首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ground signatures of multiple onset substorms have been investigated in night-side magnetograms from low to high latitudes and in observations of auroral-zone electron precipitation. Pi 2 onsets at three widely spaced stations are used for accurate timing of each onset. It is found that an evening auroral arc brightens at the onset of each Pi 2 train, also in the case of weak pulsations before the first low-latitude positive bay onset. The latter onset is, on the other hand, associated with the initiation of a westward travelling surge, and field-aligned currents moving with the surge cause a similar westward movement of the magnetic signatures in subauroral and low-latitude magnetograms. At the arrival of a surge at an evening side observatory, the westward electrojet is displaced rapidly poleward, with a sharp increase in local bay activity and high-energy electron precipitation. The westward expansion of new activity appears as a continuous motion along the oval and is associated with a local poleward displacement of the westward electrojet. Consecutive surge initiation and low-latitude onsets do not, however, always occur progressively farther west. Thus, the development of the expansion phase consists of a series of intensifications and auroral surge formations at 10–20 min intervals. Near the time of maximum auroral-zone bay activity and apparently also when maximum westward extent is reached, the whole nighttime oval seems to be shifted poleward. Our findings are thus not consistent with the Wiens and Rostoker (1975) northward-westward stepping model. An alternative model is therefore presented based on the fundamental role of the westward travelling surge in carrying substorm activity westward along the oval. The associated field-aligned current system will perturb the pre-existing magnetospheric current wedge and cause positive bay increases at low latitudes and westward moving magnetic signatures at subauroral stations.  相似文献   

2.
We propose a model three-dimensional current system for the magnetospheric substorm, which can account for the new findings of the field-aligned and ionospheric currents obtained during the last few years by using new techniques. They include (1) the ionospheric currents at the auroral latitude deduced from the Chatanika incoherent scatter radar data, (2) the field-aligned currents inferred from the vector magnetic field observations by the TRIAD satellite and (3) the global distribution of auroras with respect to the auroral electrojets appearing in DMSP satellite photographs. The model current system is also tested by a computer model calculation of the ionospheric current pattern. It is shown that the auroral electrojets have a strong asymmetry with respect to the midnight meridian. The westward electrojet flows along the discrete aurora in the evening sector, as well as along the diffuse aurora in the morning sector. The eastward electrojet flows equatorward of the westward electrojet in the evening sector. It has a northward component and joins the westward electrojet by turning westward across the Harang discontinuity. Thus, the latitudinal width of the westward electrojet in the morning sector is much larger than that in the evening sector. The field-aligned currents, consisting of two pairs of upward and inward currents (one is located in the morning sector and the other in the evening sector), are closed neither simply by the east-west ionospheric currents nor by the north-south currents, but by a complicated combination of the north-south and east-west paths in the ionosphere. The magnetospheric extension of the current system is also briefly discussed.  相似文献   

3.
Substorm onsets and intensifications are accompanied on a one-to-one basis by a Pi 2 magnetic pulsation burst. The source region for these pulsations is generally thought to lie in the region of substorm disturbance in the auroral oval. In this paper we outline the characteristics of Pi 2 pulsations in regions near the substorm enhanced electrojet but removed from the locale of the westward travelling surge. We show that a resonance region for the pulsations lies at the equatorwad edge of the westward electrojet, which in the evening sector marks the locus of the Harang discontinuity. Finally we show examples where the maximum amplitude of the Pi 2 is located at or equatorward of the southern border of the eastward electrojet or at the southern border of the westward electrojet. This is clear evidence for the coupling of wave energy into the L-shells far distant from the source of the energy. Mechanisms for Pi 2 generation are discussed in the context of the results presented in this paper.  相似文献   

4.
It is assumed that the three-dimensional current system of a substorm passes three successive stages. (1) When a dawn-to-dusk magnetospheric electric field appears, a current system with field-aligned currents at the poleward boundary of the auroral zone arises. An equivalent ionospheric current system calculated, taking into account a day-night asymmetry of ionospheric conductivity, looks like the well-known DP-2 system including an eastward low-latitude current and a greater magnitude of the dusk vortex in comparison with the dawn one. (2) An electric drift of plasma towards the Earth leads to the appearance of a westward partial ring current increasing in time. This current is closed by field-aligned currents at the equatorward boundary of the auroral zone. The calculated equivalent current system is similar to the well-known one of the precursory phase. (3) An increase of the auroral ionospheric conductivity during the expansive phase produces an increase of all currents and a turning of field-aligned currents at the equatorward boundary of the auroral zone relative to those at the poleward one. The calculated equivalent current system is similar to the DP-1 system.  相似文献   

