首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Independent of the possible sources (solar activity, geomagnetic activity, greenhouse effect, etc.) of a global change in the upper atmosphere, it is the sign of a long-term trend of temperature that might reveal the cause of a global change.Long-term change of temperature in the F region of the ionosphere has been studied and is assumed to be expressed in terms of thickness of the bottomside F2 layer characterized by the difference between height of the maximum electron density of the F2 layer hmF2 and altitude of the lower boundary of the F region represented by h′F. Using the difference of two ionospheric parameters has the advantage that it reduces the effect of changes resulting from alteration of equipment and scaling personnel. In this study, in summer only night values of the difference hmF2−h′F and in winter both day and night values have been taken into account considering that h′F might indicate the lower boundary of the F region in these periods. The study of the behaviour of hmF2−h′F taking separately the stations and determining yearly the mean measure (trend) of the variation of hmF2−h′F with solar and geomagnetic activities found that this difference increases significantly with enhanced solar activity, but trends of the solar activity effect exerted on this difference themselves do not practically change with increasing sunspot number. Further, hmF2−h′F decreases only insignificantly with growing geomagnetic activity. Trends of the geomagnetic activity effect related to hmF2−h′F change only insignificantly with increasing Ap; however, trends of the geomagnetic activity effect decreased with increasing latitude.As a result of this investigation it has been found that hmF2−h′F regarded as thickness of the bottomside F2 layer shows an effect of the change of solar activity during the last three solar cycles, indicating temperature change in the upper atmosphere to be expected on the basis of changing solar activity. Furthermore, though a long-term variation of solar activity considering only years around solar activity minima is relatively small, the difference hmF2−h′F indicates a trend opposing the change of solar activity; that is, it decreases slightly during the first three 20, 21, 22 solar cycle minima (1964–1986), but decreases more abruptly according to the change of solar activity towards the minimum of solar cycle 23 (1986–1996), thus also indicating variation of temperature in the F region. However, this variation cannot be explained by the change of solar and geomagnetic activities alone, but assumes some other source (e.g. greenhouse gases) too.  相似文献   

2.
Scientific attention has recently been focused on the coupling of the earth’s upper atmosphere and ionosphere. In the present work, we review the advances in this field, emphasizing the studies and contributions of Chinese scholars. This work first introduces new developments in the observation instruments of the upper atmosphere. Two kinds of instruments are involved: optical instruments (lidars, FP interferometers and all-sky airglow imagers) and radio instruments (MST radars and all-sky meteor radars). Based on the data from these instruments and satellites, the researches on climatology and wave disturbances in the upper atmosphere are then introduced. The studies on both the sporadic sodium layer and sporadic E-layer are presented as the main works concerning the coupling of the upper atmosphere and the low ionosphere. We then review the investigations on the ionospheric longitudinal structure and the causative atmospheric non-migrating tide as the main progress of the coupling between the atmosphere and the ionospheric F2-region. Regarding the ionosphere-thermosphere coupling, we introduce studies on the equatorial thermospheric anomaly, as well as the influence of the thermospheric winds and gravity waves to the ionospheric F2-region. Chinese scholars have made much advancement on the coupling of the ionosphere and upper atmosphere, including the observation instruments, data precession, and modeling, as well as the mechanism analysis.  相似文献   

3.
A brief review of the current state of studies of long-term trends in the middle and upper atmosphere and ionosphere is presented. It is shown that the present trends in the density and temperature of the upper atmosphere and parameters of the ionospheric layers may lead to changes in the aforementioned spheres. It would be necessary to take into account these trends in applied problems related to planning space vehicle orbits, propagation of radio waves, measurements at low-orbiting satellites, and so on. It is emphasized that the Helio–Geophysical Service of the State Committee of Hydrometeorology, which supplies customers with information on the state of the upper atmosphere, ionosphere, and near-Earth space, should develop information products related to possible changes in atmospheric and ionospheric parameters caused by the presence of the long-term trends.  相似文献   

