seasonally play a major role in the formation of this dune type. Such interactions lead to deposition of sand in the central parts of the dune, giving rise to its pyramidal shape, as well as to some extension of the linear arms. The major arms of the dune studied are oriented NE-SW, or transverse to summer SSE and winter NNW winds. An avalanche face up to 10 m high develops during the course of each season. Flow separation at the main crestline gives rise to a wide zone of lee side secondary flow which moves sand along the base of the avalanche face towards the central part of the dune, where it is deposited as wind ripples migrate into zones of locally reduced flow velocity. Reattachment of the separated flow occurs on the lower part of the N or S arms, parallel to the flow. Spring westerly winds move sand obliquely up the S and N arms of the dune and outwards on the E arm. Large scale flow separation and diversion are replaced by the development of strong helical eddies in the immediate lee of the main crestline which move sand along avalanche faces and into zones of lower flow velocity at the end of dune arms. Formation of star dunes in the Gran Desierto follows a sequence in which crescentic dunes migrating into areas of opposed winds first develop a reversing crestal ridge. Convergent leeside secondary flows are developed, which result in the formation of linear elements parallel to each major wind direction and the concentration of sand in the central part of the dune. Examples of star dunes at different stages of their development can be documented.  相似文献   

15.
Sand transport model of barchan dune equilibrium   总被引:9,自引:0,他引:9  
Erosion and deposition over a barchan dune near the Salton Sea, California, is modelled by book-keeping the quantity of sand in saltation following streamlines of transport. Field observations of near-surface wind velocity and direction plus supplemental measurements of the velocity distribution over a scale model of the dune are combined as input to Bagnold-type sand-transport formulae corrected for slope effects. A unidirectional wind is assumed. The resulting patterns of erosion and deposition compare closely with those observed in the field and those predicted by the assumption of equilibrium (downwind translation of the dune without change in size or geometry). Discrepancies between the simulated results and the observed or predicted erosional patterns appear to be largely due to natural fluctuation in the wind direction. Although the model includes a provision for a lag in response of the transport rate to downwind changes in applied shear stress, the best results are obtained when no delay is assumed. The shape of barchan dunes is a function of grain size, velocity, degree of saturation of the oncoming flow, and the variability in the direction of the oncoming wind. Smaller grain size or higher wind speed produce a steeper and more blunt stoss-side. Low saturation of the inter-dune sandflow produces open crescent-moon-shaped dunes, whereas high saturation produces a whaleback form with a small slip face. Dunes subject to winds of variable direction are blunter than those under unidirectional winds. The size of barchans could be proportional to natural atmospheric scales, to the age of the dune, or to the upwind roughness. The upwind roughness can be controlled by fixed elements or by the sand is saltation. In the latter case, dune scale may be proportional to wind velocity and inversely proportional to grain size. However, because the effective velocity for transport increases with grain size, dune scale may increase with grain size as observed by Wilson (1972).  相似文献   

16.
Over the past 100 years, the Isles Dernieres, a low lying barrier island chain along the coast of central Louisiana, Usa , has undergone more than 1 km of northward beach face retreat with the loss of 70% of its surface area. The erosion results from a long term relative sea level rise coupled with day to day wind and wave action that ultimately favours erosion over deposition. At a site in the central Isles Dernieres, 8 days of wind and beach profile measurements during the passage of one winter cold front documented aeolian erosion and deposition patterns under both onshore and offshore winds. For offshore winds, the theoretical erosion rate, based on wind shear velocity, closely matched the measured erosion rate; for onshore winds, the theoretical rate matched the measured rate only after being corrected by a factor that accounted for beach face morphology. In late February 1989, a strong cold front moved into coastal Louisiana. That cold front stalled over the Gulf of Mexico, resulting in 4 days of strong northerly winds at a study site on the Isles Dernieres. During those 4 days, the wind moved sand from the backshore to the upper beach face. When the cold front finally moved out of the area, the wind shifted to the south and decreased in strength. The onshore wind then restored some of the upper beach face sand to the backshore while increased wave activity moved the rest into the nearshore. The theoretical estimate of 1·28 m3 m?1 for the rate of sand transport by the northerly wind compares well with the measured backshore erosion rate of 1·26 m3 m?1, which was determined by comparing beach profiles from the start and end of the period of northerly winds. The theoretical estimate of 0·04 m3 m?1 for the rate of sand transport by the southerly wind, however, is notably less than the measured rate of 0·45 m3 m?1. The large discrepancy between the two rates can be explained by a difference in the shear velocity of the wind between the beach face, where the erosion occurred, and the backshore, where the wind stress was measured. Using an empirical relationship for the wind shear drag coefficient as a function of coastal environment, the theoretical estimate for the rate of sand transport by the southerly wind becomes 0·44 m3 m?1  相似文献   

