首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Nova Basin contains an upper Miocene to Pliocene supradetachment sedimentary succession that records the unroofing of the Panamint metamorphic core complex, west of Death Valley, California. Basin stratigraphy reflects the evolution of sedimentation processes from landslide emplacement during basin initiation to the development of alluvial fans composed of reworked, uplifted sections of the basin fill. 40Ar/39Ar geochronology of volcanic units in middle and lower parts of the sequence provide age control on the tectonic and depositional evolution of the basin and, more generally, insights regarding the rate of change of depositional environments in supradetachment basins. Our work, along with earlier research, indicate basin deposition from 11.38 Ma to 3.35 Ma. The data imply sedimentation rates, uncorrected for compaction, of ~100 m Myr−1 in the lower, high-energy part to ~1000 m Myr−1 in the middle part characterized by debris-flow fan deposition. The observed variation in sediment flux rate during basin evolution suggests that supradetachment basins have complex depositional histories involving rapid transitions in both the style and rate of sedimentation.  相似文献   

2.
The gravitational compaction of sediments is an important process in forward basin modelling. This paper presents a mathematical model for the one-dimensional compaction of an accreting layer of argillaceous sediments. Realistic constitutive laws for the clay compressibility and the clay permeability, based on soil mechanics tests, were incorporated into the model. The governing equations were put in dimensionless form and the extent of abnormal pore fluid pressure development was found to depend on the sedimentation parameter, a dimensionless group representing the ratio of the sediment hydraulic conductivity to the sediment accumulation rate. The effects of clay compressibility were studied and highly colloidal clays such as montmorillonite developed higher overpressures than less compressible materials. The results also showed that overpressuring developed in shales for cases in which the clay permeability did not go to zero in the limit of zero porosity. Linear models based on simplifying assumptions inappropriate for sedimentary basins were found to give significantly different estimates for the conditions leading to overpressuring. Using reasonable parameters, the model adequately reproduced porosity and pore pressure profiles measured in the sand-shale sequences of the South Caspian Sea.  相似文献   

3.
From a large collection of Ethiopian flood basalts (~30  Myr old) sampled for magnetostratigraphy, 40Ar/39Ar geochronology and geochemical investigations, 47 samples were selected in order to test their suitability for Thellier palaeointensity experiments. Only 17 samples from eight individual flows yielded reliable palaeointensity estimates, with flow-mean virtual dipole moments ranging from 3.0 to 10.5 × 1022  A  m2 .
  A critical review of the Oligocene palaeointensity data set, including these new Ethiopian data, indicates an Oligocene mean virtual dipole moment of 5.1 ± 2.5 × 1022  A  m2 for the complete data set. After applying mild selection criteria, the reduced data set yields a mean value of only 4.6 ± 1.9 × 1022  A  m2 . This value is significantly lower than the present-day field strength but is higher than the Mesozoic dipole low mean field. This low Oligocene field might be in agreement with the high palaeosecular variation and rather high non-dipole field invoked around 30  Ma. However, the Oligocene data set is largely dependent on the palaeointensity determinations from Armenia, obtained mainly from baked contacts, which show amazingly low dispersion at both flow and between-flow levels. More data are needed to reduce the weight of these determinations on the mean value and avoid a possible bias.  相似文献   

4.
Unconformities, which represent either periods of interruption of sedimentation or, in most cases events characterized by deposition and subsequent erosion, are commonplace geological phenomena in sedimentary basins, and will affect the pore pressure evolution of the basin fill. The effect of unconformities on pore pressure, as well as on sediment compaction and on burial processes is studied using a numerical basin model. For coarse sediments, which are permeable so that their pore pressure always remains nearly hydrostatic, the effects of both pure deposition interruption (hiatus) and deposition-erosion events are negligible for pore pressure evolution. However, for fine-grained sediments, unconformities can modify the pore pressure and the stress state to varying degrees. The results show that the rate of removal of overlying sediments, the permeability of sediments and time play important roles in the pore pressure evolution. In the East Slope of the Ordos Basin (China), in which overpressure has not been detected in deep wells, the modelling results suggest that the large-scale erosion occurring in the Late Cretaceous and in the Tertiary may have removed high overpressure existing in the basin before the erosion.  相似文献   

5.
During the hydraulic-fracturing experiment in the German Continental Deep Drilling Borehole (KTB) in December 1994, microseismic activity was induced. Here we develop a technique for estimating permeability using the spatio-temporal distribution of the fluid-injection-induced seismic emission. The values we have obtained for the KTB experiment (0.25times10-16 to 1.0times10-16 1.0times10-16 m2) are in a very good agreement with the previous hydraulic-type permeability estimates from KTB deep-observatory studies. In addition, our estimates of the hydraulic diffusivity support the previously calculated value for the upper crust, which is of the order of 1 m2 s-1. However, this estimate now relates to the depth range 7.5-9 km.  相似文献   

