首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method developed recently for constructing tectonic subsidence curves in early Paleozoic miogeoclines has produced new evidence for the breakup of a late Proterozoic supercontinent. Tectonic subsidence analyses in miogeoclines of eastern and western North America, northwestern Argentina, the Middle East and northwestern Australia limit the timing of the continental breakup to between 625 and 555 Ma. These results refine the implications of a much broader range of radiometric ages of rift-related igneous rocks and biostratigraphic ages of the transition from active extension to passive subsidence in miogeoclines.

The recognition of the timing and extent of rifting has led to testable hypotheses for latest Proterozoic and early Paleozoic continental histories. Breakup and onset of drift along an extensive system of continental fractures within a relatively short period of time would generate a large amount of young ocean floor, thereby reducing the volume of the global ocean basin and causing a sea level rise. Maximum reduction of ocean basin volume would postdate the time of breakup, probably by about 70 m.y., placing the transgressive peak at a time not older then about 510–520 Ma. That age agrees well with the time of maximum flooding on the continents close to the end of the Cambrian. Restriction of the breakup to between 625 and 555 Ma reduces the time gap between an essentially intact late Proterozoic supercontinent and the oldest reliable paleomagnetic reconstruction of the dispersed continents at about 560 Ma. A continental reconstruction produced by rotating Laurentia and Baltica into Gondwana a minimum distance from the 560 Ma position is consistent with limited geologic data. However, that reconstruction places Laurentia and Baltica in low latitudes which is difficult to reconcile with the absence of evaporites in syn-rift complexes in both continents.  相似文献   


2.
Tal Ezer 《Ocean Dynamics》2017,67(5):651-664
Two aspects of the interactions between the Gulf Stream (GS) and the bottom topography are investigated: 1. the spatial variations associated with the north-south tilt of mean sea level along the US East Coast and 2. the high-frequency temporal variations of coastal sea level (CSL) that are related to Gulf Stream dynamics. A regional ocean circulation model is used to assess the role of topography; this is done by conducting numerical simulations of the GS with two different topographies–one case with a realistic topography and another case with an idealized smooth topography that neglects the details of the coastline and the very deep ocean. High-frequency oscillations (with a 5-day period) in the zonal wind and in the GS transport are imposed on the model; the source of the GS variability is either the Florida Current (FC) in the south or the Slope Current (SC) in the north. The results demonstrate that the abrupt change of topography at Cape Hatteras, near the point where the GS separates from the coast, amplifies the northward downward mean sea level tilt along the coast there. The results suggest that idealized or coarse resolution models that do not resolve the details of the coastline may underestimate the difference between the higher mean sea level in the South Atlantic Bight (SAB) and the lower mean sea level in the Mid-Atlantic Bight (MAB). Imposed variations in the model’s GS transport can generate coherent sea level variability along the coast, similar to the observations. However, when the bottom topography in the model is modified (or not well resolved), the shape of the coastline and the continental shelf influence the propagation of coastal-trapped waves and impact the CSL variability. The results can explain the different characteristics of sea level variability in the SAB and in the MAB and help understand unexpected water level anomalies and flooding related to remote influence of the GS.  相似文献   

3.
New data and ideas are changing our view of conditions during the Cretaceous.Paleotopography of the continents was lower than originally thought,eliminating the'cold continental interior paradox'of fossils of plants that could not tolerate freezing occurring in regions indicated by climate models to be well below freezing in winter.The controversy over the height of Cretaceous sea levels has been resolved by knowledge of the effects of passage of the subducted slab of the Farallon Plate beneath the North American crust.The cause of shorter term sea level changes of the order of 30 to 50 meters is not because of growth and decay of ice sheets,but more likely the filling and release of water from groundwater reservoirs and lakes although there may have been some ice in the Early and latest Cretaceous.Carbon dioxide was not the only significant greenhouse gas;methane contributed significantly to the warmer climate.Suggestions of very warm tropical ocean temperatures(40℃)have implications for the nature of plant life on land limited by Rubisco activase.The land surfaces were much wetter than has been thought,with meandering rivers and many oxbow lakes providing habitat for large dinosaurs.A major rethinking of the nature of conditions on a warmer Earth is underway,and a new suite of paleoclimate simulations for the Cretaceous is needed.  相似文献   

