首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
A numerical model of current F-region theory is use to calculate the diurnal variation of the mid-latitude ionospheric F-region over Millstone Hill on 23–24 March 1970, during quiet geomagnetic conditions. From the solar EUV flux, the model calculates at each altitude and time step primary photoelectron spectra and ionization rates of various ion species. The photoelectron transport equation is solved for the secondary ionization rates, photoelectron spectra, and various airglow excitation rates. Five ion continuity equations that include the effects of transport by diffusion, magnetospheric-ionospheric plasma transport, electric fields, and neutral winds are solved for the ion composition and electron density. The electron and ion temperatures are also calculated using the heating rates determined from chemical reactions, photoelectron collisions, and magnetospheric-ionospheric energy transport. The calculations are performed for a diurnal cycle considering a stationary field tube co-rotating with the Earth; only the vertical plasma drift caused by electric fields perpendicular to the geomagnetic field line is allowed but not the horizontal drift. The boundary conditions used in the model are determined from the incoherent scatter radar measurements of Te, Ti and O+ flux at 800km over Millstone Hill (Evans, 1971a). The component of the neutral thermospheric winds along the geomagnetic field has an important influence on the overall ionospheric structure. It is determined from a separate dynamic model of the neutral thermosphere, using incoherent scatter radar measurements.The calculated diurnal variation of the ionospheric structure agrees well with the values measured by the incoherent scatter radar when certain restrictions are placed on the solar EUV flux and model neutral atmospheric compositions. Namely, the solar EUV fluxes of Hinteregger (1970) are doubled and an atomic oxygen concentration of at least 1011cm3 at 120 km is required for the neutral model atmosphere. Calculations also show that the topside thermal structure of the ionosphere is primarily maintained by a flow of heat from the magnetosphere and the night-time F2-region is maintained in part by neutral winds, diffusion, electric fields, and plasma flow from the magnetosphere. The problem of maintaining the calculated night-time ionosphere at the observed values is also discussed.  相似文献   

2.
An approximate form of the Boltzmann equation has been used to obtain local ionization rates due to the absorption of galactic cosmic rays in the Jovian atmosphere. It is shown that the muon flux component of the cosmic ray-induced cascade may be especially importannt in ionizing the atmosphere at levels where the total number density exceeds 1019 cm?3 (well below the ionospheric layers produced by solar euv). A model containing both positive and negative ion reactions has been employed to compute equilibrium electron and ion number densities. Peak electron number densities on the order of 103 cm?3 may be expected even at relatively low magnetic latitudes. The dominant positive ions are NH4+ and CnHm+ cluster ions, with n ? 2; it is suggested that the absorption of galactic cosmic ray energy at such relatively high pressures in the Jovian atmosphere (M ? 1018to 1020cm?3) and the subsequent chemical reactions may be instrumental in the local formation of complex hydrocarbons.  相似文献   

3.
A major loss process for the metastable species, O+(2D), in the thermosphere is quenching by electrons
O+(2D) + e → O+(4S) + e
.To date no laboratory measurement exists for the rate coefficient of this reaction. Thermospheric models involving this process have thus depended on a theoretically calculated value for the rate coefficient and its variation with electron temperature. Earlier studies of the O+(2D) ion based on the Atmosphere Explorer data gathered near solar minimum, could not quantify this process. However, Atmosphere Explorer measurements made during 1978 exhibit electron densities that are significantly enhanced over those occurring in 1974, due to the large increases that have occurred in the solar extreme ultraviolet flux. Under such conditions, for altitudes ? 280 km, the electron quenching process becomes the major loss mechanism for O+(2D), and the chemistry of the N+2 ion, from which the O+(2D) density is deduced, simplifies to well determined processes. We are thus able to use the in situ satellite measurements made during 1978 to derive the electron quenching rate coefficient. The results confirm the absolute magnitude of the theoretical calculation of the rate coefficient, given by the analytical expression k(Te) = 7.8 × 10?8 (Te/300)?0.5cm3s?1. There is an indication of a stronger temperature dependence, but the agreement is within the error of measurement.  相似文献   