5.
Although the Harang discontinuity has so far been identified in terms of various phenomena (such as ground magnetic fields, ionospheric currents, auroral features, and electric fields), the loci defined by those different phenomena do not always coincide. It is suggested that the Harang discontinuity may not be a line boundary across which the electric field changes its direction simply from poleward to equatorward, but that the field gradually rotates counterclockwise in a narrow region; thus the westward electric field dominates there. In such a case, no field-aligned current is necessarily required to flow from or into the discontinuity region. This view may be contrasted with the conventional view that an intense upward field-aligned current should flow from the Harang discontinuity. A model is presented in which the poleward ionospheric current (the Hall current resulting from the westward electric field) in the Harang discontinuity region connects the eastward electrojet and the westward electrojet.  相似文献   

6.
A review of recent experimental results from studies of high latitude Pi 2 pulsations indicates that these pulsations are fundamentally related to the initiation of the auroral breakup and substorm. At high latitudes, the Pi 2's show their peak intensities in the region where the breakup begins and appear to remain in this region after the breakup has spread poleward. In addition, the Pi 2's occur simultaneously with, or before all other ionospheric phenomena associated with the breakup. The field aligned and ionospheric currents associated with the Pi 2 resemble those of a typical substorm, but the ionospheric currents are phase shifted compared to the field aligned current. The periodic oscillations of the Pi 2's are probably caused by a reflection of the initial field aligned current pulse from the auroral ionosphere. This pulse is trapped on dipolar field lines leading to multiple reflections from North and South auroral ionospheres.  相似文献   

7.
The location of field-aligned currents in the evening sector with respect to the auroral electrojets is examined. The tri-axial TRIAD satellite data and the simultaneous ground magnetometer data from along the Alaska meridian are analysed. It is shown that an intense upward fieldaligned current flows out from the region of the westward electrojet where discrete auroras are located. The downward flowing current exists in the region further equatorward, namely in the region of the eastward electrojet. However, the downward current is present even when there is no eastward electrojet. The boundary between the upward and the downward currents coincides, in most cases, with the boundary between the westward and the eastward auroral electrojets. Thus, the Harang discontinuity, a narrow area separating the positive and negative H bays, is the region where there is no field-aligned current.  相似文献   

8.
We report the results of a case study of two Pi 2 pulsations observed near the eastward electrojet by the Scandinavian Magnetometer Array. The power of the two Pi 2 pulsations, calculated using a standard Fast Fourier Transform method, peaks near the centre of the eastward electrojet. For both events there is a strong latitudinal gradient in the power poleward of the equatorward border of the electrojet. The sense of polarisation is predominantly clockwise at the northern stations and anticlockwise at the southern stations although the reversal from clockwise to anticlockwise does not occur at a constant latitude. For the first event the polarisation reversal occurs at higher latitudes in the western half of the array; for the second the polarisation reversal occurs at higher latitudes at the edges of the array. The polarisation reversal does not appear to be related to the location of the eastward electrojet. Equivalent current vectors of the Pi 2 pulsations, obtained by rotating the band pass filtered data through 90°, exhibit clear vortex structures in both events. The vortices change sense of direction at half the period of the Pi 2 pulsation. A simple model for the ionospheric electric field in accord with the field line resonance theory reconstructs the basic features of the observed Pi 2 equivalent current system. We thus conclude that Pi 2 signatures in the region of the eastward electrojet and far away from the auroral break-up region are governed by the field line resonance mechanism.  相似文献   