4.
Cox  C. 《Surveys in Geophysics》1980,4(1-2):137-156
This review concentrates on the uncertainties surrounding interpretation of sea floor impedance measurements. Oceanic motionally induced signals prove to be noise generators which limit the low frequency range of usable signals. At high frequencies the screening by a thick ocean and by the sediments and rocks of layer two present insuperable barriers to detection of poorly conducting rocks in the depth range 2 to 30 km below the sea bottom by usual methods. The conductivity of this layer is important for the interpretation of all ocean impedance measurements because it determines the width of a boundary zone at the continental margins of the ocean. If the conductivity is as low as 10–5 S/m the bounding zone begins to fill the whole ocean. It is suggested that use of an active, manmade EM source can provide signals at the sea bottom capable of resolving the uncertainty.  相似文献   

5.
Wan  Bo  Wu  Fuyuan  Chen  Ling  Zhao  Liang  Liang  Xiaofeng  Xiao  Wenjiao  Zhu  Rixiang 《中国科学:地球科学(英文版)》2019,62(12):2005-2016
Numerous continents have rifted and drifted away from Gondwana to repeatedly open ocean basins over the past-500 millionyears.These Gondwana-derived continents drifted towards and collided with components of the Eurasian continent to successively close the preexisting oceans between the two.Plate tectonics satisfactorily describes the continental drift from Gondwana to Eurasia but does not define the geodynamic mechanism of continuously rifting to collisions of continents in the Tethy an Realm.After reappraisal of geological records of the rift,collision and subduction initiation from the surface and various geophysical observations from depth,we propose that Eurasia-directed subducting oceanic slabs would have driven Tethyan system in the Phanerozoic.The Eurasia-directed subduction would have dragged the passive Gondwana margin to rift and drift northwards,giving birth to new oceans since the Paleozoic.The closure of preexisting oceans between the Gondwana-derived continents and Eurasia led to continental collisions,which would have induced the initiation of oceanic subduction in the Tethyan Realm.Multiple episodic switches between collision-subduction-rift repeatedly led to the separation of continental fragments from Gondwana and dragged them to drift towards Eurasia.The final disappearance of Neo-Tethy s would have induced collision of the Gondwana-derived continents with the Eurasian continent,giving rise to the Cenozoic Alpine-Zagros-Himalayan collisional system.Therefore,the Eurasia-directed oceanic subduction would have acted as a 'one-way train' that successively transferred the ruptured Gondwana continental fragments in the south,into the terminal in the north.In this regard,the engine of this "Tethyan one-way train" is the negative buoyancy of subducting oceanic slabs.  相似文献   

6.
Summary Although active volcanic territories are not characterised by extreme high heat flow, yet terrestrial heat is one of the main, if not hte first cause of volcanic activities. About 94 per cent of the known active volcanoes are in connection with orogenic zones including ocean ridges, which mean that processes responsible for the evolution of the continents cause the overwhelming majority of volcanism.There stages of the evolution of the continental crust can be distinguished: 1.) Growth of the continental cores by differentiation, 2.) Existence of peripheral growing zones around the first core, 3.) Intergrowth of the existing continents.Volcanism, as well as seismicity are manifestations of the evolution of the crust which is caused by the development of heat sources in the mantle. The heat partly melt the upper mantle and induce slow plastic flow in connection of differentiation. The space, left empty by continental uplift is filled by the slow plastic inflow of mantle from the ocean. This slow redistribution of mantle and curstal rocks disturbs the stress field, the rocks fail along the strained zones and zones of fractures appear sometimes with volcanic activity.  相似文献   