4.
Within the global context, Antarctica has a key role to play in understanding long-term change in the upper atmosphere, both because of its isolation from the rest of the world and because of its unique geophysical attributes. Antarctic upper atmosphere data can provide global change observations regarding the mesosphere, thermosphere, ionosphere, plasmasphere and magnetosphere. It will not only provide trend estimates but, just as importantly, it will define the background variability which exists in the upper atmosphere and against which these trends must be resolved. Upper atmospheric change can be driven both from within the Earth's near environment primarily through changing atmospheric composition, dynamics or geomagnetic field, or it can be driven externally, predominantly by the Sun. Recent observations are discussed in the light of increasing interest in global change issues and sun-weather relationships.  相似文献   

5.
A noctilucent cloud is seen at a particular time from a specified place. The journey of the cloud particles from nucleation to observation can be calculated by using a simple model of growth and taking account of the fall speed of the cloud particles. Cloud particles can be backtracked by bringing together growth and fall speed equations and a model of mesospheric winds to find where the particles of a cloud seen at a particular time and place have originated. The wind model that is used here suggests that there is a distinct outer edge to the summertime polar circulation pattern in which water vapour is being carried up from the lower mesosphere to the mesopause. The change in latitude of this outer edge during the summer season may well account for the observed seasonal change in occurrence of mesospheric clouds. Polar mesospheric clouds cause a drying of the upper mesosphere. It is suggested here that diffusion of water vapour dumped at the level of polar mesospheric clouds will take an appreciable time to carry water vapour back up to the mesopause. In consequence, there will be a significant separation between the observed location of a noctilucent cloud and its precursor polar mesospheric cloud.  相似文献   

6.
The current views on long-term changes in parameters (trends) in the upper atmosphere and ionosphere are considered. The concept of cooling and contraction of the middle and upper atmosphere due to the increase in the amount of greenhouse gases in the atmosphere is described.  相似文献   

7.
The Earth's magnetic field presents long-term variations with changes in strength and orientation. Particularly, changes in the dip angle (I) and, consequently, in the sin(I)cos(I) factor, affect the thermospheric neutral winds that move the conducting plasma of the ionosphere. In this way, a lowering or lifting of the F2-peak (hmF2) is induced together with changes in foF2, depending on season, time and location. A simple theoretical approximation, developed in a previous work, is extended to a worldwide latitude–longitude grid to assess hmF2 and foF2 trends due to Earth's magnetic field secular variations. Compared to the greenhouse gases effects over the ionosphere, the Earth's magnetic field may be able to produce stronger trends which vary with season, time and location. However, to elucidate the origin of F2-region trends, long-term variations in the three possible known mechanisms should be considered altogether—greenhouse gases, geomagnetic activity and Earth's magnetic field.  相似文献   

8.
The presence and persistence of an 18-day quasi-periodic oscillation in the ionospheric electron density variations were studied. The data of lower ionosphere (radio-wave absorption at equivalent frequency near 1 MHz), middle and upper ionosphere (critical frequencies f0E and f0F2) for the period 1970–1990 have been used in the analysis. Also, solar and geomagnetic activity data (the sunspot numbers Rz and solar radio flux F10.7 cm, and aN index respectively) were used to compare the time variations of the ionospheric with the solar and geomagnetic activity data. Periodogram, complex demodulation, auto- and cross-correlation analysis have been used. It was found that 18-day quasi-periodic oscillation exists and persists in the temporal variations of the ionospheric parameters under study with high level of correlation and mean period of 18–19 days. The time variation of the amplitude of the 18-day quasi-periodic oscillation in the ionosphere seems to be modulated by the long-term solar cycle variations. Such oscillations exist in some solar and geomagnetic parameters and in the planetary wave activity of the middle atmosphere. The high similarities in the amplitude modulation, long-term amplitude variation, period range between the oscillation of investigated parameters and the global activity of oscillation suggests a possible solar influence on the 18-day quasi-periodic oscillation in the ionosphere.  相似文献   