17.
The analysis of the aeolian content of marine cores collected off the coast of the Atacama Desert (Mejillones Bay, Chile) suggests that marine sediments can record inter‐annual to inter‐decadal variations in the regional southerly winds responsible for particle entrainment at the surface of the nearby desert. However, the establishment of a simple and direct correlation between the sediment and wind records is complicated by the difference of time scales between the erosion and accumulation processes. The aim of this work is to: (i) assess the inter‐annual variability of the surface winds responsible for the sand movements; and (ii) determine whether the integration over periods of several months completely smoothes the rapid changes in characteristics of the transported and deposited aeolian material. To accomplish this aim, 14 years of 10 m hourly wind speed, measured at the Cerro Moreno (Antofagasta) Airport between 1991 and 2003 and at the Orica Station between 2000 and 2004, were analyzed. For each year, the wind speed statistical distribution can be represented by a combination of two to three Weibull functions. Winds of the lowest Weibull mode are too weak to move the sand grains at the surface of the pampa; this is not the case for the intermediate mode and especially for the highest speed mode which are able to erode the arid surface and transport particles to the bay. In each individual year of the period of study, the highest speed mode only accounted for a limited number of strong erosion events. Quantitative analysis of the distribution of the friction velocities and of their impact on erosion using a saltation model suggests that, although all wind speeds above threshold produce erosion events, values around 0·45 m sec?1 contribute less to the erosion flux. This gap allows separation of the erosion events into low and high saltation modes. The correlation (r = 0·997) between the importance of the third Weibull mode and the extent of higher rate saltation indicates that the inter‐annual variability of the erosion at the surface of the pampa, as well as the transport of coarse particles (>100 μm), are directly related to inter‐annual variations in the prevalence of the strongest winds. Finally, a transport and deposition model is used to assess the possible impact of the wind inter‐annual variability on the deposition flux of mineral particles in the bay. The results suggest that inter‐annual differences in the wind speed distributions have a quantifiable effect on the intensity and size‐distribution of this deposition flux. This observation suggests that a detailed analysis of the sediment cores collected from the bay could be used for reconstructing the inter‐annual variability of past winds.  相似文献   

18.
The Hornby Bay Group is a Middle Proterozoic 2.5 km-thick succession of terrestrial siliciclastics overlain by marine siliciclastics and carbonates. A sequence of conglomeratic and arenaceous rocks at the base of the group contains more than 500 m of mature hematitic quartz arenite interpreted to have been deposited by migrating aeolian bedforms. Bedforms and facies patterns of modern aeolian deposits provided a basis for recognizing two sequences of aeolian arenite. Both sequences interfinger with alluvial—wadi fan conglomerates and arenites deposited by braided streams. Depositional processes, facies patterns and paleotopographic position of the arenites are consistent with modern sand sea dynamics.Distal aeolian facies in both sequences are composed of trough crossbed megasets deposited by climbing, sinuous-crested, transverse dunes. Megasets comprise a gradational assemblage of tabular to wedge-planar cosets formed by deflation/reactivation of dune lee slopes and migration of smaller superposed aeolian bedforms (small dunes and wind ripples). Megasets in the proximal facies are thinner, display composite internal stratification and have a tabular-planar geometry which suggests that they were formed by smaller, straight-crested transverse dunes. Most stratification within the crossbeds is inferred to have formed by the downwind climbing of aeolian ripples across the lee slopes of dunes.Remarkably few Precambrian aeolian deposits have been reported previously. This seems anomalous, because most Precambrian fluvial sediments appear to have been deposited by low sinuosity (braided) streams, the emergent parts of which are prime areas for aeolian deflation. Frequent floods and rapid lateral migration of Precambrian humid climate fluvial systems probably restricted aeolianite deposition to arid paleoclimates. Thus the apparent anomaly may reflect non-recognition and/or non-preservation of aeolianites and/or variations in some aspect of sand sea formation and migration unique to the Precambrian. Reconstruction of the Hornby Bay Group aeolianites using recently developed criteria for their recognition suggests that the latter reason did not exert a strong influence.  相似文献   