7.
The average secular cooling rate of the Earth can be deduced from compositional variations of mantle melts through time and from rheological conditions at the onset of sub-solidus convection at the end of the initial magma ocean phase. The constraint that this places on the characteristics of mantle convection in the past are investigated using the global heat balance equation and a simple parameterization for the heat loss of the Earth. All heat loss parameterization schemes depend on a closure equation for the maximum age of oceanic plates. We use a scheme that accounts for the present-day distribution of heat flux at Earth's surface and that does not depend on any assumption about the dynamics of convection with rigid plates, which remain poorly understood. We show that heat supply to the base of continents and transient continental thermal regimes cannot be ignored. We find that the maximum sea floor age has not changed by large amounts over the last 3 Ga. Calculations lead to a maximum temperature at an age of about 3 Ga and cannot be extrapolated further back in time. By construction, these calculations are based on the present-day tectonic regime characterized by the subduction of large oceanic plates and hence indicate that this regime did not prevail until an age of about 3 Ga. According to this interpretation, the onset of rapid continental growth occurred when the current plate regime became stable.  相似文献   

8.
南海深部地球动力学特征及其演化机制   总被引:20,自引:2,他引:20       下载免费PDF全文
利用地热学、流变学和重力学方法,计算了南海岩石层温度结构、流变特征及地幔对流格局.南海莫霍面温度在600-1000℃之间.岩石层底界面温度在1150-1300℃之间,有效粘滞系数为1020-1021Pa·s,与冰期回弹资料确定的地幔粘度吻合,表明南海深部具备产生地幔热对流的物理条件.研究认为地幔物质由北西向南东方向的运移以及印澳-欧亚板块的碰撞,导致南海北部大陆边缘向洋扩张、离散和断裂解体.在向洋离散过程中,陆-洋岩石层底部地幔局部对流使中央海盆扩张和北部陆缘发生差异性块断运动.  相似文献   

9.
If wind-stress or a horizontal oceanic density gradient acts over an ocean basin with an adjacent continental shelf and slope, sea-surface slopes and currents are set up along the shelf and slope with a return flow in the ocean. The currents evolve from zero at blocked ends of the shelf and basin. Such evolution is essentially barotropic (even for baroclinic forcing) and is relevant to all flow adjustments after longshore changes of depth profile or forcing. The distance over which this evolution takes place is investigated analytically for simple geometries, and numerically for a range of shelf, slope and ocean widths, shelf/ocean depth ratios, frictional decay rates and oscillatory frequencies. A close correspondence is found with the decay distance (group velocity x decay time) for a lowest mode continental shelf wave, often exceeding 1000 km. This correspondence is used to interpret some published model calculations of shelf and slope currents or return flows resulting from wind-stress or alongshore pressure gradients.Where a slope current is evolving, coastal sea levels do not follow oceanic levels. Implications for coastal/oceanic level differences are discussed. Oceanic sea-level features of shorter scale than the above 1000 km (say) do not penetrate fully to the coast. However, coastal sea levels averaged around small islands without broad shelves well represent surrounding oceanic levels.  相似文献   