6.
Summary. Fault zones in wet Westerly granite deformed at temperatures of 300° and 400°C require markedly lower shear stresses for sliding than when dry, even when the effective confining pressure is held constant between the wet and dry tests, provided that the strain rate is lower than 10−7s−1. The rate of strength reduction is enhanced by increasing the pore water pressure. The deformation rate is a power function of the applied stress where the stress exponent is approximately 7 for pore water pressure of 100 MPa and 21 for pore water pressure of 20 MPa.
The experimental results are extrapolated to conditions believed to occur at depths of 10 km along the San Andreas Fault Zone. It is suggested that for slow tectonic deformation at strain rates of 10−11 and 10−14s−1 the shear stress for sliding on faults in granite would be approximately 60 and 20 MPa, respectively, at pore water pressures equal to the hydrostatic head. Fluid overpressures of c. 0.8 lithostatic pressure are required to lower the shear stress for sliding into the 10 MPa range at the slower strain rate.  相似文献   

7.
Oxygen consumption by rotifers Macrotrachela musculosa and Trichotria truncata from Spitsbergen tundra (77°N) was measured using the method of Cartesian divers. The metabolic rate of M. musculosa was: 0.205 10−3mm3 02 per g 10−6 per hour at 2°C, 0.201 10−6mm3 at 6°C and 0.616 10−3mm3 02 per g 10−6 per hour at 10°C. The metabolic rate of Trichotria truncata at 6° was 0.103 10−3mm3 per g 10−6 per hour. The relation between body weight and oxygen consumption by M. musculosa at 2°C is expressed with the equation R = 0.18W0.67, with R – oxygen consumption in mm310−3 per individual per hour and W – wet weight of an animal in g 10−6.  相似文献   

8.
The complex pressure and porosity fields observed in the Eugene Island (EI) 330 field (offshore Louisiana) are thought to result from sediment loading of low-permeability strata. In this field, fluid pressures rise with depth from hydrostatic to nearly lithostatic, iso-pressure surfaces closely follow stratigraphic surfaces which are sharply offset by growth-faulting, and porosity declines with effective stress. A one-dimensional hydrodynamic model simulates the evolution of pressure and porosity in this system. If reversible (elastic) compaction is assumed, sediment loading is the dominant source of overpressure (94%). If irreversible (inelastic) compaction and permeability reduction due to clay diagenesis are assumed, then thermal expansion of pore fluids and clay dehydration provide a significant component of overpressure (>20%). The model is applied to wells on the upthrown and downthrown sides of the major growth fault in the EI 330 field. Assuming that sediment loading is the only pressure source and that permeability is a function of lithology and porosity, the observed pressure and porosity profiles are reproduced. Observation and theory support a conceptual model where hydrodynamic evolution is intimately tied to the structural and stratigraphic evolution of this progradational deltaic system.

  相似文献   


9.
Regional incision and lateral shifts of rivers in the West Siberian Basin and surrounding areas show the action of long wavelength surface tilting, directed away from the Urals and Central Asian mountains and towards the Siberian Craton. In the north of the basin, surface uplift of individual folds is recorded by local lateral drainage migration. Lateral slopes of river valleys vary in gradient from 0.001 to 0.0001, generally decreasing with increasing river discharge. As a result of this surface deformation significant drainage shifts are taking place in three of the longest and highest discharge river systems on Earth: the Yenisei, Ob' and Irtysh. The deformation is most plausibly caused by subtle faulting at depth, below the thick basin fill of Mesozoic and Lower Cenozoic sediments. Active deformation of western Siberia appears to represent a previously unrecognised, far-field effect of the India–Eurasia collision, up to ∼1500 km north of the limit of major seismicity and mountain building. It adds ∼2.5 × 106 km2 to the region deformed by the collision, which is an area greater than the Himalayas and Tibet combined. It is also an analogue for the formation of low-angle unconformities in terrestrial sedimentary basins on the periphery of other orogenic belts.  相似文献   