9.
The latitudinal morphology of > 100 keV protons at different local times has been studied as a function of substorm activity. A characteristic pattern is found: during quiet-times there is an isotropic zone centred around 67° near midnight, but located on higher latitudes towards dusk and dawn. This zone moves slightly equatorward during the substorm growth phase. During the expansive phase the precipitation spreads poleward apparently to ~ 71° near midnight. The protons are precipitated over a large local time interval on the nightside, but the most intense fluxes are found in the pre-midnight sector. A further poleward expansion, to more than 75° near midnight, seems to take place late in the substorm. Away from midnight, the expansion reaches even higher latitudes. During the recovery phase the intensity of the expanded region decreases gradually; the poleward boundary is almost stationary if the interplanetary magnetic field (IMF) has a northward component and no further substorm activity takes place. Mainly protons with energy below ~ 500 keV are precipitated in the expanded region. On the dayside no increase in the precipitation rates is found during substorm expansion, but late in the substorm an enhanced precipitation is found, covering several degrees in latitude. The low-latitude anisotropic precipitation zone is remarkably stable during substorms. A schematic model is presented and discussed in relation to earlier results.  相似文献   

10.
The Carte Synoptique catalogue of solar filaments from 1919 March to 1957 July, corresponding to complete cycles 16‐18, is utilized to show the latitudinal migrations of solar filaments at low (≤50°) and high (>50°) latitudes and the latitudinal distributions of solar filaments for all solar filaments, solar filaments whose maximum lengths during solar disk passage are less than or equal to 70° and solar filaments whose maximum lengths during solar disk passage are larger than 70°. The results show the following. (1) The latitudinal migrations of all low‐latitude solar filaments and low‐latitude solar filaments whose maximum lengths during solar disk passage are less than or equal to 70° follow the Spörer sunspot law. However, the latitudinal migration of low‐latitude solar filaments whose maximum lengths during solar disk passage are larger than 70° do not follow the Spörer sunspot law: there is no equatorward and no poleward drift. The latitudinal migration of high‐latitude solar filaments whose maximum lengths during solar disk passage are larger than 70° is more significant than those of all high‐latitude solar filaments and high‐latitude solar filaments whose maximum lengths during solar disk passage are less than or equal to 70°: there is a poleward migration from the latitude of about 50° to 70° and an equatorward migration from the latitude of about 70° to 50° of all high‐latitude solar filaments and high‐latitude solar filaments whose maximum lengths during solar disk passage are less than or equal to 70° and there is a poleward migration from the latitude of about 50° to 80° and an equatorward migration from the latitude of about 80° to 50° of high‐latitude solar filaments whose maximum lengths during solar disk passage are larger than 70°. (2) The statistical characteristics of latitudinal distribution of solar filaments whose maximum lengths during solar disk passage are larger than 70° is different from those of all solar filaments and solar filaments whose maximum lengths during solar disk passage are less than or equal to 70° (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Using magnetic data from the North American IMS network at high latitudes, Pi 3 pulsations are analysed for a period of 412 continuously-disturbed days. The data were obtained from 13 stations in the Alaska and Fort Churchill meridional chains and in the east-west chain along the auroral zone. In the past, Pi 3 pulsations associated with substorms have been classified into two sub-categories, Pi p and Ps 6. However, we find that Pi 3's which have longer periods than Pi p and which are different from Ps 6 are more commonly observed than these two special types. Power spectra, coherence and phase differences are compared among the stations. Results show that noticeable differences for latitudinal dependence of period and amplitude exist among midnight, morning and late-evening Pi 3 pulsations. Results for Pi 3 occurring near midnight indicate that the periods at which the power spectral density is a maximum are longest, and the amplitude largest, near the center of the westward auroral electrojet. On the other hand, for Pi 3 pulsations occurring in the morning, the periods at which the power spectral density is a maximum are longest, and the amplitude largest, near the poleward edge of the westward electrojet. Furthermore, for Pi 3 pulsations occurring in the late evening, their periods are longer and their amplitudes larger near both the Harang discontinuity and the poleward edge of the westward electrojet than near its center. Correlations between pairs of adjoining stations are better in the polar cap than at auroral latitudes. It is also found from hodograms that the sense of polarization often varies from one station to another for the same event, and that the time duration in which the same rotational sense is maintained is shorter near midnight than in the morning and late evening. It is suggested that the source regions of the morning and late-evening Pi 3's lie on the electrojet boundaries; that is at the Harang discontinuity (in the evening) and at the poleward edge of the westward electrojet (in the morning and evening). The generation of midnight Pi 3 pulsations, centered at a location within the westward auroral electrojet appears to be associated directly with the generation of that electrojet.  相似文献   