10.
A mathematical model was used to investigate the effect of glacially induced fluctuations in sea level on the evolution of wave‐cut shore platforms and erosional continental shelves during the Quaternary. The model used two deep‐water wave sets, which were used to calculate breaker height and depth, and the force of the waves at the waterline, according to the width and bottom roughness of the surf zone and the gradient of the submarine slope. The model also incorporated an erosional threshold related to the strength of the rocks, the number of hours each year in which the water level is at each intertidal elevation and the amount and persistence of the debris at the cliff foot. Most runs were made using a sea level model that consisted of 26 glacial cycles from 2 million to 0·9 million years ago, and nine, of approximately twice the amplitude and wavelength, in the last 0·9 million years. The model emphasized the dynamic association between the contemporary intertidal platform and the continental shelf. Both surfaces trend towards a state of static equilibrium under oscillating sea level conditions, when attenuated waves are unable to continue eroding the rock. If there has not been enough time to reduce the gradient of the shallower portions of the continental shelf, however, intertidal shore platforms can be in a temporary, though possibly long‐lasting, state of dynamic equilibrium. The model suggests that most platforms are, at least in part, inherited from one, or in many cases more, interglacial stages when sea level was similar to today's. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
Sequence stratigraphic studies consider relative change in sea level (as regulated by eustasy, local tectonics and sediment supply) as the main builder of the stratigraphic record. Eustasy has generally been considered as a consequence of the growth and decay of continental ice sheets that would explain large, rapid changes in sea level, even during periods of relative global climatic warmth. However, such a mechanism has become increasingly difficult to envision during times of extreme global warmth such as the Turonian, when the equator-to-pole temperature gradient was very low and the presence of polar ice seems improbable. This paper investigates the timing and extent of sea level falls during the late Cenomanian through Turonian, especially the largest of those events, sequence boundary KTu4, which occurred during the middle to late Turonian peak of the Cretaceous hot greenhouse climate. We conclude that the amplitude of the widespread third-order sea level fall in the middle Turonian that is centered at ~91.8 Ma varies at different locations depending on the influence of dynamic topography on local tectonics and regional climatic conditions. Ice volume variations seem unlikely as a mechanism for controlling sea level at this time. However, this causal factor cannot be ruled out completely since Antarctic highlands (if they existed in the Late Cretaceous) could sequester enough water as ice to cause eustatic falls. To ascertain this requires detailed tomographic imaging of Antarctica, followed by geodynamic modeling, to determine whether high plateaus could have existed to accumulate ephemeral ice sheets. Other mechanisms for sea level change, such as transference between ground water (a small amplitude shorter time scale effect) and the ocean and entrainment and release of water from the mantle to the oceanic reservoir (a potentially large amplitude and longer time scale process), are intriguing and need to be explored further to prove their efficacy at third-order time scales.  相似文献   

12.
Rifting of a continent in the Tethys ocean was associated with two forms of volcanism initially identified by Hynes (1972). An early light rare earth element (LREE)-enriched magma accompanied rifting of the continental crust and subsidence of a marginal carbonate platform. The early basalts are high K2O, nepheline-normative basalts, associated with silic igneous rocks, and carrying olivine pseudomorphs. A later or contemporaneous LREE-depleted magma is associated with the active formation of sea floor in a marginal embryo ocean basin. The ophiolite basalts are low K2O, hypersthene-normative basalts containing feldspar laths and pyroxene subhedra. Similar transitions or changes in extrusives are evident in present-day embryo oceans and at the edges of rifted continental margins which surrounded larger ocean basins. Genesis of the tholeiites can be related to 10–30% partial fusion of foliated mantle lherzolites a sample of which adheres to the base of the Othris ophiolite. The alkalic basalts require either a fractionation model, or a more LREE-enriched source perhaps similar to the Ataq lherzolites, since the “tholeiite source lherzolite” can only produce alkalic basalts at low degrees of melting.  相似文献   

13.
Right-side bias in both sea surface cooling and phytoplankton blooms is often observed in the wake of hurricanes in the Northern Hemisphere. This idealized hurricane modeling study uses a coupled biological-physical model to understand the underlying mechanisms behind hurricane-induced cooling and phytoplankton bloom asymmetry. Both a deep ocean case and a continental shelf sea case are considered and contrasted. Model analyses show that while right-side asymmetric mixing due to inertial oscillations and restratification from strong right-side recirculation cells contributes to bloom asymmetry in the open ocean, the well-mixed condition in the continental shelf sea inhibits formation of recirculation cells, and the convergence of water onto the shelf is a more important process for bloom asymmetry.  相似文献   