10.
Dissipative core–mantle coupling is evident in observations of the Earth's nutations, although the source of this coupling is uncertain. Magnetic coupling occurs when conducting materials on either side of the boundary move through a magnetic field. In order to explain the nutation observations with magnetic coupling, we must assume a high (metallic) conductivity on the mantle side of the boundary and a rms radial field of 0.69 mT. Much of this field occurs at short wavelengths, which cannot be observed directly at the surface. High levels of short-wavelength field impose demands on the power needed to regenerate the field through dynamo action in the core. We use a numerical dynamo model from the study of Christensen & Aubert (2006) to assess whether the required short-wavelength field is physically plausible. By scaling the numerical solution to a model with sufficient short-wavelength field, we obtain a total ohmic dissipation of 0.7–1 TW, which is within current uncertainties. Viscous coupling is another possible explanation for the nutation observations, although the effective viscosity required for this is 0.03 m2 s−1 or higher. Such high viscosities are commonly interpreted as an eddy viscosity. However, physical considerations and laboratory experiments limit the eddy viscosity to 10−4 m2 s−1, which suggests that viscous coupling can only explain a few percent of the dissipative torque between the core and the mantle.  相似文献   

11.
Seal capacity estimation from subsurface pore pressures   总被引:1,自引:0,他引:1  
A cap rock's capacity to seal hydrocarbons depends on its wettability and the sizes of the pore throats within the interconnected pore system that the leaking hydrocarbons must penetrate. These critical pore throat sizes are often poorly constrained in hydrocarbon exploration, partly because measurements of pore throat sizes have not been performed, and partly because pore throat measurements on a few individual samples in the cap rock may not be representative for the seal capacity of the top seal as a whole. To the contrary, the presence of formation overpressure can normally be estimated in drilled exploration targets. The presence of overpressure in reservoirs testifies to small pore throats in the cap rocks, as large pore throats will result in sufficiently high cap rock permeability to bleed off the overpressure. We suggest a stepwise procedure that enables quantification of top seal capacities of overpressured traps, based on subsurface pressure information. This procedure starts with the estimation of cap rock permeabilities, which are consistent with observed overpressure gradients across the top seals. Knowledge of burial histories is essential for these estimations. Relationships between pore throat size and permeability from laboratory experiments are then applied to estimate critical pore throat diameters in cap rocks. These critical pore throat diameters, combined with information of the physical properties of the pore fluids, are then used to calculate membrane seal capacity of cap rocks. Estimates of top seal capacity based on this procedure are rather sensitive to the vertical fluid velocity, but they are also to some extent sensitive to inaccuracies of the pore throat/permeability relationship, overpressure gradient, interfacial tensions between pore fluids, hydrocarbon density and water viscosity values. Despite these uncertainties, applications of the above‐mentioned procedure demonstrated that the mere presence of reservoir overpressures testifies to sufficient membrane seal capacity of cap rocks for most geological histories. Exempt from this statement are basins with rapid and substantial sediment compaction in the recent past.  相似文献   

12.
The attenuation mechanism of seismic waves in northwestern Himalayas   总被引:3,自引:0,他引:3  
We analysed local earthquake waveforms recorded on a broad-band seismic network in northwestern Himalayas to compute the intrinsic and scattered attenuation parameters from coda waves. Similar to other tectonically active and heterogeneous regions, attenuation-frequency relation for western Himalaya is   Q −1 c = (113 ± 7)  f (1.01±0.05)  where   Qc   is the coda Q parameter. Intrinsic  ( Q −1 i )  and scattering  ( Q −1 s )  attenuations was separated using   Qc   and direct S -wave Q data  ( Qd )  . It is observed that estimated   Q −1 c   is close to   Q −1 i   and both of them are much larger than   Q −1 s   suggesting that coda decay is predominantly caused by intrinsic attenuation. At higher frequencies, both the attenuation parameters   Qc   and,   Qd   are similar indicating that coda is predominantly composed of back-scattered S waves at these frequencies.  相似文献   

13.
In the austral summer seasons 2001/02 and 2002/03, Global Positioning System (GPS) data were collected in the vicinity of Vostok Station to determine ice flow velocities over Lake Vostok. Ten GPS sites are located within a radius of 30 km around Vostok Station on floating ice as well as on grounded ice to the east and to the west of the lake. Additionally, a local deformation network around the ice core drilling site 5G-1 was installed.
The derived ice flow velocity for Vostok Station is  2.00 m a−1± 0.01 m a−1  . Along the flowline of Vostok Station an extension rate of about 10−5 a−1 (equivalent to 1 cm km−1 a−1) was determined. This significant velocity gradient results in a new estimate of 28 700 years for the transit time of an ice particle along the Vostok flowline from the bedrock ridge in the southwest of the lake to the eastern shoreline. With these lower velocities compared to earlier studies and, hence, larger transit times the basal accretion rate is estimated to be 4 mm a−1 along a portion of the Vostok flowline. An assessment of the local accretion rate at Vostok Station using the observed geodetic quantities yields an accretion rate in the same order of magnitude. Furthermore, the comparison of our geodetic observations with results inferred from ice-penetrating radar data indicates that the ice flow may not have changed significantly for several thousand years.  相似文献   