4.
A sounding rocket was flown during the predawn on 17 January, 1976 from Uchinoura, Japan, to measure directly the behaviour of the conjugate photoelectrons at magnetically low latitudes. On board the rocket were an electron energy analyzer, 630 nm airglow photometer, and plasma probes to measure electron density and temperature. The incoming flux of the photoelectrons was measured in the altitude range between 210 and 340 km. The differential flux at the top of the atmosphere was determined to be F = (1.3 ± 0.4) × 1011exp[?E(eV)12] electron · m?2 · sr?1 · s?1 in the energy range 10 ? E ? 50 eV. The emission rate of the 630 nm airglow was observed in the altitude range between 90 and 360 km. The apparent emission rate observed at 80 km was 32 ± 5 R. From a theoretical calculation of the optical excitation rate using the observed electron flux data along with a model distribution of atomic oxygen, it was estimated that more than 65% of the emission could be produced by direct impact of the photoelectrons with atomic oxygen in the thermosphere between 200 and 360 km. Using the observed electron density and the model distribution of oxygen molecules the residual of the emission was ascribed to the excitation of O(1D) through dissociative recombination, O2++eO1 + O7. The direct collisional excitation by ambient electrons is estimated to be negligibly small at the level of observed electron temperature.  相似文献   

5.
6.
The space erosion of stony meteorites has been determined to be 650μm 106y?1, while that of iron meteorites has been determined to be 22 μm 106y?1. The erosion rates are based on flux and size distributions of small particles in the solar system, meteoroid orbitals and the relation, determined by laboratory experiments, between excavated volume due to a collision and the size and velocity of the impacting small particle. Neither multiple collision or space erosion can explain the difference in cosmic ray exposure ages based on 40K and those based on 36Cl, 39Ar and10Be. It is concluded that there is a long term cosmic ray variation.  相似文献   

7.
Numerical solutions of the Fokker-Planck equation governing the transport of solar protons are obtained using the Crank-Nicholson technique with the diffusion coefficient represented by Kr=K0rb where r is radial distance from the Sun and b can take on positive or negative values. As b ranges from +1 to ?3, the time to the observation of peak flux decreases by a factor of 5 for 1 MeV protons when VK0 = 3 AUb?1 where V is the solar wind speed. The time to peak flux is found to be very insensitive to assumptions concerning the solar and outer scattering boundary conditions and the presence of exponential time decay in the flux does not depend on the existence of an outer boundary. At VK0? 15 AUb?1, 1 MeV particles come from the Sun by an almost entirely convective process and suffer large adiabatic deceleration at b?0 but for b=+1, large Fermi acceleration is possible at all reasonable VK0 values. Implications of this result for the calculation and measurement of particle diffusion coefficients is discussed. At b?0, the pure diffusion approximation to transport overestimates by a factor 2 or more the time to peak flux but as b becomes more negative, the additional effects of convection and energy loss become less important.  相似文献   

8.
Simultaneous measurements of the 6300 Å airglow intensity, the electron density profile, and F-region ion temperatures and vertical ion velocities taken at the Arecibo Observatory in March 1971 are utilized in the height integrated continuity equation to extract the number of photons'of 6300 Å emitted per recombination. After accounting for quenching of O(1D) and the electrons lost via NO+ recombination, the efficiency of O(1D) production by the dissociative recombination of O2+ is determined to be 0.6 ± 0.2 including cascading from the O(1S) state. The uncertainty includes both random measurement errors and estimates of possible systematic errors.  相似文献   

9.
Numerical solutions of the Fokker-Planck equation governing the transport of solar protons are obtained in three dimensions (time t, radial distance r, energy T) with the diffusion coefficient represented by κ = κ0rbTa. The October 4, 1968, solar flare particle event is re-examined, and the rise and decay of the proton flux profiles for > 10, ;30 and > 60 MeV particles can be reasonably well reproduced with an instantaneous injection and a distant (10 AU) free escape boundary. The best fit is achieved with a diffusion coefficient κ = 1.4 × 1020 r0.5 T0.75cm2sec where r is in AU and T in MeV.  相似文献   

10.
Branching ratios σ(O03PO+2D0)σ(O03PO+4S0) and σ(O03PO+2P0)σ (O03P4S0) are calculated at 584 Å and 304 A employing the close-coupling approximation to compute the photoionization cross section values. The coupled channels include the states dominated by the ground configuration 1s22s2p3 of O+and the next excited configuration ls22s2p4. It is found that the partial c section σ(2D0) decreases more rapidly than σ(2P0), and at the lower wavelength 304 Å, the ratio σ(2D0)σ(4S0) < σ(2P0)σ(4S0). Present results at 304 Å differ considerably from previous work.  相似文献   