14.
Rifting along the mid-Atlantic ridge seems to have been accompanied by fissure eruptions which flooded the ocean bottom. Locally these plateau lavas rose above sea level and erosion revealed plutonic bodies emplaced within them. There is also some evidence of shallow magma chambers feeding surface volcanism. All these facts can be conveniently interpreted by assuming fractional melting of the upper mantle, at depths below about 50 km, and a pulsation of the pressure, produced by a varying gravitation, which seems capable of squeezing the molten fraction and of fracturing the solid crust above. Magma chambers can then be formed, probably by subterranean cauldron subsidence of Scottish type, they can leed surface volcanoes and will eventually solidify as plutonic bodies. Phase changes of eclogite, possibly present in the oceanic upper mantle, could also explain the uplift of island platforms.  相似文献   

15.
In this paper we review and update detection and attribution studies in sea level and its major contributors during the past decades. Tide gauge records reveal that the observed twentieth-century global and regional sea level rise is out of the bounds of its natural variability, evidencing thus a human fingerprint in the reported trends. The signal varies regionally, and it partly depends on the magnitude of the background variability. The human fingerprint is also manifested in the contributors of sea level for which observations are available, namely ocean thermal expansion and glaciers’ mass loss, which dominated the global sea level rise over the twentieth century. Attribution studies provide evidence that the trends in both components are clearly dominated by anthropogenic forcing over the second half of the twentieth century. In the earlier decades, there is a lack of observations hampering an improved attribution of causes to the observed sea level rise. At certain locations along the coast, the human influence is exacerbated by local coastal activities that induce land subsidence and increase the risk of sea level-related hazards.  相似文献   

16.
A global eddy-admitting ocean/sea-ice simulation driven over 1958–2004 by daily atmospheric forcing is used to evaluate spatial patterns of sea level change between 1993 and 2001. In the present study, no data assimilation is performed. The model is based on the Nucleus for European Models of the Ocean code at the 1/4° resolution, and the simulation was performed without data assimilation by the DRAKKAR project. We show that this simulation correctly reproduces the observed regional sea level trend patterns computed using satellite altimetry data over 1993–2001. Generally, we find that regional sea level change is best simulated in the tropical band and northern oceans, whereas the Southern Ocean is poorly simulated. We examine the respective contributions of steric and bottom pressure changes to the total regional sea level changes. For the steric component, we analyze separately the contributions of temperature and salinity changes as well as upper and lower ocean contributions. Generally, the model results show that most regional sea level changes arise from temperature changes in the upper 750 m of the ocean. However, contributions of salinity changes and deep steric changes can be locally important. We also propose a map of ocean bottom pressure changes. Finally, we assess the robustness of such a model by comparing this simulation with a second simulation performed by MERCATOR-Ocean based on the same core model, but differing by its short length of integration (1992–2001) and its surface forcing data set. The long simulation presents better performance over 1993–2001 than the short simulation, especially in the Southern Ocean where a long adjustment time seems to be needed. In memory of my little brother Jean-Eudes, whose thirst for science filled out the rich discussions we had about my investigations and his job as user-service provider for MERCATOR-Ocean.  相似文献   

17.
Ocean wave imaging mechanism by imaging radar   总被引:1,自引:1,他引:0  
Analytical representations of the high frequency spectra of ocean wave and its variation due to the variation of ocean surface current are derived from the wave-number spectrum balance equation. The ocean surface imaging formulation of real aperture radar (RAR) is given using electromagnetic wave backscattering theory of ocean surface and the modulations of ocean surface winds, currents and their variations to RAR are described. A general representation of the phase modulation induced by the ocean surface motion is derived according to standard synthetic aperture radar (SAR) imaging theory. The detectability of ocean current and sea bottom topography by imaging radar is discussed. The results constitute the theoretical basis for detecting ocean wave fields, ocean surface winds, ocean surface current fields, sea bottom topography, internal wave and so on.  相似文献   