14.
Abstract An equation to relate the thickness of sediment deposited (ΔSed), eustatic sea-level change (ΔE), and subsidence (ΔSub), to changes in depth of water (ΔD) is: ΔSub +ΔE-ΔSed =ΔD.
Using existing sea-level curves, the equation shows that some transgressive-regressive sequences in a foreland basin and a composite seismic facies sequence on a passive margin cannot result solely from eustatic variation. In each case, the space created by subsidence is greater than that provided by eustatic rise. However, eustatic variation could have triggered sequence development if superimposed on a basin with relatively constant values of the other parameters. Short-period sea-level fluctuations with high rates of change, exceeding 70–100 m Myr-1 for periods less than 2–3 Myr, affect the stratigraphy and sedimentology more than longer period, higher amplitude variations.
Clinoforms are generated because of lateral variations in sedimentation rate compared to the rate of creation of accommodation space. These variations may result from differing sedimentation rates, subsidence rates, or rates of eustatic change, superimposed on a basin with lateral sediment supply. Clinoform slopes and curvatures are interpre table in terms of these variables as well as the type of sediment supplied and the energy distribution in the basin.
These equations put some well-known geological principles on a simple quantitative basis. They force precision in definition of variables, and may lead to further development of quantitative techniques in stratigraphy and sedimentology.  相似文献   

15.
We present an approximate method to estimate the resolution, covariance and correlation matrix for linear tomographic systems Ax = b that are too large to be solved by singular value decomposition. An explicit expression for the approximate inverse matrix A is found using one-step backprojections on the Penrose condition AA ≈ I , from which we calculate the statistical properties of the solution. The computation of A can easily be parallelized, each column being constructed independently.
The method is validated on small systems for which the exact covariance can still be computed with singular value decomposition. Though A is not accurate enough to actually compute the solution x , the qualitative agreement obtained for resolution and covariance is sufficient for many purposes, such as rough assessment of model precision or the reparametrization of the model by the grouping of correlating parameters. We present an example for the computation of the complete covariance matrix of a very large (69 043 × 9610) system with 5.9 × 106 non-zero elements in A . Computation time is proportional to the number of non-zero elements in A . If the correlation matrix is computed for the purpose of reparametrization by combining highly correlating unknowns x i , a further gain in efficiency can be obtained by neglecting the small elements in A , but a more accurate estimation of the correlation requires a full treatment of even the smaller A ij . We finally develop a formalism to compute a damped version of A .  相似文献   

16.
Summary. We have implemented an algorithm which is based on Bailey's solution of the inverse problem of electromagnetic induction in the Earth. The study was motivated by recent determinations of very long period data and also benefited from recent redeterminations of high frequency data. The algorithm has been successfully tested to provide reliable estimates of conductivity down to a depth of 2000 km, using synthetic data in the period range from 4 days to 11 years. Smooth data sets, which are required for the inversion, were constructed from various sources. At a given depth, the range of inverted models is less than one order of magnitude. Due to the lack of high frequency data, the conductivity of the upper 600 km of the mantle, which is found to be of the order of 10−1Ω−1 m−1, may be overestimated. The algorithm performs well in the middle mantle, where conductivity rises steadily from 1 to 50 Ω−1 m−1. The lack of very low frequency data and limitations of the algorithm prevent one from obtaining meaningful estimates in the lower mantle. However, the study of the propagation of the late 1960s secular variation acceleration provides an estimate of the mean conductivity of the whole mantle. Thus, a complete mantle profile can be constructed. It is found that deep mantle conductivity probability does not exceed a few hundred Ω−1 m−1.  相似文献   

17.
Recent high-resolution observations of crustal movements have revealed silent slip events (SSEs) with propagation velocities of around 10–15 km d−1 and with intervals of 3–14 months along the deeper parts of the Cascadia and Nankai subduction zones. This study develops 2-D and 3-D models of these short-interval SSEs considering the frictional behaviour that was confirmed experimentally by Shimamoto for the unstable–stable transition regime. To represent this frictional behaviour, a small cut-off velocity to an evolution effect is introduced in a rate- and state-dependent friction law. When the cut-off velocity to the evolution effect is significantly smaller than that to a direct effect, steady-state friction exhibits velocity weakening at low slip velocities and velocity strengthening at high slip velocities. At the deeper Cascadia and Nankai subduction interfaces, the pore pressure is inferred to be high because of the dehydration of materials in the descending plate. Under conditions where the pore-fluid pressure is nearly equal to the lithostatic pressure and the critical weakening displacement is very small, short-interval SSEs with propagation velocities and slip velocities of 4–8 km d−1 and  2 − 4 × 10−7  m s−1, respectively, can be reproduced. The propagation velocity of short-interval SSEs is in proportion to the slip velocity. The results also show that during the nucleation process of large earthquakes, the occurrence of short-interval SSEs becomes irregular because of the accelerated slips that occur at the bottom of the seismogenic zone. Our results suggest that monitoring of short-interval SSEs might be useful for forecasting the main earthquakes.  相似文献   