11.
New ion cyclotron whistlers which have the asymptotic frequency of one half the local proton gyrofrequency, Gp2, and the minimum (or equatorial) proton gyrofrequency, Gpm, along the geomagnetic field line passing through the satellite have been found in the low-latitude topside ionosphere from the spectrum analysis of ISIS VLF electric field data received at Kashima, Japan. Ion cyclotron whistlers with asymptotic frequency of Gpm or Gpm2 are observed only in the region of Bm >B2 or rarely Bm >B4, where B is the local magnetic field and Bm is the mini magnetic field along the geomagnetic field line passing through the satellite.The particles with one half the proton gyrofrequency may be the deuteron or alpha particle. Theoretical spectrograms of the electron whistlers (R-mode) and the ion cyclotron whistlers (L-mode) propagating along the geomagnetic field lines are computed for the appropriate distributions of the electron density and the ionic composition, and compared with the observed spectrograms.The result shows that the ion cyclotron whistler with the asymptotic frequency of Gp2 is the deuteron whistler, and that the ion cyclotron whistlers with the asymptotic frequency of Gpm or Gpm2 are caused by the trans-equatorial propagation of the proton or deuteron whistler from the other hemisphere.  相似文献   

12.
Radiative recombination of N and O provides a significant source for auroral emission in the γ and δ bands of NO with selective population of vibrational levels in the A2Σ+ and C2Π states. This mechanism may account for emissions detected near 2150 Å. Models are derived for the auroral ionosphere and include estimates for the concentrations of N and NO. The concentration of NO is estimated to have a value of about 108 cm?1 near 140 km in an IBC III aurora. The corresponding density for N is about 5 × 107cm?3 and the concentration ratio NO+O2+ has a value of about 5.5.  相似文献   

13.
The influence of aerodynamic drag and the geopotential on the motion of the satellite 1964-52B is considered. A model of the atmosphere is adopted that allows for oblateness, and in which the density behaviour approximates to the observed diurnal variation. A differential equation governing the variation of the eccentricity, e, combining the effects of air drag with those of the Earth's gravitational field is given. This is solved numerically using as initial conditions 310 computed orbits of 1964-52B.The observed values of eccentricity are modified by the removal of perturbations due to luni-solar attraction, solid Earth and ocean tides, solar radiation pressure and low-order long-periodic tesseral harmonic perturbations. The method of removal of these effects is given in some detail. The behaviour of the orbital eccentricity predicted by the numerical solution is compared with the modified observed eccentricity to obtain values of atmospheric parameters at heights between 310 and 430 km. The daytime maximum of air density is found to be at 14.5 hours local time. Analysis of the eccentricity near 15th order resonance with the geopotential yielded values of four lumped geopotential harmonics of order 15, namely: 109C1,015 = ?78.8 ± 7.0, 109S1,015 = ?69.4 ± 5.3, 109C?1,215 = ?41.6 ± 3.5109S?1,215 = ?26.1 ± 8.9, at inclination 98.68°.  相似文献   

14.
Previous work has parameterized the pitch angle dependence of the charge-exchange lifetime τ of ring current ions in terms of γ, the power of the cosine of the mirror latitude λm of the particles, such that τ(λm)τ(0) ≌cosγ λm at given L. Using the atomic hydrogen density model of Johnson and Fish, previous authors have suggested values of γ = 5 or 6. We here evaluate γ as a function of λm and L using the more recent Chamberlain density models, and show that γ = 3?4 is more appropriate over most of the pitch angle and L range. Consequently, ion distributions in the ring current decay phase are expected to become rather less anisotropic in pitch angle due to chargeexchange than previously believed. We have also investigated the use of several other simple approximate analytic forms for τ(λm)τ(0), one of which gives far better agreement with the numerical results than the cosγ λm, variation, and should hence be used in future studies.  相似文献   