9.
Strong VHF radar echoes have been observed not only during summer months at polar latitudes (polar mesosphere summer echoes, PMSE) but also at middle latitudes (mesosphere summer echoes, MSE). These echoes are closely connected with small ice particles, thus containing information about mesospheric temperature and water vapour content. But the (P)MSE also depend on the ionisation due to solar wave radiation and precipitating high energetic particles. Observations with VHF radars at Andenes (69.3°N; 16.0°E) since 1994 and at Kühlungsborn (54.6°N; 11.8°E) since 1998 are used for investigations of the solar and geomagnetic control of the (P)MSE as well as of possible long-term changes. The (P)MSE are positively correlated with the solar Lyman α radiation and the geomagnetic activity and have slightly positive trends. Due to the limited measuring period, the significance levels of the detected (P)MSE trends are small. Positive trends in noctilucent clouds (NLC) and polar mesospheric clouds (PMC) are in general agreement with (P)MSE trends.  相似文献   

10.
An Overview of Long-Term Trends in the Lower Ionosphere Below 120 km   总被引:2,自引:0,他引:2  
The increasing concentration of greenhouse gases in the atmosphere is expectedalso to modify the mesosphere and lower thermosphere (MLT region). However,the greenhouse cooling – instead of heating – at these heights is revealed by modelsand generally confirmed by observations. This should more or less affect variousionospheric parameters at these heights. The spatial and temporal structure oftemperature trends in the MLT region is quite complex and, therefore, such structureshould occur for trends in the lower ionosphere as well. In the lower part of theionosphere below about 90 km, the rocket measurements of electron density, theindirect phase reflection height measurements and the A3 radio wave absorptionmeasurements reveal trends corresponding to cooling and shrinking of the mesosphere,while riometric measurements of cosmic noise absorption provide inconclusive results.The radio wave absorption and rocket electron density measurements clearly display asubstantial dependence of trends on height. Ionosonde data show that there is amodel-expected trend in the maximum electron concentration of the E region ionosphere;foE is slightly increasing. On the other hand, the height of the normal E layer, h'E, isslightly decreasing. The nighttime LF radio wave reflection height measurements near95 km support an idea of increasing electron density. However, rather scarce rocketmeasurements display a negative trend in electron density at 90–120 km. The role ofthe solar cycle and other longer-term variability of natural origin in the determinationof observational trends must not be neglected. In spite of the general qualitativeagreement with model expectations, there is still some controversy between variousobservational trend results (hopefully, apparent rather than real), which needs to beclarified.  相似文献   

11.
The results of numerical experiments on the modeling of thermospheric and ionospheric disturbances under conditions of sudden stratospheric warming are presented to study the possible mechanisms of such disturbances. Local disturbances caused by a planetary wave with zonal wave number s = 1 and internal gravity waves (IGWs) propagating from the disturbed region in the stratosphere are taken into account as sources of disturbances. It is shown that the inclusion of an additional source of thermospheric disturbances caused by mesospheric variations of atmospheric parameters with IGW periods over the region of sudden stratospheric warming leads to significant changes in the parameters of the thermosphere and ionosphere, including a change in the global structure of the distributions of the gas components of the thermosphere and a shift in maximum concentrations of atomic oxygen to low latitudes of the Southern Hemisphere; there is an increase in the mean values, the diurnal and semidiurnal variations of the ion concentration in the F region of the ionosphere. These features of changes in the parameters of the thermosphere and ionosphere occurred with insignificant disturbances of tidal variations in the thermosphere.  相似文献   

12.
Bremer and Berger (J. Atmos. Solar Terr. Phys. 64 (2002) 805) applied a correction for trends in the NO concentration and αeff in the interpretation of trends in the low frequency (LF) phase height measurements and obtained results less consistent with model simulations as well as the observed trends in mesospheric temperatures. The correction is shown to be too large most probably due to the application of inappropriate trends in αeff of Chakrabarty (Adv. Space Res. 20 (1997) 2117), which yield a trend in electron density opposite to that which is observed. The discrepancy between the observational data and model-simulated trends of Bremer and Berger (J. Atoms. Solar. Terr. Phys. 64 (2002) 805) in the LF phase heights can be largely removed. Even more important, the trends in mesospheric temperatures inferred by Bremer and Berger (J. Atmos. Solar Terr. Phys. 64 (2002) 805) from trends in the LF phase heights without the inappropriate correction agree well with the results of analysis of a global set of results on trends in the mesospheric temperatures by Beig et al. (Rev. Geophys. 41 (2003) 1015).  相似文献   