12.
The first simultaneous (within 6 min) observations of the low altitude polar cusp regions in the conjugate hemispheres are reported here based on two events detected by the DMSP-F2 and F4 satellites within the same geomagnetic local time sector. It is found that the electron spectra in the cusp are identical in the opposing hemispheres. In one case the observed latitudinal location and extent of the cusps are the same at the two hemispheres. However, in the other case the location of the equatorward boundary of the cusp regions differs by about 2° with drastically different spatial features. It is also found that in one of the events the plasma sheet electron precipitation regions overlap with the cusp regions at lower latitude in both hemispheres. The poleward boundary of these overlapping regions is located at the same latitude on either hemisphere, suggesting that this is the latitude of the last closed field line and that the cusp electrons are present on both closed and open magnetic field lines.  相似文献   

13.
Measurements of the properties of Pi 2 pulsations along a magnetic meridian at high latitudes during a number of substorms have been analyzed for their relationship to the auroral electrojet. It is found that the maximum Pi 2 pulsation amplitudes are closely associated with the instantaneous position of the electrojet. That is, the average pulsation amplitude in the Pi 2 band as well as the amplitudes of pulsations at specific frequencies in the band have maximum amplitudes at latitudes close to the instantaneous electrojet location. Stations equatorward of the electrojet tend to observe a classical Pi 2 waveform concurrent with the onset of the substorm electrojet. Stations near the electrojet observe a broad spectrum of pulsations indicating a multiplicity of sources. Stations poleward of the initial electrojet position see little pulsation activity until the electrojet moves overhead. The appearance of large amplitude Pi 2 pulsations at a station which was poleward of the electrojet at the onset of a substorm appears to be coincident with the arrival of the poleward border of the electrojet.  相似文献   

14.
The structure of a sequence of four spatially and temporally connected magnetospheric substorms has been determined through the use of a set of mid-latitude magnetometer station data, an auroral zone magnetometer line data set, and the ATS-5 magnetometer record. In two of the substorms, two parallel westward electrojets were observed to develop during the initial part of the expansion phase. In another, the expansion phase consisted of the development of a westward electrojet westward and equatorward of the pre-existing current system.  相似文献   

15.
One of the most striking and persistent features in high latitude regions as seen by the ISIS-2 scanning auroral photometer is a fairly uniform belt of diffuse auroral emission extending along the auroral oval. Indications are that this region follows, contributes to, and may in a sense actually define the auroral oval during quiet times.The diffuse belt is sharply defined at its equatorward edge, which is located at an invariant latitude of about 65° in the midnight sector during relatively low magnetic activity (Kp = 1?3). The poleward edge of the region is not as sharply defined but is typically at about 68°. Discrete auroras (arcs and bands) are located, in general, near the poleward boundary of the diffuse aurora. The position of the belt appears to be relatively unaffected by the occurrence of individual substorms, even when discrete forms have moved well poleward. Representative intensities at 5577 Å are 1–2 kR (corrected for albedo) at quiet times and may reach 5 kR during an auroral substorm.It appears that the mantle aurora and proton aurora constitute this diffuse aurora in the midnight sector. Precipitating protons and electrons both contribute to the emissions in this region.  相似文献   

16.
Zmuda and Armstrong (1974) showed that the field-aligned currents consist of two pairs; one is located in the morning sector and the other in the evening sector. Our analysis of magnetic records from the TRIAD satellite suggests that in each pair the poleward field-aligned current is more intense than the equatorward current, a typical ratio being 2:1. This difference has a fundamental importance in understanding the coupling between the magnetosphere and the ionosphere. We demonstrate this importance by computing the ionospheric current distribution by solving the continuity equation ▽ . I = j using the “observed” distribution of j for several models of the ionosphere with a high conductive annular ring (simulating the auroral oval).It is shown that the actual field-aligned and ionospheric current system is neither a simple Birkeland type, Boström type nor Zmuda-Armstrong type, but is a complicated combination of them. The relative importance among them varies considerably, depending on the conductivity distribution, the location of the peak of the field-aligned currents, etc. Further, it is found that the north-south segment of ionospheric current which connects the pair of the field-aligned currents in the morning sector does not close in the same meridian and has a large westward deflection. Thus, it has an appreciable contribution to the westward electrojet. One of the model calculations shows that the entire north-south closure current contributes to the westward electrojet.  相似文献   