15.
An attempt has been made to estimate the east-west component (Ew) of the magnetospheric equatorial electric field near L = 1.12 during a magnetic storm period from the whistlers observed at our low latitude ground station, Nainital (geomag.lat. 19°1'N), on March 25, 1971 in the 0130–0500 IST sector. The method of measuring Ew from the observed cross L-motions of whistler ducts within the plasmasphere, indicated by changes in nose frequency of whistlers, has been outlined. The nose frequencies of non-nose whistlers under consideration have been deduced from Dowden-Allcock linear Q-technique. The variation of (?n)23 with local time has been shown, the slope of which can be directly related to the convection electric field. The estimated equatorial electric field at L? 1.12 is in the range 0.1–0.5 mV m?1 (in the 0130–0500 IST sector) during a storm period, which is in agreement with the results reported by earlier workers. The departure from a dipole field and the contribution of an induced electric field from the temporal changes have been discussed. The importance of an electric field study has been indicated.  相似文献   

16.
Measurements of N2+ and supporting data made on the Atmosphere Explorer-C satellite in the ionosphere are used to study the charge exchange process
O+(2D)+N2kN+2+O
The equality k = (5 ± 1.7) × 10?10cm3s?1. This value lies close to the lower limit of experimental uncertainty of the rate coefficient determined in the laboratory. We have also investigated atomic oxygen quenching of O+(2D) and find that the rate coefficient is 2 × 10?11 cm3s?1 to within approximately a factor of two.  相似文献   

17.
Models of the collapse of a protostellar cloud and the formation of the solar nebula reveal that the size of the nebula produced will be the larger of RCF ≡ J2/k2GM3and RV ≡ (GMv/2cc3)12 (where J, M, and cs are the total angular momentum, total mass, and sound speed of the protosetellar material; G is the gravitational constant; k is a number of order unity; and v is the effective viscosity in the nebula). From this result it can be deduced that low-mass nebulas are produced if P ≡ (RV/RCF)2 ? 1; “massive” nebulas result if P ? 1. Gravitational instabilities are expected to be important for the evolution of P ? 1 nebulas. The value of J distinguishes most current models of the solar nebula, since PJ?4. Analytic expressions for the surface density, nebular mass flux, and photospheric temperature distributions during the formation stage are presented for some simple models that illustrate the general properties of growing protostellar disks. It does not yet seem possible to rule out either P ? 1 or P < 1 for the solar nebula, but observed or possible heterogeneities in composition and angular-momentum orientation favor P < 1 models.  相似文献   

18.
The part that the energy transfer reaction N2(A3u+) + O(3P) → N2(X1g+) + O(1S) plays in the excitation of the auroral green line has been investigated. The contribution is estimated to be 40 per cent in this case, containing pulsating aurora in class IBC 1. Due to greater quenching of the A3u+ state, the centroid of the VK emission is displaced 10 km upwards of the green line height, which is centred at 110 km.  相似文献   

19.
J.L. Fox 《Icarus》1982,51(2):248-260
Reactions of metastable species are important in determining the densities of minor ions in the Venusian ionosphere. Calculations are carried out in which the coupled continuity and momentum equations are solved for twelve ions and four neutral species in the dayside ionosphere, including O+(2D), O+(2P), N(2D), and N(2P). Altitude profiles of these metastable species are presented. Their reactions are shown to be a significant source of several minor ions, especially N2+, CO+, and N+. The discrepancies which existed between model and measured densities of these ions are resolved.  相似文献   

20.
A magnetic type mass spectrometer has been flown on two ESRO sounding rockets from ESRANGE (Kiruna 68°N) on February 25 and 26, 1970. The first launch was at sunset (16:33 UT) and the second the next morning, during sunrise (04:47 UT). For both flights the solar zenith angle was approximately 98°. The instrument was measuring simultaneously the neutral gas and positive ion composition and the total ion density. In this paper the results of the ion composition measurements are presented. For both flights the main ion constituents measured between approximately 110–220 km were O+, NO+ and O2+. Only at sunset were N+ and N2+ detected above 200 km. In spite of the identical solar UV-radiation, pronounced sunset/sunrise variations in the positive ion composition were found. The total ion densities at sunrise were between 5×103 and 5 × 104 ions cm?3 and therefore too high to be explained without a night-time ionization by precipitated particles. At sunrise the NO+ and O2+ profiles show a correlated wavelike structure with three pronounced almost equally spaced layers in the E-region. Only the highest layer is present in the O+ profile. Locally enhanced field aligned ionization originated by particle precipitation and an E × B instability are the most likely source for this structure. In the E- and lower F-regions the NO+O2+ ration increased overnight from values around 7 at sunset to 15 at sunrise, correlated with an increase of the local magnetic activity index K from 0+ to 2°. This could be explained if the NO density and magnetic activity are correlated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号