13.
Results of studying the ionospheric response to solar flares, obtained based on the incoherent scatter radar observations of the GPS signals and as a result of the model simulations, are presented. The method, based on the effect of partial “shadowing” of the atmosphere by the globe, has been used to analyze the GPS data. This method made it possible to estimate the value of a change in the electron content in the upper ionosphere during the solar flare of July 14, 2000. It has been shown that a flare can cause a decrease in the electron content at heights of the upper ionosphere (h > 300 km) according to the GPS data. Similar effects in the formation of a negative disturbance in the ionospheric F region were also observed during the solar flares of May 21 and 23, 1967, at the Arecibo incoherent scatter radar. The mechanism by which negative disturbances are formed in the upper ionosphere during solar flares has been studied based on the theoretical model of the ionosphere-plasmasphere coupling. It has been shown that an intense ejection of O+ ions into the above located plasmasphere under the action of a sharp increase in the ion production rate and the thermal expansion of the ionospheric plasma cause the formation of a negative disturbance in the electron concentration in the upper ionosphere.  相似文献   

14.
Summary The nighttime LF radio wave absorption in the lower ionosphere measured at two frequencies in central Europe over 1963–1985 is used to infer planetary wave activity and its long-term trend in the upper middle atmosphere (∼90–100 km). The observed positive trend is roughly consistent with results based on daytime absorption. Nighttime results are less pronounced and less statistically significant probably due to perturbing effects of geomagnetic activity. The observed trends, which are probably of anthropogenic origin, are together with the daytime results [3,4] the first evidence of long-term trends in planetary wave activity in the upper middle atmosphere.  相似文献   

15.
Equatorial and low latitude ionosphere during intense geomagnetic storms   总被引:1,自引:0,他引:1  
An investigation is made in order to analyse the role of neutral gas composition in the equatorial and low latitude ionosphere during intense geomagnetic storms. To this end data taken by the Dynamic Explorer 2 satellite at 280–300 km (molecular nitrogen N2 and atomic oxygen O concentrations, electron density and vertical plasma drifts) are used. The sudden commencements of the events considered occurred at 11:38 UT on March 1, 1982, 18:41 UT on November 20, 1982 and 16:14 UT on February 4, 1983. Vertical plasma drifts are the most important contributor to the initial storm time response of the equatorial F region. Neutral composition changes (expressed as an increase in the molecular species, mainly N2) possibly play a predominant role in the equatorial and low latitude (10–20°) decreases of electron density at heights near F2-region maximum during the main and recovery phases of intense geomagnetic storms. Delayed increases of electron density observed at daytime during the recovery phase may be also attributed to increases in atomic oxygen. At low latitudes possibly a combined effect of O increase and upward plasma drift due to enhanced equatorward winds is the responsible mechanism for the maintenance of enhanced electron density values.  相似文献   

16.
News from the Lower Ionosphere: A Review of Recent Developments   总被引:1,自引:1,他引:0  
Current knowledge concerning the lower ionosphere (D- and E-region) is reviewed with an emphasis on new aspects of empirical results. Starting with an overview of experimental techniques and corresponding data bases, both regarding charged as well as the most relevant neutral constituents of this altitude range, the ionospheric variability is discussed both concerning regular (e.g. diurnal and seasonal) as well as irregular variations (e.g. driven by the variability of nitric oxide). We then turn to ‘new players’ in the lower ionosphere, i.e. charged aerosol particles such as mesospheric ice particles in noctilucent clouds or polar mesospheric summer echoes and meteor smoke particles originating from ablated meteoric matter. These species have received considerable attention in recent years, in part because it is speculated that observations of their properties might be useful for the detection of climate change signals. The available experimental data base regarding these species is reviewed and we show that there is now compelling evidence for the ubiquitous presence of these very heavy charge carriers throughout the lower ionosphere. While many fundamental details regarding these charged species are not yet completely understood, this emphasizes that charged aerosol particles may not be neglected in a comprehensive treatment of the lower ionospheric charge balance and related phenomena. Finally, we close with suggestions for future research.  相似文献   