19.
The Middle Jurassic Todilto Member of the Wanakah Formation is a carbonate and gypsum unit inset into the underlying aeolian Entrada Sandstone in the San Juan Basin. Field and thin section study of the uppermost Entrada and Todilto at Ghost Ranch, New Mexico, identified Todilto facies and their relationship to remnant Entrada dune topography. Results support the previous interpretation that the Entrada dunes, housed in a basin below sea level, were rapidly flooded by marine waters. Mass wasting of the dunes gave rise to sediment‐gravity flows that largely buried remnant dune topography, leaving ca 12 m of relief that defined the antecedent condition for Todilto deposition. Previously interpreted as seasonal varves deposited in a stratified water body, the Todilto is reinterpreted as a microbial biolaminite. Most diagnostic are organic‐rich laminae with structures characteristic of filamentous microbes and containing trapped aeolian silt, and clotted‐texture laminae with a fabric associated with calcification of extracellular polymeric substances. The spatial arrangement of Todilto facies is controlled by the dune palaeotopography. A continuous basal laminated mudstone thickens over the dune crest, reflecting the optimum conditions for microbial mat development, and is interpreted to have been deposited when marine waters submerged the topography. Subsequent drying caused emergence of the crestal area, and formation of tepee structures and a dissolution breccia. Gypsiferous mudflats and periodic ponds occupied the dune flanks and interdune area, with gypsum concentrated within the interdune area. Entrada sands remained unstable during Todilto deposition with common injection structures into the Todilto, and a remnant slope caused the downslope movement and folding of Todilto strata on the upper lee face. Although some expansion of the gypsum occurred in the subsurface, facies architecture fostered development of a dissolution front adjacent to the interdune gypsum body with section collapse of gypsiferous limestone on the dune flanks.  相似文献   

20.
The existence of a mid‐Cretaceous erg system along the western Tethyan margin (Iberian Basin, Spain) was recently demonstrated based on the occurrence of wind‐blown desert sands in coeval shallow marine deposits. Here, the first direct evidence of this mid‐Cretaceous erg in Europe is presented and the palaeoclimate and palaeoceanographic implications are discussed. The aeolian sand sea extended over an area of 4600 km2. Compound crescentic dunes, linear draa and complex aeolian dunes, sand sheets, wet, dry and evaporitic interdunes, sabkha deposits and coeval extradune lagoonal deposits form the main architectural elements of this desert system that was located in a sub‐tropical arid belt along the western Tethyan margin. Sub‐critically climbing translatent strata, grain flow and grain fall deposits, pin‐stripe lamination, lee side dune wind ripples, soft‐sediment deformations, vertebrate tracks, biogenic traces, tubes and wood fragments are some of the small‐scale structures and components observed in the aeolian dune sandstones. At the boundary between the aeolian sand sea and the marine realm, intertonguing of aeolian deposits and marine facies occurs. Massive sandstone units were laid down by mass flow events that reworked aeolian dune sands during flooding events. The cyclic occurrence of soft sediment deformation is ascribed to intermittent (marine) flooding of aeolian dunes and associated rise in the water table. The aeolian erg system developed in an active extensional tectonic setting that favoured its preservation. Because of the close proximity of the marine realm, the water table was high and contributed to the preservation of the aeolian facies. A sand‐drift surface marks the onset of aeolian dune construction and accumulation, whereby aeolian deposits cover an earlier succession of coastal coal deposits formed in a more humid period. A prominent aeolian super‐surface forms an angular unconformity that divides the aeolian succession into two erg sequences. This super‐surface formed in response to a major tectonic reactivation in the basin, and also marks the change in style of aeolian sedimentation from compound climbing crescentic dunes to aeolian draas. The location of the mid‐Cretaceous palaeoerg fits well to both the global distribution of other known Cretaceous erg systems and with current palaeoclimate data that suggest a global cooling period and a sea‐level lowstand during early mid‐Cretaceous times. The occurrence of a sub‐tropical coastal erg in the mid‐Cretaceous of Spain correlates with the exposure of carbonate platforms on the Arabian platform during much of the Late Aptian to Middle Albian, and is related to this eustatic sea‐level lowstand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号