17.
Photometric observations of dayside auroras are compared with simultaneous measurements of geomagnetic disturbances from meridian chains of stations on the dayside and on the nightside to document the dynamics of dayside auroras in relation to local and global disturbances. These observations are related to measurements of the interplanetary magnetic field (IMF) from the satellites ISEE-1 and 3. It is shown that the dayside auroral zone shifts equatorward and poleward with the growth and decay of the circum-oval/polar cap geomagnetic disturbance and with negative and positive changes in the north-south component of the interplanetary magnetic field (Bz). The geomagnetic disturbance associated with the auroral shift is identified as the DP2 mode. In the post-noon sector the horizontal disturbance vector of the geomagnetic field changes from southward to northward with decreasing latitude, thereby changing sign near the center of the oval precipitation region. Discrete auroral forms are observed close to or equatorward of the ΔH = 0 line which separates positive and negative H-component deflections. This reversal moves in latitude with the aurora and it probably reflects a transition of the electric field direction at the polar cap boundary. Thus, the discrete auroral forms observed on the dayside are in the region of sunward-convecting field lines. A model is proposed to explain the equatorward and poleward movement of the dayside oval in terms of a dayside current system which is intensified by a southward movement of the IMF vector. According to this model, the Pedersen component of the ionospheric current is connected with the magnetopause boundary layer via field-aligned current (FAC) sheets. Enhanced current intensity, corresponding to southward auroral shift, is consistent with increased energy extraction from the solar wind. In this way the observed association of DP2 current system variations and auroral oval expansion/contraction is explained as an effect of a global, ‘direct’ response of the electromagnetic state of the magnetosphere due to the influence of the solar wind magnetic field. Estimates of electric field, current, and the rate of Joule heat dissipation in the polar cap ionosphere are obtained from the model.  相似文献   

18.
Data from a meridian line of three component magnetometers were used to investigate the character of the equivalent overhead current flow at high latitudes during periods of moderately strong magnetospheric activity. The polar cap equivalent current flow is inexplicable in terms of our knowledge of the polar cap electric field configuration and probably represents the combined effect of several real current systems seated in the auroral oval and the polar cap. An important contributing factor is the current system associated with the interaction of the magnetosphere with the azimuthal component of the interplanetary magnetic field. The region of the Harang discontinuity is identifiable through the intrusion of polar cap equivalent current flow into the latitudinal regime normally occupied by the eastward and westward electrojets. The Harang discontinuity exhibits marked changes in scale size in association with substorm activity.  相似文献   

19.
This paper presents a brief summary of an extensive correlative study of ATS-5 particle and magnetic field data with all-sky photographs from Great Whale River which is near the ‘foot’ of the field lines passing through the ATS-5 satellite. In particular, an effort is made to identify specific particle features with specific auroral displays during substorms, such as a westward travelling surge, poleward expansive motion and drifting patches. Some of the important findings are (i) in early evening hours, the first encounter of ATS-5 with hot plasma is associated with the equatorward shift of the diffuse aurora, but not necessarily with westward travelling surges (even when the satellite is embedded in the plasma sheet.) (ii) In the midnight sector, an injection corresponds very well to the initial brightening of an auroral arc. (iii) Specific features of morning sector auroras (for example, drifting patches) are difficult to correlate with specific particle features (gross features, but not specific).Comparing these results with particle data from low-latitude polar orbiting satellites, it is concluded that the plasma sheet near the earthward edge (consisting of plasmas injected during earlier substorms) is little affected during substorms.  相似文献   

20.
The Joule heating produced by auroral electrojets and its thermospheric response can be studied by monitoring the thermospheric temperatures by means of optical methods; simultaneously investigating the concurrent auroral electrojet activities using geomagnetic records obtained from stations along a meridian close to the observation site of optical measurements. We report, in this paper, the measurements of thermospheric response to auroral activities which were made at Albany (42.68°N, 73.82°W), New York on 2 September 1978 (U.T.) when an isolated substorm occurred. The thermospheric temperatures were measured by using a high-resolution Fabry-Perot interferometer that determines the line profiles of the [OI] 6300 Å line emission. The intensities and latitudinal positions of auroral electrojets were obtained by the analysis of magnetograms from the IMS Fort Churchill meridian chain stations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号