18.
In this paper, approximately 100 VLBI/SLR/GPS velocities map European strain rates from <0.09 × 10−8 to >9.0 × 10−8 yr−1 with regional uncertainties of 20 to 40 per cent. Kostrov's formula translates these strain-rate values into regional geodetic moment rates M¯˙ geodetic . Two other moment rates, M¯˙ seismic , extracted from a 100-year historical catalogue and M¯˙ plate , taken from plate-tectonic models, contrast the geodetic rates. In Mediterranean Europe, the ratios of M¯˙ seismic to M¯˙ geodetic are between 0.50 and 0.71. In Turkey the ratio falls to 0.22. Although aseismic deformation may contribute to the earthquake deficit ( M¯˙ seismic values less than M¯˙ geodetic ), the evidence is not compelling because the magnitudes of the observed shortfalls coincide with the random variations expected in a 100-year catalogue. If the lack of aseismic deformation inferred from the 100-year catalogue holds true for longer periods, then much of Europe's strain budget would have to be accommodated by more frequent or larger earthquakes than have been experienced this century to raise the ratios of M¯˙ seismic to M¯˙ geodetic to unity. Improved geological fault data bases, longer historical earthquake catalogues, and densification of the continent's space geodetic network will clarify the roles of aseismic deformation versus statistical quiescence.  相似文献   

19.
Summary. A systematic approach is suggested for modelling the development of sedimentary basins. The theory, which partitions basin formation into initiating and isostatic adjustment processes, is applicable to all modes of basin formation if these processes are linear, or can he represented with sufficient accuracy in an incrementally linear form.
The dynamics of regional isostatic adjustment are characterized by the Heaviside space-time Green functions for the response of elastic and viscoelastic (Maxwell) thin plate models of the lithosphere. It is shown, by convolving the Heaviside—Green functions with cylindrical surface loads, that the rate of isostatic adjustment on a viscoelastic lithosphere is a function of the wavelength of the surface load, long wavelengths being compensated most rapidly.
Six archetypal initiating processes for sedimentary basin development are presented. These processes are those responsible for the subsidence of the Earth's surface which creates a depression in which water and sediments collect. Isostatic amplification of subsidence by sediment and water loads is cast in the form of an integral equation with isostatic Heaviside—Green functions as kernel.
Specific examples, the basins that result from a graben initiating process, are compared with the largest scale structure of the North Sea Basin, a basin that is known to be underlain by a graben system. A model, in which a 50-km wide graben subsides exponentially with a time constant of 5 × 107yr during the interval 180–100 Myr bp , is shown to be consistent with the largest scale structure of the North Sea Basin if the underlying lithosphere is viscoelastic with a flexural rigidity of ∼5 × 1025 Nm and relaxation time constant ∼ 106 yr.  相似文献   

20.
Summary. As part of integrated marine geophysical studies in the Western Somali Basin, we performed 118 sonobuoy experiments to define better the crustal structure of the margins and basin created by the separation of Madagascar and Africa. After using T 2/ X 2, conventional slope-intercept methods, and slant-stacked t-p techniques to analyse the data, we combined our solutions with all previous velocity information for the area. Velocity functions were derived for the sediment coiumn, and we detected a high-velocity (4.58 ± 0.29 km s–1) sediment layer overlying acoustic basement. We confirmed that the crust is indeed seismically oceanic, and that it may be considered either in terms of a layered model – layers 2B (5.42 ± 0.19 km s–1), 2C (6.23 ± 0.22 km s–1), 3 (7.03 ± 0.25 km s–1), and mantle (7.85 ± 0.32 km s–1) were identified – or a more complex gradient model in which layer 2 is marked by a steeper velocity gradient than underlying layer 3. Integrated igneous crustal thicknesses (1.62 ± 0.22 s, 5.22 ± 0.64 km) are significantly less than what is considered normal. We present a revised seismic transect across the East African margin, as well as total sediment thickness, depth to basement and crustal thickness maps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号