17.
Narrow jets of rapid westward ion drifts were registered near the plasmapause projection at the F-region altitudes on the Cosmoc-184 satellite and were called “a polarization jet.” In this work, the effect of this polarization jet on the ionospheric structure has been studied, using a three-dimensional model of the high-latitude ionosphere, when strong local magnetospheric electric fields were originated. The calculations indicated that a narrow trough in the latitudinal variations in the electron density at the F-region maximum was formed in the zone where the electric field was switched on. This trough was more pronounced in the early evening hours, when the electron background density was still high, and was less distinct at low back-ground levels during premidnight hours. A comparison of the calculations and experimental data indicated that they were in good agreement with one another, which made it possible to state that the polarization jet was the main mechanism by which narrow electron density troughs were formed in the subauroral ionosphere.  相似文献   

18.
Dead Sea waters are moderately enriched in18O; the degree of enrichment constitutes a balance between the dilution by freshwater influx and the isotope fractionation which accompanies evaporative water loss and vapour exchange with the atmospheric moisture. Modelling of the seasonal cycle and long-term trends of δ18O, in response to the changes in the environmental parameters, shows that the major control is exercised by the salinity of the surface waters, through its effect on the vapour pressure gradient between the lake's surface and the atmosphere; the (steady state) isotopic composition of the more saline brines tends towards less enriched18O values. This fact can explain the relatively high δ18O levels encountered in the Lisan formation, which was deposited from Lake Lisan, —the less saline Pleistocene precursor of the Dead Sea.  相似文献   

19.
Summary The nighttime and sunset LF radio wave absorption measured at Nagycenk, western Hungary over 1967–1991 is used to infer planetary wave activity and its long-term trend in the upper middle atmosphere (85 – 100 km). The very moderate positive and mostly statistically insignificant trends are consistent with the pattern provided by previous analyses of various day- and night-time absorption measurements. The trends could be of anthropogenic origin.  相似文献   

20.
The seasonal effects in the thermosphere and ionosphere responses to the precipitating electron flux and field-aligned current variations, of the order of an hour in duration, in the summer and winter cusp regions have been investigated using the global numerical model of the Earths upper atmosphere. Two variants of the calculations have been performed both for the IMF By < 0. In the first variant, the model input data for the summer and winter precipitating fluxes and field-aligned currents have been taken as geomagnetically symmetric and equal to those used earlier in the calculations for the equinoctial conditions. It has been found that both ionospheric and thermospheric disturbances are more intensive in the winter cusp region due to the lower conductivity of the winter polar cap ionosphere and correspondingly larger electric field variations leading to the larger Joule heating effects in the ion and neutral gas temperature, ion drag effects in the thermospheric winds and ion drift effects in the F2-region electron concentration. In the second variant, the calculations have been performed for the events of 28–29 January, 1992 when precipitations were weaker but the magnetospheric convection was stronger than in the first variant. Geomagnetically asymmetric input data for the summer and winter precipitating fluxes and field-aligned currents have been taken from the patterns derived by combining data obtained from the satellite, radar and ground magnetometer observations for these events. Calculated patterns of the ionospheric convection and thermospheric circulation have been compared with observations and it has been established that calculated patterns of the ionospheric convection for both winter and summer hemispheres are in a good agreement with the observations. Calculated patterns of the thermospheric circulation are in a good agreement with the average circulation for the Southern (summer) Hemisphere obtained from DE-2 data for IMF By < 0 but for the Northern (winter) Hemisphere there is a disagreement at high latitudes in the afternoon sector of the cusp region. At the same time, the model results for this sector agree with other DE-2 data and with the ground-based FPI data. All ionospheric and thermospheric disturbances in the second variant of the calculations are more intensive in the winter cusp region in comparison with the summer one and this seasonal difference is larger than in the first variant of the calculations, especially in the electron density and all temperature variations. The means that the seasonal effects in the cusp region are stronger in the thermospheric and ionospheric responses to the FAC variations than to the precipitation disturbances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号