18.
Meltwater from the Greenland Ice Sheet (GIS) has been a major contributor to sea level change in the recent past. Global and regional sea level variations caused by melting of the GIS are investigated with the finite element sea-ice ocean model (FESOM). We consider changes of local density (steric effects), mass inflow into the ocean, redistribution of mass, and gravitational effects. Five melting scenarios are simulated, where mass losses of 100, 200, 500, and 1000 Gt/yr are converted to a continuous volume flux that is homogeneously distributed along the coast of Greenland south of 75°N. In addition, a scenario of regional melt rates is calculated from daily ice melt characteristics. The global mean sea level modeled with FESOM increases by about 0.3 mm/yr if 100 Gt/yr of ice melts, which includes eustatic and steric sea level change. In the global mean the steric contribution is one order of magnitude smaller than the eustatic contribution. Regionally, especially in the North Atlantic, the steric contribution leads to strong deviations from the global mean sea level change. The modeled pattern mainly reflects the structure of temperature and salinity change in the upper ocean. Additionally, small steric variations occur due to local variability in the heat exchange between the atmosphere and the ocean. The mass loss has also affects on the gravitational attraction by the ice sheet, causing spatially varying sea level change mainly near the GIS, but also at greater distances. This effect is accounted for by using Green's functions.  相似文献   

19.
The rifted Eastern Continental Margin of India (ECMI) has evolved as a result of breakup of East Gondwanaland. Previous geophysical studies of the continental margin have not elucidated upon its volcanic nature. Magnetics plays a useful role in the study of continental margins, particularly in identifying the volcanic units. The aeromagnetic map of the offshore Mahanadi basin of ECMI displays a conspicuous linear anomaly along the continental shelf. A comprehensive study of the published aeromagnetic, marine magnetic and gravity data of the offshore Mahanadi basin reveals the existence of a seaward dipping volcanic unit in the offshore Mahanadi basin bordering the Hinge zone. This inference suggests that the ECMI is a volcanic rifted margin. The study further indicates the deepening of the basement towards the sea. In addition, the existing geological studies on the ECMI demarcated the probable limit of the continental crust by studying the basement detached tectonic style of the sedimentation in sub-surface configuration of the East coast basins of India. The probable continental crustal limit, the Hinge zone, and the inner edge of the presently inferred volcanic unit conform to one another spatially in the offshore Mahanadi region. These features characterize the inferred volcanic body as seaward dipping reflectors (SDRs) that usually occur at the rifted continental margins. The deepening of the basement towards the sea and the presence of the volcanic body on the continental margin are indicative of the transitional nature of the crust. It is generally accepted that Antarctica and India were juxtaposed before the breakup of Gondwanaland. But the microcontinents in the southern Indian Ocean are neglected in the reconstruction of Gondwanaland continents. The recent studies of the discovery of continental crust within the Elan Bank (EB) microcontinent show that the EB was contiguous with the East coast of India before the breakup of Gondwanaland. Moreover, it is reported that the upper igneous crust of the EB consists of a 2–3 km thick layer of accumulated lava flows originating from the Kerguelen hotspot. An estimate shows that the total volume of volcanic and plutonic component of the Elan Bank is about 0.3 million cubic kilometers. The present inference of a volcanic body from the offshore Mahanadi basin is in agreement with the above observations of the juxtaposition of EB with ECMI.  相似文献   

20.
海平面变化是全球气候系统变化的一个组成部分,是环境变化的重要指标,也会影响沿海区域及岛屿的生态环境甚至存亡.全球海平面变化由海水质量变化和比容海平面变化构成.海水质量变化主要是由于两极冰盖和高山区的冰川融化流入海洋所致;比容海平面变化是由海水的温度和盐度变化所引起的,其中温度变化是最主要的因素.本文介绍了海平面变化各种监测技术的发展过程,并对海平面变化的研究现状进行了总结.所有研究成果均表明,近100多年以来,全球海平面一直处于上升态势;近几十年以来,海平面呈现加快上升并且越来越快的趋势.目前仍然存在一些问题:人们还没有完全掌握海平面变化规律,对未来海平面变化预测有较大不确定性;深海缺乏实测数据;厄尔尼诺—南方涛动(ENSO)的变化规律以及对海平面的影响;GRACE陆地与海洋信号无法完全分离以及GRACE与GRACE-FO之间的一致性分析等.这些问题都需要进一步开展研究.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号